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Abstract

Recent advances have shown a great potential to explore collaborative representations of test
samples in a dictionary composed of training samples from all classes in multi-class recogni-
tion including sparse representations. In this paper, we present two multi-class classification
algorithms that make use of multiple collaborative representations in their formulations, and
demonstrate performance gain of exploring this extra degree of freedom. We first present the
Collaborative Representation Optimized Classifier (CROC), which strikes a balance between the
nearest-subspace classifier, which assigns a test sample to the class that minimizes the distance
between the sample and its principal projection in the selected class, and a Collaborative Rep-
resentation based Classifier (CRC), which assigns a test sample to the class that minimizes the
distance between the sample and its collaborative components. Several well-known classifiers
become special cases of CROC under different regularization parameters. We show classification
performance can be improved by optimally tuning the regularization parameter through cross
validation. We then propose the Collaborative Representation based Boosting (CRBoosting)
algorithm, which generalizes the CROC to incorporate multiple collaborative representations.
Extensive numerical examples are provided with performance comparisons of different choices
of collaborative representations, in particular when the test sample is available via compressive
measurements.
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Abstract—Recent advances have shown a great potential to explore collaborative representations of test samples in a dictionary
composed of training samples from all classes in multi-class recognition including sparse representations. In this paper, we present
two multi-class classification algorithms that make use of multiple collaborative representations in their formulations, and demonstrate
performance gain of exploring this extra degree of freedom. We first present the Collaborative Representation Optimized Classifier
(CROC), which strikes a balance between the nearest-subspace classifier, which assigns a test sample to the class that minimizes
the distance between the sample and its principal projection in the selected class, and a Collaborative Representation based
Classifier (CRC), which assigns a test sample to the class that minimizes the distance between the sample and its collaborative
components. Several well-known classifiers become special cases of CROC under different regularization parameters. We show
classification performance can be improved by optimally tuning the regularization parameter through cross validation. We then
propose the Collaborative Representation based Boosting (CRBoosting) algorithm, which generalizes the CROC to incorporate
multiple collaborative representations. Extensive numerical examples are provided with performance comparisons of different choices
of collaborative representations, in particular when the test sample is available via compressive measurements.

Index Terms—multi-class classification, sparsity, compressive sensing, collaborative representation, boosting.

�

1 INTRODUCTION

MULTI-CLASS classification, where the goal is to as-
sign one of several class labels to a test sample, is

an important task encountered in many applications and
has attracted significant research interests in decades.
It is widely used for protein function identification [2],
text classification [3], face recognition [4], multi-user
detection [5], etc.

Recent advances in Compressive Sensing (CS) [6], [7]
and Sparse Learning [8], [9] have reported significant
success in the adoption of sparse representations in
signal processing, machine learning and pattern recogni-
tion. If a signal can be represented by a few parameters,
i.e. admits a sparse representation in certain domain,
then it is possible to reconstruct the signal from a much
smaller number of linear measurements than its ambient
dimension, given that the measurement matrix satisfies
certain properties such as restricted isometry properties
[7]. Many real-world signals have been shown to possess
such representations, for example, an image patch can
be regarded as a sparse signal in the wavelet domain.
On the other hand, given the compressive measurements
of the test samples, it is shown in [10] that the Eu-
clidean distance between samples from different classes
are preserved in the compressive domain, enabling the
performance of learning and inference tasks without
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first reconstructing the original samples [11]. This is
especially desirable when full data are impossible to
obtain due to either power constraints in sensing or un-
availability of user information, which commonly arise
in recommender systems.

There is also an increasing trend to explore spar-
sity in the feature domain, in particular for multi-class
recognition such as face recognition [12], [13]. Assume
that the test sample can be linearly represented by the
training samples in the same class. It then admits a
sparse representation in the dictionary spanned by all
training samples from all classes, where most nonzero
components are expected to be found in the correct
class. By reconstructing the sparse representation using
sparse recovery algorithms such as �1 minimization [14]
or greedy pursuits [15], and feeding it into a Sparse
Representation based Classifier (SRC) [12], Wright et
al. showed that both accuracy and robustness can be
improved for face recognition. However, one main draw-
back of this approach is the computational complexity of
acquiring the sparse representations. The computational
load of sparse recovery algorithms is still prohibitively
high especially when the training set is large. Many
works have been steered in this direction including the
use of Gabor frame based sparse representations [16],
learned dictionary of smaller size instead of the whole
training set [17], random hashing [18], etc.

Despite the initial success, there has been a debate
whether sparse representations are really necessary. In
fact, a test sample has an infinite number of possible
representations in the dictionary spanned by the training
samples. Since all training samples collaboratively form
the representation of the test sample, all of these possible
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(a) First CR choice (b) Second CR choice

Fig. 1. An illustration of why adopting multiple CRs helps
in multi-class classification.

solutions are indiscriminately referred to as Collabora-
tive Representations (CRs) [13], sometimes dictionary
representations [19], in the literature. The sparse rep-
resentation is only one such example. It is argued in
[13], [20] that it is not the sparse representation but
the adoption of collaborative representations in general
play a more crucial role in the success of the SRC. For
instance, using a different collaborative representation
for the SRC, such as a regularized least-norm represen-
tation, similar performance can be achieved with much
lower complexity [13]. However, a recent paper [21]
suggested that sparse representations are more robust
to occlusions and corruptions compared with their non-
sparse counterparts.

Rather than trying to settle the debate by claiming
which collaborative representation is optimal, we present
multi-class classification algorithms that make use of
multiple CRs in their formulations, and demonstrate per-
formance gain by leveraging this extra degree of freedom
through theoretical analysis and numerical experiments.
Fig. 1 intuitively illustrates the concept, where a test
sample from Class 2 is decomposed using two different
CRs in (a) onto the space of Class 1 and 2, and in (b)
onto the space of Class 2 and 4. In both cases the sample
has a smaller projection residual to the correct Class 2,
but in neither case it provides a large enough margin
compared with the projection residual to the wrong class.
By combining the two CRs cleverly, we can obtain a
stronger confidence in claiming the test sample is indeed
from Class 2. This performance gain indicates that it is
possible to leverage several easy-to-compute CRs with
weaker performance into a classifier with performance
comparable to a CR with better performance but difficult
to compute.

