
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Nonstationary Image Noise Removal (NINR)

Porikli, F.; Soni, A.; Suwa, K.

TR2013-125 September 2013

Abstract

This paper presents a spatially-varying speckle noise removal method that does not require any
noise parameters or image reconstruction factors to be predetermined by the user. It automat-
ically estimates local noise variances by solving an optimization problem that is based on the
scale invariant property of kurtosis for radar imagery. Then, it aggregates multiple estimations
at each pixel using a collaborative filtering approach. Experimental results demonstrate that our
method outperforms the conventional procedures.
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Abstract—This paper presents a spatially-varying speckle noise
removal method that does not require any noise parameters or
image reconstruction factors to be predetermined by the user.
It automatically estimates local noise variances by solving an
optimization problem that is based on the scale invariant property
of ’kurtosis’ for radar imagery. Then, it aggregates multiple
estimations at each pixel using a collaborative filtering approach.
Experimental results demonstrate that our method outperforms
the conventional procedures.

I. Introduction

Synthetic aperture radar (SAR) images are corrupted by
spatially-varying noise due to several factors, such as antenna
gain and phase pattern discrepancies, spatially-varying back-
ground clutter, physical properties of the reflectors such as
angular scintillation and fluctuations caused by sub-cell sized
objects.

As described in [1], electromagnetic waves emitted by a
SAR are no longer in phase after interaction with the reflecting
surface since the waves travel different distances back from
different surfaces and multiple bounce scattering occur as a
result of the variance in surface roughness. The signals may
also go out of phase when the synthesized antenna moves.
Besides, moving surfaces cause phase differences reproduced
as displacement and defocusing artifacts.

The out-of-phase waves interfere constructively or destruc-
tively to produce stronger or weaker signals. When a SAR
image is formed by processing the backscatter returns from
successive pulses, this effect generates a pixel-to-pixel varia-
tion in intensity. This manifests itself as a bright and dark pixel
pattern called speckle, which is a multiplicative process and
has a standard deviation linearly related to the mean intensity.
In other words, the higher the signal strength the higher the
noise.

To separate the underlying signal from the noise, existing
state-of-the-art image denoising algorithms assume that the
spectral properties of the original signal and the noise are
known. For instance, the Wiener filter [2] seeks a linear time-
invariant filter whose output would come as close to the
original signal as possible. Other popular algorithms, such as
the non-local means [3] and the BM3D [4] consider that the
image is corrupted by additive Gaussian noise with constant
variance

In = I + η (1)

where I is the original image and η is noise. For SAR imagery,
constant noise variance is not a valid assumption. Recently, a

few studies investigated nonstationary noise models [5]–[8] for
different application domains.

Here, we propose the following nonstationary and multi-
plicative noise model

In
p = Ip · ηp, (2)

where Ip is the desired speckle-free original image intensity
at pixel (or patch) p and ηp is a pixel-intensity dependent
noise process, which can be approximated in sufficiently small
local neighborhoods as a Gaussian noise with variance σ2

p.
The noise variance is spatially varying and is not constant
throughout. We apply log operation to convert the above
problem into an additive setting

In
p = Ip · ηp → log In

p = log Ip + log ηp (3)

as in [9]. To marginalize noise, we estimate noise variance
within a patch at each pixel in the log transfer domain and then
use the estimated noise variance when we collaboratively pro-
cess multiple patches to impose intensity consistency through
sparsity. Then transform the reconstructed image from log to
intensity domain. We call this simple yet effective algorithm
as Nonstationary Image Noise Removal (NINR).

Noise variance can be inferred by taking advantage of a
statistical regularity of natural images. Since natural images
tend to have spherically symmetric distributions [10], the
kurtosis values in general band-pass filtered domains remain
close to a positive constant [11]. Therefore, the global noise
variance of the whole image can be determined by imposing
kurtosis across different scales, i.e. different band-pass filtered
channels of DCT or wavelets, to be a positive constant.

The local variances at each pixel location can be computed
the statistics collected from surrounding pixels. Even though
the noise distribution function might vary significantly within
large regions, for sufficiently small local image neighborhoods,
it can be modeled by a Gaussian function.

After obtaining pixel-level local noise variance, NINR de-
termine multiple clusters of similar image patches. It then
filters each cluster of pathes, which are arranged into 3D data
structure, in a way similar to the process described in [4].
However, unlike [4], NINR estimates the local noise variances.

Our experiments demonstrate that NINR significantly out-
performs the BM3D and the NL both in terms of PSNR and
SSIM scores. In comparison to the BM3De (BM3D with a
global noise variance estimator), NINR provides significant
gain while preventing over- and under-smoothing.



II. Pixel-level Variance Estimation

Noise variance at each pixel is estimated using the noisy im-
age without any additional prior. We use a kurtosis constancy
based method, which has been proposed for image splicing
and forgery detection [10].

Kurtosis κ is a descriptor of the shape of a probability
distribution. For example, a Gaussian distribution has kurtosis
value of zero. It is defined as

κ = µ̄4(σ2)−2 − 3, (4)

for a random variable X, where

σ2 = E[(X − E[X])2], (5)

and
µ̄4 = E[(X − E[X])4]. (6)

For a natural image, the kurtosis is nearly constant over its
bandpass filtered domains such as DCT or wavelet decompo-
sitions.

Let the noisy image log In to be transformed into the
frequency domain log In → f n. We apply K band-pass filters
to obtain K bands. The kurtosis of the original and the noisy
image in the kth band are denoted as κk and κ̄k respectively.
These statistics are related as

κ̄k = κk

 σ̄2
k − σ

2

σ̄2
k

2

(7)

for k = 1, ...,K where σ̄2
k is the variance of the kth channel. The

statistical regularity of natural images in the bandpass filtered
domains imposes positive kurtosis values. Considering near
constant kurtosis values over different scales we have

κk ≈ κ. (8)

To find κ and σ2 that minimize the difference between the two
sides of (7) over all scales we solve this minimization problem

σ2
p = arg min√

κ,σ2

K∑
k=1

√κ̄k −
√
κ

 σ̄2
k − σ

2

σ̄2
k

2

, (9)

whose minimizer provides the solution for noise variance. (9)
is convex and it has a closed form solution.

Pixel-wise noise variance σ2
p within a patch around each

pixel can be estimated by computing variance and kurtosis of
each overlapping patch for each band

σ2 = µ2 − µ
2
1, (10)

and

κ =
µ4 − 4µ3µ1 + 6µ2µ

2
1 − 3µ4

1

µ2
2 − 2µ2µ

2
1 + µ4

1

. (11)

where uncentered moments µi = E[Xi] are obtained using spa-
tial averaging. Then, the closed form solution of (9) is applied
to find the pixel-wise noise variance. The noise variance of a
patch can be taken as the maximum of the estimated noise
variances.

Fig. 1: Thresholding by pixel-wise noise variances.

To illustrate the power of the pixel-wise noise estimation, in
Fig. 1-left we show an image corrupted by a different variance
noise. We used a simple k-means to clustering on the estimated
variance values to determine the segments shown on the right.

III. Collaborative Filter

After, the pixel-level variances are determined, the next task
is to seek a linear filter whose output is as close to the original
signal as possible. For this, we employ Wiener filter with the
estimated noise variance. However, a direct application of such
a local linear filter would disregard the natural correlation
between similar image patches that can elevate additional
regularization constraints.

To take advantage of this correlation, we exploit the con-
cepts of group matching and collaborative filtering. Note
that, an image is sparse in transform domain if most of the
transform domain coefficients are either zero or are very small
in magnitude, so that they can be neglected. In that case, the
image can be well approximated as a linear combination of
a few basis elements that correspond to pixel-wise consistent
patterns. Denoised image can be obtained by keeping only the
large transform coefficients, which are mainly due to original
signal, and discarding small coefficients, which are mainly due
to noise. Collaborative filtering takes advantages of the sparsity
by group matching.

For collaborative filtering, we incorporate the approach
described in [4]. As in that approach, we apply filtering
twice. After the first filtering, we select similar patches and
apply Wiener filter with teh estimated pixel-wise variances.
For a patch log In

p∗ , we find the most similar patches log In
q

in its search neighborhood and determine clusters Cφ
p. Since

this cluster is determined from the noisy image patches, it
might contain incorrect patches. To remove the noise in these
patches, we apply transform domain filtering, that is, 2D DCT
f2D followed by hard-thresholding θ (setting zero) of higher-
frequency coefficients

φ
(

f2D(log In
p − µp)

)
. (12)

Using the above filtered patches, we evaluate patch similar-
ity. We arrange similar these patches into 3D data Dp on which
a 1D transform and hard-thresholding is applied a second time
to the values of the pixels at the same patch locations

φ
(

f1D

(
Dp

))
. (13)

This second transform domain hard-thresholding along each
pixel incorporates collaborative information from multiple
patches. By mapping back the inverse 1D transformed patches



onto the image coordinates and combining the pixel-wise
responses, we obtain an intermediate image log Im.