In this paper, we decompose the multi-class classi-
fication problem into two parts, first finding the CRs
and then imposing them to a classifier that computes
the residual towards each class in order to properly
harness the CRs of the test sample. Using the CRs, the
test sample is decomposed into a sum of components
that each coming from a different subspace, possibly
overlapping, spanned by a separate class. In the first
half of this paper, we propose a multi-class classifier,
called as Collaborative Representation Optimized Clas-

sifier (CROC), that achieves optimal combination of the
Nearest Subspace Classifier (NSC) [22], which classifies
a sample to the class with the minimal residual be-
tween the test sample and its principal projection to
that class, and the Collaborative Representation based
Classifier (CRC), which classifies a sample to the class
with the minimal residual between the test sample and
its CR components. Under our framework, the well-
known SRC and NSC become special cases of CROC
under different regularization parameters and particular
choices of CRs. The regularization parameter can be op-
timally tuned via cross validation, which is done at little
computational cost. We provide numerical examples to
compare the classification performance for sparse and
non-sparse CRs, and show in some cases the gain of
using sparse representations can be achieved by using
a non-sparse representation with an optimally tuned
regularization parameter.

Furthermore, we show that the CROC applies a proper
weighted combination in the residual domain of a par-
ticular CRC and NSC. In practice, it is often challenging
to determine the proper rank of the subspace in NSC
and which CR to use in CRC. While the success of
CROC suggests potential benefits of using multiple CRs
in a classifier, it is not straightforward to generalize to
the scenario when there are more than two candidate
CRCs and NSCs since running cross validation to find
the corresponding weights becomes impractical as the
number of classifiers gets large.

In the second half of this paper, we introduce the Col-
laborative Representation based Boosting (CRBoosting)
algorithm, which finds a weighted sum of the CRCs
and NSCs in the residual domain derived from a set
of candidate CRs. The CRBoosting algorithm is inspired
by AdaBoost [23], but the key difference is CRBoosting
forms the weighted classifier in the residual domain
before classification, while AdaBoost forms a weighted
classifier in the decision domain. This allows CRBoosting
to outperform classifiers using individual CRs. It can also
optimize the performance even with only two candidate
CRs, which is impossible for AdaBoost. In addition,
the presented CRBoosting algorithm elegantly selects
the best rank for the NSC and the best CRC to use.
We provide performance bounds for the CRBoosting
algorithm and present quantitative results to show the
advantages of CRBoosting.

The rest of this paper is organized as follows. The
multi-class classification problem is described in Section
2. The proposed CROC is presented in Section 3. The
CRBoosting algorithm is then proposed in Section 4 to
efficiently combine multiple CRCs and NSCs in classi-
fication. Numerical examples are given for digit classi-
fication and face recognition of proposed algorithms in
Section 5. Finally we conclude the paper in Section 6.

A note on notation: we use boldface to denote matrices
and vectors. For a matrix A, AT denotes its transpose,
A† denotes its Penrose-Moore pseudo-inverse, A−1 de-
notes its inverse if exists. In denotes an identity matrix
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of dimension n. We summarize the key acronyms and
parameters used throughout the paper in Table 1.

TABLE 1
Acronyms and Key Parameters.

Notation Meaning
CR Collaborative Representation [13]

CRC Collaborative Representation based Classifier
SRC Sparse Representation based Classifier [12]
NSC Nearest Subspace Classifier [22]

CROC Collaborative Representation Optimized Classifier
CRBoosting Collaborative Representation based Boosting

K number of classes
A ∈ R

m×n training dictionary in the original space
Ψ ∈ R

d×n training dictionary in the feature space
Ai ∈ R

m×ni training samples of ith class in the original space
Ψi ∈ R

d×ni training samples of ith class in the feature space
Φ ∈ R

d×m feature selection (measurement) matrix
y ∈ R

m test sample in the original space
yi ∈ R

m ith CR component in the original space
z ∈ R

d test sample in the feature space
zi ∈ R

m ith CR component in the feature space
xCR ∈ R

n CR in the original space
sCR ∈ R

d CR in the feature space

2 MULTI-CLASS CLASSIFICATION

Assume there are K classes, where there are ni training
samples from the ith class stacked in a matrix as

Ai = [ai,1, · · · , ai,ni ] ∈ R
m×ni ,

and ai,j ∈ R
m is the jth training sample of dimension m

from the ith class. By concatenating all training samples
we get the training dictionary

A = [A1,A2, · · · ,AK ] ∈ R
m×n,

where n =
∑K

i=1 ni is the total number of training
samples. We are interested in classifying the test sample
y ∈ R

m, given the labeled training samples in A.
In this paper, the multi-class classification problem is

explicitly decomposed into two parts, namely finding
the CR of the test sample in the training dictionary, and
inputting the CR to a classifier to estimate the label. We
will discuss these two parts respectively below.

2.1 Collaborative Representations of Test Samples
We assume that samples within a class lie in the same
low-dimensional linear subspace. For example, it is well-
established that the face images of the same individual
under various illuminations and expressions will ap-
proximately span a low-dimensional linear subspace in
R

m [24], [25]. If the test sample y can be represented as
a superposition of training samples in the dictionary A,
given in a linear model as

y = AxCR, (1)

where xCR ∈ R
n is a CR of the test sample by exploring

all training samples as a dictionary. When A is over-
determined, i.e. the dimension of the samples is much

larger than the number of training samples, the Least-
Squares (LS) solution of (1) is given as

xLS = argmin
x

‖y −Ax‖2 = A†y, (2)

where † denotes pseudo-inverse and A† = (ATA)−1AT .
In many cases the LS solution (2) might lead to over-

fitting, therefore the test sample is mapped into a low-
dimensional feature domain via dimensional reduction
methods such as Principal Component Analysis (PCA),
Linear Discriminant Analysis (LDA), and random pro-
jections first. In face recognition, the features extracted
using the above methods are referred to as Eigenface
[26], Fisherface [24] and Randomface [12] respectively.
Another important argument is motivated by the theory
of CS, when it is impossible to acquire the full samples,
only a partial observation is available via linear mea-
surements and one is interested in classification using the
incomplete information. This can be viewed equivalently
as linear feature extraction. In this paper, we focus on
linear features, i.e. the extracted features of both the test
and the train samples can be written in terms of linear
transformation:

z = Φy; Ψ = ΦA, (3)

where Φ ∈ R
d×m is the measurement matrix or linear

transformation, d is the feature dimension, z is the
feature of the test sample, and Ψ = [Ψ1,Ψ2, · · · ,ΨK ]
is the feature of the training dictionary. For face recogni-
tion, both Eigenface and Randomface are linear features
while Fisherface is not. If Φ is generated with random
i.i.d. entries from Gaussian or uniform distributions,
then the low-dimensional features effectively embed the
high-dimensional samples by preserving their Euclidean
distances up to a small perturbation via the Johnson-
Lindenstrauss lemma [27].

Now the test sample in the feature domain can be
represented as

z = ΨsCR. (4)

where sCR denotes the CR computed using the extracted
features. When the size of the training dictionary is
greater than the feature dimension, there are an infinite
number of possible representations, we solve the regu-
larized problem below to find the CR,

sCR = argmin
s

‖z−Ψs‖22 + εf(s), (5)

where ε is the regularization parameter and f(s) is the
regularization function.

The sparse representation is obtained by choosing
f(s) = ‖s‖1, i.e.

sL1(ε) = argmin
s

‖z−Ψs‖22 + ε‖s‖1, (6)

The �1 constraint is imposed to approximate the �0 norm,
aiming to use a minimal number of training samples
to represent the test sample, as it is beneficial in some
cases where most of the nonzero entries will come from
the correct class, but the complexity is greatly increased.
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It is also possible to consider a sparse representation
with more structures such as group sparsity [28], where
the ith group includes all samples from the ith class. In
practice, the regularization parameter ε may depend on
the noise variance and can be used to control the sparsity
level of the CR.

The least-norm representation is obtained by choosing
the regularizer as f(s) = ‖s‖2:

sL2(ε) = argmin
s

‖z−Ψs‖22 + ε‖s‖22, (7)

whose solution can be written explicitly as sL2
R (ε) =

(ΨTΨ+ εIm)−1ΨT z.
The solutions for (6) and (7) can also be computed

for the full test sample y in (1) without dimensionality
reduction, denoting their solutions as xL1(ε) and xL2(ε).

The test image y or its reduced-dimension signal
z is represented using all examples from all classes
from (1) and (4). Since different classes “collaborate”
in the process of forming the representation, x and s
are considered as collaborative representations. If the
CR of the test sample y is decomposed for each class
as xCR = [xCR

1 , · · · ,xCR
K ], where xCR

i is the part of
coefficients corresponding to the ith class in xCR. Then
the test sample can be written as a sum of components
from different classes, namely

y =
K∑
i=1

yi, (8)

where yi = Aix
CR
i , 1 ≤ i ≤ K is defined as the ith

collaborative representation component. Note this can
also be defined for the feature z, given

z =
K∑
i=1

zi,

where zi = Ψis
CR
i is the ith collaborative representation

component in the feature domain.

2.2 Nearest Subspace Classifier
The Nearest Subspace Classifier (NSC) [22] assigns the
test sample z to the ith class if the projection residual
rNS
i from z to the subspace spanned by the ith training

set Ψi is the smallest among all classes, i.e.

NSC(z) = argmin
i

rNS
i . (9)

When the number of training samples per class is small
so that they do span a subspace, which for face recogni-
tion is usually the case, Ψi’s are over-determined. Then
rNS
i is given as

rNS
i = min

si
‖z−Ψisi‖22 (10)

=
∥∥z−Ψis

LS
i

∥∥2
2

=
∥∥∥(I−ΨiΨ

†
i )z

∥∥∥2
2
, i = 1, . . . ,K. (11)

where sLS
i = Ψ†

iz, with Ψ†
i = (ΨT

i Ψi)
−1ΨT

i .

When the number of training samples is large, such
as in digit recognition, Ψi’s are under-determined, a
principal subspace Bi ∈ R

d×k of rank k for each class
is first extracted using PCA to avoid overfitting, then
the projection residual rNS(k)

i is computed as

r
NS(k)
i = min

si
‖z−Bisi‖22 , (12)

=
∥∥z−BiB

T
i z

∥∥2
2

=
∥∥∥z−Ψis

LS(k)
i

∥∥∥2
2
, i = 1, . . . ,K. (13)

where (13) follows from the fact BiΨiΨ
†
i = Bi, and Ψ†

i =

ΨT
i (ΨiΨ

T
i )

−1, therefore s
LS(k)
i = Ψ†

iBiB
T
i z.

Strictly speaking, the NSC does not require collabora-
tion of different classes to determine the label, and sim-
ply measures the similarity between the test sample and
each class without considering the similarities between
classes. In practice, the rank k has to be chosen via cross
validation or other techniques in order to obtain good
performance.

2.3 Collaborative Representation based Classifier
We define the Collaborative Representation based Clas-
sifier (CRC) which uses a choice of collaborative rep-
resentation sCR = [sCR

1 , sCR
2 , · · · , sCR

K ] of its feature z
as an input1, and identifies the test image with the ith
class if the residual of the test sample using the i the
collaborative representation component, i.e.

CRC(z) = argmin
i

rCR
i , (14)

where

rCR
i = ‖z− zi‖22

=
∥∥z−Ψis

CR
i

∥∥2
2
, 1 ≤ i ≤ K (15)

is the smallest for the ith class.
The Sparse Representation based Classifier (SRC) was

the first classifier proposed in the form of CRC [12]
which uses the sparse representation as an input. In the
supplementary material of [12] the authors discussed
the benefits of the SRC from a sparse representation
viewpoint. If the test image can be sparsely represented
by all training images as xCR = [0, · · · ,xCR

i , · · · , 0], such
that it can be represented by using only training samples
within the correct class, given the abundance availability
of training, then the residual for the correct class will be
zero while the residual from other classes is the norm
of the test image, resulting in maximal discriminative
power for classification. In [13] the authors showed that
the SRC checks not only the angle between the test image
and the partial signal represented by the coefficient
on the correct class (which should be small); but also
the angle between the partial signal represented by the
coefficient on the correct class and that on the rest classes
(which should be large).