Next, we determine the clusters of patches Cm
p , this time

from the intermediate image log Im. We arrange log Im
p and

log In
p into Dm

p and Dn
p to use Dm

p for a more accurate compu-
tation of the Wiener filter coefficients. We apply these coeffi-
cients to clusters formed from the unfiltered noisy patches Dn

p.
The Wiener deconvolution coefficients in Fourier transform
domain are defined from the energy of the transform domain
coefficients as

Wp =

∣∣∣∣ f3D

(
Dm

p )
)∣∣∣∣2∣∣∣∣ f3D

(
Dm

p

)∣∣∣∣2 + σ2
p

(14)

where f3D is DFT. When the noise variance at certain frequen-
cies increases the Wiener filter attenuates the response. Note
that, we use the pixel-wise noise variances here. Element-
by-element multiplication of W with the transform domain
coefficients f3D

(
Dn

p

)
gives the Wiener filtered response in

the transform domain, which is then mapped back to spatial
domain. These filtered patches are aggregated at each pixel
location with weights ωp inversely proportional to the Wiener
coefficients Wp and pixel-wise variance values

ωp =
1

σ2
p‖Wp‖

2
2

(15)

to make pixels with higher uncertainty to contribute less. We
have used the parameter values and transforms similar to what
is proposed in original BM3D implementation and we direct
user to [4] for details.

IV. Experimental Analysis

We performed two sets of experiments for quantitative and
qualitative evaluations.

In the quantitative evaluations, we used a corpus of 256×256
noise-free, gray-level aerial images, some of which are shown
in Fig. 2 first column and reported in Tables I and II. We
corrupted each input image with a multiplicative noise that has
a variance proportional to the image intensity value. Samples
can be seen in Fig. 2 second column.

We tested the proposed NINR and compared its PSNR
and SSIM scores to BM3D [4], BM3De [5], and NLM [3].
BM3D requires the input variance to be given and the BM3De

computes it using a global variance estimator. We used the
variance value that gives the most pleasing results for BM3D.
NLM requires both the global noise variance estimator and the
number of patches, which was set to 5 in all experiments. We
applied log transform to convert the multiplicative problem
to additive for BM3D, BM3De and NLM for most objective
evaluations.

As shown in Tables I and II, NINR outperforms other
methods both in terms of PSNR and SSIM. The best results are
marked in bold, and the second best in blue color. On average,
NINR has +2dB to +5dB improvement over BM3De and
others. It prevents over-smoothing that BM3D generates. Note
that, in all images, the stationary noise assumption of BM3D,

noisy NINR BM3De BM3D NLM
sat-1 18.14 26.55 22.58 24.59 23.18
sat-2 24.80 29.91 25.56 26.87 26.75
sat-3 26.78 31.80 28.34 28.66 29.17
sat-4 19.95 24.29 21.38 20.90 21.85
sat-5 19.03 27.42 23.56 24.78 24.17
sat-6 20.50 25.53 23.05 23.19 23.59
sat-7 24.07 29.04 24.90 25.12 25.95
sat-8 21.64 28.08 26.59 25.90 27.10
sat-9 20.47 25.20 24.95 22.53 24.52
sat-10 20.67 26.58 25.50 23.89 25.68

TABLE I: PSNR (dB) Results. Best: bold, second best: blue.

noisy NINR BM3De BM3D NLM
sat-1 0.490 0.731 0.572 0.637 0.578
sat-2 0.656 0.894 0.799 0.788 0.821
sat-3 0.661 0.867 0.825 0.773 0.830
sat-4 0.726 0.832 0.763 0.657 0.760
sat-5 0.455 0.759 0.606 0.618 0.5982
sat-6 0.633 0.784 0.749 0.599 0.742
sat-7 0.686 0.885 0.777 0.760 0.796
sat-8 0.492 0.799 0.775 0.689 0.759
sat-9 0.651 0.800 0.800 0.609 0.756
sat-10 0.565 0.778 0.749 0.632 0.729

TABLE II: SSIM Results. Best: bold, second best: blue.

BM3De and NLM, fails to provide a satisfactory filtering
both bright and dark regions. As visible, NINR successfully
balances filtering over whole image.

For qualitative evaluations, we tested NINR on sample SAR
images as shown in Fig. 3. Again, NINR provided the most
pleasing results.
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Orig Noisy NNIR BM3D BM3De NLM

Orig Noisy NINR BM3D BM3De NLM

Fig. 2: Existing methods fails for nonstationary noise. BM3D (BM3De, NLM) over- (under-) smooths whole image. Since
NINR locally adapts, it provides the most pleasing results (for best assessment, please view on digital display).

Orig NINR BM3D BM3De

Orig NINR BM3D BM3De

Fig. 3: BM3D removes important SAR image details. BM3De under-estimate variance. NINR accurately removes noise.
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