1. Also applies to the test sample y in the original space. For
consistency of the presentation we adopt the feature space notation.
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Although the name SRC indicates this method is
designed for sparse representations, it was then quickly
adopted in many follow-up works to incorporate other
types of collaborative representations. Here, we recast
the SRC as a special case of the CRC to avoid ambiguities
and unify previous work under the same umbrella. In
particular, the CRC using xLS is adopted in [20], and
the CRC using sL2(ε) is adopted in [13] respectively for
face recognition. However, the computational cost of xLS

and sL2(ε) is much smaller than that of sL1.

3 COLLABORATIVE REPRESENTATION OPTI-
MIZED CLASSIFIER (CROC)
In this section we propose a novel optimized classifier,
which defines a regularized path of classifiers that con-
nects the NSC and the CRC, where both the SRC and
the NSC can be viewed as particular dots on the path.

3.1 Balancing Between NSC and CRC
Given the NSC and the CRC, which look at intra-
class residual and inter-class residual respectively, we
introduce the Collaborative Representation Optimized
Classifier (CROC), which computes a regularized path to
study the trade-off between these two classifiers, where

CROC(z, λ) = argmin
i

ri(λ), (16)

where the residual for each class is calculated as follows

ri(λ) = (1− λ)rNS
i + λrCR

i , (17)

where 0 ≤ λ ≤ 1. Note that the total weights of
both classifiers sum up to 1, since the classification
result doesn’t change when the residual is scaled. The
test sample is then assigned to the class that has the
minimal weighted residual. When λ = 0, the CROC is
equivalent to the NSC; and when λ = 1, the CROC is
equivalent to the CRC. In practice, cross-validation may
be used to determine the optimal λ, as we will further
show in the numerical examples Section 5.1, and better
regularization parameter exists to outperform the CRC
regardless of the choice of collaborative representations
for the test sample.

3.2 When Training Samples are Limited
If all Ai’s are over-determined, the NSC is computed
using (10). In this case, the residual of each class for the
CRC can be rewritten in the following way:

rCR
i =

∥∥z−Ψis
CR
i

∥∥2
2

=
∥∥∥z−ΨiΨ

†
iz+Ψi(Ψ

†
iz− sCR

i )
∥∥∥2
2

=
∥∥∥(I−ΨiΨ

†
i )z

∥∥∥2
2
+
∥∥∥Ψi(Ψ

†
iz− sCR

i )
∥∥∥2
2

(18)

=
∥∥∥(I−ΨiΨ

†
i )z

∥∥∥2
2
+
∥∥Ψi(s

LS
i − sCR

i )
∥∥2
2

� rNS
i + rDR

i , (19)

where (18) follows from

(I−ΨiΨ
†
i )Ψi = 0, (20)

and (19) follows by letting

rDR
i =

∥∥Ψi(s
LS
i − sCR

i )
∥∥2
2
, (21)

which measures the residual rDR
i between the ith col-

laborative representation component of a test sample,
and its orthogonal projection within that class. This can
be seen as a measure of the difference between signal
representations obtained from using only the intra-class
information and the one using the inter-class information
obtained from the collaborative representation.

Plugging (19) into the residual of the CROC (17), we
get

ri(λ) = rNS
i + λrDR

i . (22)

When the training samples are limited, i.e. Ai’s are
over-determined, we could also rewrite the residual
error for the CROC by plugging (10) and (21) into (22),
given as

ri(λ) =
∥∥z−Ψis

LS
i

∥∥2
2
+ λ

∥∥Ψi(s
LS
i − sCR

i )
∥∥2
2

=
∥∥∥z−Ψis

LS
i +

√
λΨi(s

LS
i − sCR

i )
∥∥∥2
2

(23)

=
∥∥∥z−Ψi

[
(1−

√
λ)sLS

i +
√
λsCR

i

]∥∥∥2
2

= ‖z−Ψis̃i‖22 , (24)

where (23) follows again from (20), and

s̃i = (1−
√
λ)sLS

i +
√
λsCR

i .

Denote s̃ as

s̃ = [s̃1, · · · , s̃K ] = (1−
√
λ)sLS +

√
λsCR,

where sCR is the input CR, sLS = [sLS
1 , · · · , sLS

K ] is a
combined representation by the LS solution within each
class, then s̃ can be considered as another CR induced
by s.

4 BOOSTING WITH MULTIPLE CRS

The CROC adopts a weighted combination of the CRC
with a particular CR and the NSC with a specific rank,
and suggests significant benefits in classification. For
instance, in (10) and (12) of NSC, we can define sLS =
[sLS

1 , sLS
2 , · · · , sLS

K ] and

sNS(k) = [s
LS(k)
1 , s

LS(k)
2 , · · · , sLS(k)

K ]

as the corresponding LS representation with rank k.
In practice, it is challenging to determine a proper

CR for the CRC as well as a proper rank for the NSC
without running cross validation or prior knowledge.
One can then ask the question that if it is possible to
combine and select from multiple CRCs with different CRs
and multiple NSCs with different ranks without running
cross validation.
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Here, we generalize the CROC approach to combine
multiple CRCs and NSCs by formulating a weighted
sum of residuals of each class using different CRs and
LS representations, and classifying the test sample to
the class with the smallest residual. This allows auto-
matic selection of the most suitable representations for
different problems. In addition, it provides an alternative
way to determine the regularization parameters in (5), by
including a set of collaborative representations with dif-
ferent regularization parameters into the candidate set.
Below, we introduce an algorithm named Collaborative
Representation based Boosting (CRBoosting) to deter-
mine the weights in the combined classifier, inspired by
AdaBoost [23].

4.1 CRBoosting Algorithm
Consider a candidate set of T collaborative representa-
tions or least-squares representations. Let st be the tth
representation of interest, 1 ≤ t ≤ T . We are interested in
finding a weighted classifier H(z) that classifies a sample
z with the class having the minimal weighted residual
ri(α), given as

H(z) = argmin
i

ri(α),

where

ri(α) =

T∑
t=1

αt‖z−Ψis
t
i‖22, (25)

α = [α1, · · · , αT ] is a positive vector, and without loss
of generality, 1Tα =

∑T
t=1 αt = 1. In comparison, the

AdaBoost algorithm finds a weighted classifier in the
decision domain, given as

H∗(z) = arg min
1≤i≤K

T∑
t=1

αth
t
i(z), (26)

where ht
i(z) = 1 if z is classified to the ith class by the

tth CRC, and ht
i(z) = 0 otherwise.

With two candidate representations, the solution to
AdaBoost is equal to the candidate with the larger
weight. To spell out our advantage, the proposed CR-
Boosting classifier becomes the CROC and constructs an
optimized classifier with better accuracy, as shown in
Sec 5.3.

The CRBoosting weights αt’s are learned on a vali-
dation set via the proposed algorithm as summarized
in Algorithm 1. It is straightforward to see |εt| < bt for
every t. The iterations stop if αt = 0 for certain t. In
simulations, we run the algorithm with more iterations
to allow refinement of weight estimation.

It is worth noting that d�,t measures the difference
between the residual of the correct class and the minimal
residual of the rest of the classes of the �th sample.
Therefore d�,t < 0 if it is labeled correctly by the ith CRC,
and d�,t > 0 otherwise. The CRBoosting algorithm thus
update the distribution Dt+1(�) by putting more weights
on the tth classifier if it is incorrect.

Algorithm 1 CRBoosting

1: Input: training set A, validation set Y = [y�] ∈ R
m×L

and their labels c�, and the measurement matrix Φ;
2: Compute the measurements or features: Z = ΦY,

Ψ = ΦA;
3: Initialize the distribution D1(�) = 1/L.
4: for t = 1 → N do
5: Find the representation on the distribution Dt to

maximize |εt/bt|, where

εt = EDt [d�,t] and bt = max
�

|d�,t|, (27)

and

d�,t = ‖z� −Ψc�s
t
c�
‖22 −min

i �=c�
‖z� −Ψis

t
i‖22.

6: Choose αt ∈ R as:

αt = max

{
1

2bt
log

(
bt − εt
bt + εt

)
, 0

}
;

7: Update Dt+1:

Dt+1(�) =
Dt(�)

Zt
eαtd�,t ,

where Zt is the normalization factor.
8: end for
9: Output: The weights {αt}Tt=1 after normalization.

4.2 Classification Error on Validation Set

Similar to AdaBoost, the training error on the validation
set is bounded by

∏T
t=1 Zt as the theorem below.

Theorem 4.1. The validation error with respect to the initial
distribution D1 is bounded by

PD1(H) =
1

L

L∑
�=1

1{H(z�) �= c�} ≤
T∏

t=1

Zt, (31)

where {P} is the indicator function of an event P .

Proof: The error on the validation set can be bounded
by (28)-(30), where (29) follows from

min
i �=c�

T∑
t=1

αt‖z� −Ψis
t
i‖22 ≥

T∑
t=1

αt min
i �=c�

‖z� −Ψis
t
i‖22,

and (30) follows from {a > b} ≤ exp{a − b} for any a
an b. Now we unwrap the distribution DT (�) as

DT (�) =
D1(�)∏T
t=1 Zt

· exp
{

T∑
t=1

αtd�,t

}
,

and plug this and D1(�) = 1/L into (30), we get

PD1(H(z�) �= c�) ≤
L∑

�=1

DT (�) ·
T∏

t=1

Zt =

T∏
t=1

Zt.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
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PD1(H(z�) �= c�) =
1

L

L∑
�=1

{
c� �= argmin

i

T∑
t=1

αt‖z� −Ψis
t
i‖22

}
(28)

=
1

L

L∑
�=1

{
T∑

t=1

αt‖z� −Ψc�s
t
c�
‖22 ≥ min

i �=c�

T∑
t=1

αt‖z� −Ψis
t
i‖22

}

≤ 1

L

L∑
�=1

{
T∑

t=1

αt‖z� −Ψc�s
t
c�
‖22 ≥

T∑
t=1

αt min
i �=c�

‖z� −Ψis
t
i‖22

}
(29)

≤ 1

L

L∑
�=1

exp

{
T∑

t=1

αt(‖z� −Ψc�s
t
c�
‖22 −min

i�=c�
‖z� −Ψis

t
i‖22)

}
(30)

4.3 Choosing CRC and αt

From Theorem 4.1, we would like to select αt’s to
minimize

∏T
t=1 Zt. For the tth CRC, Zt can be written as

Zt = EDt

[
eαtd�,t

]
. Exact minimization of Zt is difficult

and we seek tractable approximations to minimize Zt.
Since the function eαr is convex in r and any constant
α ∈ R, if r ∈ [−b, b], the following upper bound holds

eαr ≤ e−bα · b− r

2b
+ ebα · r + b

2b
, (32)

let bt = max� |d�,t|, then Zt is upper bounded by

Zt ≤ e−btαt + ebαt

2
+

ebtαt − e−btαt

2bt
εt, (33)

where εt = EDt
[d�,t]. Then αt can be chosen to minimize

the upper bound of Zt. By zero-forcing the derivative of
the RHS of (33), and αt is nonnegative, we get

αt = max

{
1

2bt
log

(
bt − εt
bt + εt

)
, 0

}
, (34)

which corresponds to Zt ≤
√
1− ε2t/b

2
t < 1. From (33) it

is straightforward to choose the tth CRC that minimize
the upper bound of Zt, i.e. maximize |εt/bt|. This choice
is analogous to [29] for a probabilistic output in [0, 1].

An alternative method is to consider the approxima-
tion of eαr by the second-order Taylor expansion, as

eαr ≈ 1 + αr +
1

2
α2r2,

where α > 0. Then Zt is approximated by

Zt ≈ EDt [1 + αtd�,t +
1

2
α2
td

2
�,t] = 1 + αtεt +

1

2
α2
tβt, (35)

where βt = EDt
[d2�,t]. Then αt can be chosen to minimize

the RHS of (35), given

αt = max

{
− εt
βt

, 0

}
,

and correspondingly Zt ≈ 1− ε2t/βt. In this case the tth
CRC should be chosen to minimize the approximation
of Zt in (35), i.e. to maximize ε2t/βt. We refer to the
CRBoosting algorithm associated with this update rule
as CRBoosting-T.

Both updating rules (CRBoosting) and (CRBoosting-
T) are heuristic and do not minimize exactly Zt. In
particular, the update rule of CRBoosting is based on the
assumption that d�,t is bounded in an interval [−bt, bt]
and the bound can be calculated in the algorithm. If bt is
not very large, it is possible to find a good upper bound
of eαr and to choose αt that minimizes this upper bound.
On the other hand, if d�,t is not suitably bounded in a
small interval [−bt, bt], it is still possible to approximate
eαr by its second-order Taylor expansion, and to choose
αt that minimizes the Taylor expansion.

5 NUMERICAL RESULTS

We present numerical results on digit recognition and
face recognition to show the classification accuracy gain
by optimally choosing the regularization parameter. For
digit recognition, the number of training images per class
is very high, corresponding to the case Ai is under-
determined; for face recognition, the number of training
images per class is usually small, corresponding to the
case Ai is over-determined. Finally, we provide per-
formance of the CRBoosting algorithm. Throughout the
session, the �1 minimization algorithm is implemented
using the CVX toolbox [30].

Note that, the CROC and CRBoosting apply to any
multi-class classification and object recognition problem
that is formulated in a vector space. In the following ex-
amples our goal is not to report the best possible results,
which may be obtained by selecting database specific
features, using part-based representations, learning dis-
tance and alignment manifolds, etc., but to prove that a
much better classification performance can be achieved
by balancing the contributions of different intra-class and
inter-class representations. Thus, we use simple intensity
features to report the most objective comparative eval-
uations between the existing multi-class classification
schemes and our methods.

The computational complexity of the CROC and CR-
Boosting algorithms depends on the candidate classi-
fiers. However, if we assume a set of candidate CRCs
are run a priori, the additional complexity of CROC and
CRBoosting is very small.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
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Fig. 2. Classification results of the CROC shown as
a regularization path using partial measurements from
random projection and eigenvector projections for the
MNIST digits database.

5.1 Digit Recognition using CROC
The MNIST Handwritten Digits database [31] is used
to test the proposed multi-class classification algorithm.
There are about 6000 training examples and 1000 test
examples of each class in the data set. Each image is an
8-bit gray-scale image of “0” through “9” of dimension
m = 28× 28.

We consider a toy example where only ni = 50 training
examples is provided per class, and the number of test
examples per class is ni = 500. We make d = 80
measurements of each test sample, and the whole test
image is assumed unknown. We test the CROC against
different regularization parameters, with λ ∈ [0, 1].

In the case where the full sample is not known,
we could make partial observations using either ran-
dom projections using compressive sensing or projection
along the eigenvector directions. Figure 2 shows the
classification accuracy for both scenarios using sparse
(L1) and least-norm (L2) CRCs. Projections using eigen-
vectors achieve better result than random projections in
terms of accuracy. When λ = 1, the SRC achieves slightly
better result than the least-norm CRC using random
projections, and this gain is even larger using eigen-
vector projections. However, a better classification can
be achieved with λ around 0.1 for both CRCs who has
very small performance gap between sparse and least-

TABLE 2
Classification results of the NSC, CRC and CROC using

partial measurements from random projections and
eigenvector projections respectively.

Scenario NSC CRC CROC (λ = 0.1)
Random+L1[%] 75.56 76.02 79.82
Random+L2[%] 75.56 74.72 79.46

Eigen+L1[%] 83.82 83.14 86.34
Eigen+L2[%] 83.82 80.78 85.64
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Cross Validation for L2 CR

Fig. 3. Cross-validation for regularization parameter λ
using least-norm CRC from eigenvector projections for
the MNIST digits database.

norm CRCs. Table 2 further summarizes the classification
results for comparison. The optimal λ can be obtained
by performing cross-validation on randomly selected
training examples and testing examples for a few times,
and compute the average classification accuracy for dif-
ferent λ and choose the optimal one. Figure 3 shows the
average classification accuracy over 5 different partitions
for the least-norm CRC using eigenvector projections,
showing the optimal λ = 0.1 in this case.

We also examine the effect of different realizations
of measurement matrices Φ on the regulation path of
CROC, where the entries of Φ are all generated with
standard Gaussian random variables. Figure 4 (a) shows
the regularization paths of 10 realizations of Φ. We also
resample the training and test samples with the same
size 10 times, and Figure 4 (b) shows the regularization
paths of each realizations. In both figures the circled
lines correspond to least-norm representations, and the
crossed lines correspond to sparse representations. The
regularization paths all possess similar trends, where
the optimal λ tends be the around 0.1. This indicates
the validity of the proposed CROC is robust towards
different choices of measurement matrices and training
sets. On the other hand, the performance of CROC, and
all other classifiers varied slightly between different Φ’s,
and it is useful to optimize for a good measurement
matrix for dimension reduction.

Figure 5 exemplifies how the CROC outperforms both
the NSC and the CRC by using the least-norm CR. Each
row shows the classifier residual using the NSC, the
CRC and the CROC when λ = 0.1 respectively. For two
test examples of digit “0”: in (a) it is correctly classified
by the NSC, but the CRC misclassifies it as digit “8”;
while in (b) it is correctly classified by the CRC, but the
NSC misclassifies it as digit “2”. However, both can be
correctly identified as “0” using a properly regularized
CROC.

If we increase the number of training samples per class

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
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(a) Different random measurements (b) Different training/test samples

Fig. 4. Classification results of the CROC shown as a regularization path using partial measurements from (a) 10
different realizations of random projections, and (b) 10 different resamplings of training and test samples, for the MNIST
digits database. The circled lines use least-norm representations and the crossed lines use sparse representations.
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Fig. 5. Classifier residual for two examples of digit “0”: (a) and (b) show the original digit and its reconstruction from
d = 80 eigenvector projections; (c) shows the classifier residual for digit in (a), which is correctly classified by the NSC,
but misclassified as “8” by the SRC; (d) shows the classifier residual for digit in (b), which is correctly classified by the
SRC, but misclassified as “2” by the NSC. Both are correctly classified by the CROC with λ = 0.1.

to ni = 500, the training dictionary per class is now over-
complete and we will use a principal subspace Bi of
dimension k for the NSC. We use the least-norm CRCs
to re-do the experiment for both random projection and
eigenvector projection when k = 30 and k = 50. As
shown in Fig. 6, there is a jump in the performance when
λ is around 0.05; and adopting the SCR does not give
substantial gain compared with the computational-light
method of optimizing the regularization parameter λ.

5.2 Face Recognition using CROC
We test the proposed CROC against the Extended Yale-B
database [22], [32] and the AR database [33]. Since our
main goal is to show the benefit of the extra freedom by
considering the regularization path, we do not test the
robustness of face recognition with disguise (sunglasses,
scarves, etc.) in this work, yet such an extension is
straightforward.

5.2.1 Extended Yale-B Database
The Extended Yale-B database contains 2414 frontal-
face images of 38 individuals [32]. We use the cropped

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
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Fig. 6. Classification results for the regularization path
for different methods using partial measurements for the
MNIST digits database.

and unnormalized face images of size 192 × 168 which
are captured under different illuminations [22] for our
experiments. For each individual, we randomly select
ni = 30 training samples and the rest are for testing. We
consider random features of dimensions d = 100 and
300 and test the variations below depending on if the
full test image is available:

• With the full image: three CRCs corresponding to
the LS representation xLS from (2), the sparse rep-
resentation xL1 from (6) and the least-norm repre-
sentation xL2 from (7), are tested.

• Without the full image: two CRCs corresponding to
the sparse representation sL1 from (6) and the L2
representation sL2 from (7) are tested.

The classification accuracy for the NSC, CRC and
CROC with optimal λ are summarized in Table 3. It is
obvious to see that when the full image is available,
the xLS representation achieves the best classification
accuracy with low complexity. When the full image is not

TABLE 3
Face recognition results for the NSC, CRC and CROC

(with optimal λ): Full image with LS, L1 and L2
representations, partial images of various dimensions
using Randomface with L1 and L2 representations for

the Extended Yale-B database.
Scenario Dim. NSC CRC CROC (λ)
Full+LS 32256 97.46 99.73 99.73 (0.8)

Full+L1 100 97.46 96.73 97.82 (0.3)
300 97.46 97.82 98.28 (0.2)

Full+L2 100 97.46 91.20 97.64 (0.2)
300 97.46 97.82 98.19 (0.2)

Reduced+L1 100 96.10 96.55 97.19 (0.1)
300 97.01 97.55 98.19 (0.6)

Reduced+L2 100 96.10 89.11 96.55 (0.1)
300 97.01 97.19 97.73 (0.2)

available, the SRC corresponds to λ = 1, and achieves
better accuracy than the least-norm representation sL2

in terms of accuracy, in line with the previous work
showing sparsity helps classification, in particular for
smaller d = 100. However, this gain of using sparse
representation [12] can be achieve by the least-norm
representation with a properly tuned regularization pa-
rameter, around λ = 0.1, at much lower computational
cost.

5.2.2 AR Database
Same as [12], we use a subset of 50 male subjects and 50
female subjects with only changes of illumination and
expressions. For each subject, the seven images from
Session 1 are used for training, and the other seven
images from Session 2 are used for testing. The images
are cropped to size 60× 43.

Figure 7 shows the regularization path of face recogni-
tion results for CROC with different input for the CRC:

• With the full image: the CRC with LS representation
xLS ;

• Without the full image: the CRC with L2 repre-
sentation sL2 using random projection, eigenvector
projection and random pixel selection of the full
image when d = 100 and d = 300.

In the full image case, we show that better accuracy
can be achieved at λ = 0.3, about 1.5% improvement
than at λ = 1, corresponding to the result in [20]. In
almost all curves shown, some gain can be obtained
by optimizing the regularization parameter λ. Figure 8
shows two face examples and corresponding random
pixel selection features: (a) face “1” is correctly classi-
fied by the NSC, but misclassified as face “58” by the
CRC; (b) face “2” is correctly classified by the CRC, but
misclassified as face “25” by the NSC. Both are correctly
classified by the CROC with λ = 0.1.

Figure 9 compares optimal classification result for
the NSC, SRC and CROC with L2 representation us-
ing random pixel selection (partial), Randomface and
Eigenface and LN CR with different feature dimensions
d = 30, 50, 100, 300. The gain of the CROC with random
pixel selection and Randomface is more significant than
the gain with Eigenface.

5.3 Digit Recognition using CRBoosting
In this section, we test the proposed CRBoosting al-
gorithm for digit recognition when the samples are
compressively measured. We consider a set of candidate
CRC that are commonly used in the literature, and a set
of candidate NSC with different ranks. Again we make
use of the MNIST Handwritten Digits database [31].

We use ntrain = 30 or ntrain = 50 samples per class
for training, nvalid = 100 per class for the validation set
to train CRBoosting, and ntest = 500 samples per class
for testing. A random matrix of i.i.d. Gaussian entries
is used to make d = 80 compressive measurements of
each test sample. The candidates of CRC use sL2 and

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
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Fig. 7. Face recognition results on the regularization path
for different projection and collaborative representations:
Full image with L2 representation, random pixel selection
(partial), random projection and eigenvector projection of
full image with LS representations for the AR database.
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Fig. 8. Two face examples and corresponding random
pixel selections: (a) face “1” is correctly classified by the
NSC, but misclassified as face “58” by the CRC; (b) face
“2” is correctly classified by the CRC, but misclassified as
face “25” by the NSC. Both are correctly classified by the
CROC with λ = 0.1.
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Fig. 9. Face recognition results for NSC, CRC and CROC
using L2 representations versus different feature dimen-
sions with random pixel selection (partial), Randomface
and Eigenface for the AR database.

TABLE 4
Classification results of CRC(L2), CRC(L1), NSC(10),

NSC(20), and CRBoosting on the validation and testing
sets from d = 80 random measurements, with (a)

ntrain = 30 and (b) ntrain = 50 training samples per
class.

Random Validation [%] Testing [%]
CRC(L2) 76.50 73.18
CRC(L1) 77.30 73.48
NSC(10) 77.90 76.38
NSC(20) 79.50 76.94

CRBoosting 80.20 78.46

(a)

Random Validation [%] Testing [%]
CRC(L2) 78.50 77.18
CRC(L1) 80.90 78.24
NSC(10) 81.40 79.78
NSC(20) 82.60 81.04

CRBoosting 83.70 81.64

(b)

sL1 as input CRs, and we denote the CRC using sLq by
CRC(Lq); the candidate NSC use rank k = 10 and k = 20,
and we denote the NSC with rank k by NSC(k).

When ntrain = 30, the weighting vector learned from
CRBoosting is

α = [0, 0.1826, 0.3703, 0.4471],

where CRC(L1), NSC(10) and NSC(20) are selected.
When ntrain = 50 the weighting vector learned from
CRBoosting is

α = [0, 0.3406, 0, 0.6594],

where only CRC(L1) and NSC(20) are selected. This
shows that CRBoosting has the ability to select the
most powerful representations to form the final classifier.
In both cases the CRC(L2) is not selected, which may
be explained by its relative poor performance. Table 4
summarizes all the classification results, and CRBoosting
performs best in both the validation and testing sets
compared with all candidate CRCs.

We now use ntrain = 100 samples per class for training
and keep the size of validation and testing sets un-
changed. We test both the CRBoosting and CRBoosting-
T algorithms from a candidate set of CRC(L2), CRC(L1)
and NSC(20) for d = 80. The weighting vector learned
from CRBoosting is

α = [0, 0.3921, 0, 0.6079];

and the weighting vector learned from CRBoosting-T is

αT = [0.0324, 0.1600, 0, 0.8076].

The classification results are summarized in Table 5,
where both CRBoosting algorithms outperform all the
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TABLE 5
Classification results of CRC(L2), CRC(L1), NSC(10),

NSC (20) and CRBoosting on the validation and testing
sets, with 100 training samples per class from d = 80

measurements for the MNIST dataset.

Random Validation [%] Testing [%]
CRC(L2) 85.40 79.44
CRC(L1) 85.90 82.82
NSC(10) 86.10 82.46
NSC(20) 86.60 84.30

CRBoosting 88.10 85.84
CRBoosting-T 88.30 86.04
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Fig. 10. The regularization path of CROC for NSC(20)
and CRC(L1) on both validation and testing sets for the
MNIST dataset.

candidates, and CRBoosting-T achieves better result than
CRBoosting.

Since CRC(L2) and NSC(10) are not selected (hav-
ing very small weights in the final classifier), we can
compare this result with the regularization path of the
CROC, where the residual is computed as a weighted
sum of residuals from NSC(20) and CRC(L1) as

ri(λ) = (1− λ)‖z−Ψis
NS(20)
i ‖22 + λ‖z−Ψis

L1
i ‖22.

where λ = 0 coincides with the NSC, and λ = 1 coincides
with CRC(L1). We can see the weights learned from
CRBoosting and CRBoosting-T are very consistent with
the peak of the regularized path for both the validation
and testing sets in Fig. 10.

5.4 Face Recognition using CRBoosting

We use the extended Yale-B database to test the per-
formance of CRBoosting on face recognition. For each
individual, we select the first ntrain = 20 samples for
training, the next nvalid = 20 samples for validation, and
the rest are for testing. We use a random measurement
matrix to take d = 100 compressive measurements of
each sample. The candidates of CRC are CRC(L1) and

TABLE 6
Classification results of CRC(L2), CRC(L1), NSC and
CRBoosting on the validation and testing sets for the

Extended Yale-B database from d = 100 measurements.

Random Validation [%] Testing [%]
CRC(L2) 61.18 59.14
CRC(L1) 70.66 65.65

NSC 72.50 72.85
CRBoosting 74.21 75.07

CRBoosting-T 74.99 75.85

CRC(L2) as described earlier; and the candidate NSC
use all training samples to form the subspace of rank
20. The classification results are summarized in Fig. 6,
where the CRBoosting achieved a better performance
than all candidates. The learned weighting vector from
CRBoosting is

α = [0, 0.1677, 0.8323];

and the learned weighting vector from CRBoosting-T is

αT = [0, 0.3741, 0.6259].

In both cases the CRC(L2) is not selected due to its poor
performance, and the learned weights between CRC(L1)
and NSC are comparable as the optimal value from
CROC, indicating the effectiveness of the CRBoosting
procedure. It is worth mentioning that although the
CRBoosting procedure requires an additional validation
set, it is possible to merge the training and validation set
for testing after we learn the weights.

6 CONCLUSIONS

In this paper we explicitly decompose the multi-class
classification problem into two steps, namely finding the
collaborative representation and inputting it to the multi-
class classifier. We explore different choices of collabora-
tive representations and propose the Collaborative Rep-
resentation Optimized Classifier (CROC) which provides
a regularization path of classifiers where the NSC and
the CRC are special cases on the whole regularization
path. We show that classification performance can be
further improved by optimally tuning the regularization
parameter at no extra computational cost.

We further propose the Collaborative Representation
based Boosting (CRBoosting) algorithm to efficiently
combine multiple collaborative representations by clas-
sifying a test sample to the class with the minimal
weighted sum of residuals from a set of candidate CRCs
and NSCs, where the weights are found following an
AdaBoosting based procedure. The ability to boost in
the residual domain instead of in the decision domain
allows CRBoosting to outperform the candidates even
with only two candidates, which is not possible for
AdaBoost. We also proved similar validation error bound
for CRBoosting.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
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Our algorithms are validated through numerical re-
sults on digit recognition and face recognition in partic-
ular from compressively measured samples. We demon-
strate the potential of exploring multiple collaborative
representations over focusing on a particular choice in
multi-class learning.
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