
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

On a Multiplicative Update Dual
Optimization Algorithm for Constrained

Linear MPC

Di Cairano, S.; Brand, M.

TR2013-108 December 2013

Abstract

We discuss a multiplicative update quadratic programming algorithm with applications to model
predictive control for constrained linear systems. The algorithm, named PQP, is very simple to
implement and thus verify, does not require projection, offers a linear rate of convergence, and
can be completely parallelized. The PQP algorithm is equipped with conditions that guarantee
the desired bound on sub-optimality and with an acceleration step based on projection-free line
search. We also show how PQP can take advantage of the parametric structure of the MPC
problem, thus moving offline several calculations and avoiding large input/output dataflows. The
algorithm is evaluated on two benchmark problems, where it is shown to compete with, and
possibly outperform, other open source and commercial packages.

IEEE Conference on Decision and Control (CDC)

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2013
201 Broadway, Cambridge, Massachusetts 02139



MERLCoverPageSide2



On a Multiplicative Update Dual Optimization

Algorithm for Constrained Linear MPC

Stefano Di Cairano, Matt Brand

Abstract—We discuss a multiplicative update quadratic pro-
gramming algorithm with applications to model predictive
control for constrained linear systems. The algorithm, named
PQP, is very simple to implement and thus verify, does not
require projection, offers a linear rate of convergence, and can
be completely parallelized. The PQP algorithm is equipped with
conditions that guarantee the desired bound on suboptimality
and with an acceleration step based on projection-free line
search. We also show how PQP can take advantage of the
parametric structure of the MPC problem, thus moving offline
several calculations and avoiding large input/output dataflows.

The algorithm is evaluated on two benchmark problems, where
it is shown to compete with, and possibly outperform, other
open source and commercial packages.

I. INTRODUCTION

Model predictive control (MPC) is a powerful framework

for controlling dynamical systems subject to input and state

constraints. MPC is based on the receding horizon solution

of a finite time optimal control problem formulated on the

system dynamics, constraints, and performance objective.

Besides process control, in recent years other domains

have been shown interest in MPC including automotive,

aerospace, and factory automation [1]–[3]. In these applica-

tions, the MPC controller is executed on low computational

power processors, and the controller update rate may be

higher than 1KHz. As a consequence, a key enabler for

applying MPC in these domains are fast, low-complexity

algorithms for solving the optimal control problem that

need to be simple to code and verify, have limited memory

occupancy, and be capable of solving small scale problems

(from ten to hundred variables) within milliseconds or less.

For linear prediction models with convex quadratic perfor-

mance objectives subject to polyhedral constraints, the MPC

finite time optimal control problem results in a constrained

quadratic program (QP) for which convergence to the global

optimum is guaranteed [4]. Powerful methods for solving QP

are active set methods [5] and interior points methods [4].

Recently, MPC-tailored interior point solvers [6], [7] and

active set solvers [8] have been introduced. Active set and in-

terior point methods have high performance, especially when

taking advantage of the MPC problem structure [6]–[8], but

require the solution of severals systems of linear equations.

Thus, they need complex routines for linear algebra [5],

resulting in complex code and significant memory use.

An alternative approach is based on the explicit solu-

tion [9] of the MPC parametric quadratic program, which
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avoids online optimization. Explicit MPC has been suc-

cessful especially for automotive controls [2], [10], [11].

However, due to combinatorial complexity, explicit MPC is

feasible only for short prediction horizons.

Recently, gradient-based iterative algorithms have been

proposed for MPC. In [12], [13], fast-gradient algorithms

have been introduced. In [14], algorithms based on the fast

gradient method combined with the Lagrange method of

multipliers have been developed , and accelerated gradient

methods for distributed MPC have been developed in [15],

[16]. For fast gradient-based algorithms is that a bound on

the number of iterations to converge to the solution can

be computed. The iterative algorithms [12]–[14] perform

only simple operations that do not require linear algebra

routines to update the current solution, and then project

the updated solution into the feasible set. While in these

approaches projection is inexpensive, it is known to reduce

(possibly significantly) the solution improvement obtained in

the iteration [17].

In this paper we propose a projection-free constrained

QP algorithm for MPC application. The algorithm, related

to the methods in [18], was originally proposed in [19]

for solving nonnegative least squares (NNLS) problems in

image processing, and it was named Parallel Quadratic

Programming (PQP). The PQP iteration is projection-free for

NNLS because when starting from a solution in the positive

cone, it guarantees that the updated solution remains in such

cone. In this paper we provides several improvements for

tailoring PQP to the optimization problems of MPC.

In this paper, in Section II we discuss the QP problem

of linear MPC and the notion of suboptimal solution. In

Section III we review the PQP algorithm, we introduce the

acceleration technique, and we define the termination con-

ditions. In Section IV we propose a synthesis for the PQP-

based MPC controller that exploits the parametric form of the

QP. In Section V we present simulations on two benchmark

problems and compare PQP with other QP solvers. Finally,

in Section VI we summarize conclusions and future work.

Notation: R, R0+, R+, Z, Z0+, Z+ denote real, non-

negative real, positive real, integer, nonnegative integer and

positive integer numbers, respectively, and Z[a,b] , {z ∈
Z : a ≤ z ≤ b}. For a vector φ ∈ R

n, [φ]i denotes the

ith component, for a matrix Φ ∈ R
n×m, [Φ]ij denotes the

element at the ith row and jth column. We denote a vector of

size m entirely composed of ones by 1m, the identity matrix

of size m by Im, and the matrix entirely composed of zeros

by 0m, where subscripts are dropped when clear from con-

text. For vectors, absolute value, maximum, and inequalities



are intended componentwise, while for a symmetric matrix

Q, Q > 0 (Q ≥ 0) indicates positive (semi)definiteness.

For a vector x and a matrix Q ≥ 0, ‖x‖2Q = x′Qx. For

a signal a sampled with period Ts, ak is the value at the

kth sampling instant, i.e., at time kTs, and ai|k denotes the

predicted value of a at step k + i, based on data at step

k. Given Φ ∈ R
n×m, we define Φ+,Φ− ∈ R

n×m where

[Φ+]ij = max(0, [Φ]ij) [Φ−]ij = max(0,−[Φ]ij). For the
optimization problem minz∈Z J(z), the optimum is J∗ and

the optimal solution1 is z∗, i.e., J∗ = J(z∗).

II. CONSTRAINED LINEAR MPC

Linear MPC is based on the prediction model

xk+1 = Axk +Buk (1a)

yk = Cxk +Duk, (1b)

where x ∈ R
n, u ∈ R

m, y ∈ R
p are the state, input, and

output vectors subject to constraints

xmin ≤ xk ≤ xmax, (2a)

umin ≤ uk ≤ umax, (2b)

ymin ≤ yk ≤ ymax, (2c)

where xmin, xmax ∈ R
n, umin, umax ∈ R

m, and

ymin, ymax ∈ R
p are lower and upper bounds on state, input,

and output vectors, respectively. At step k ∈ Z0+, MPC

solves the finite-horizon optimal control problem

min
Uk

‖x(N |k)‖2PM
+

N−1
∑

i=0

‖xi|k‖
2
QM

+ ‖ui|k‖
2
RM

(3a)

s.t. xi+1|k = Axi|k +Bui|k (3b)

yi|k = Cxi|k +Dui|k (3c)

xmin ≤ xi|k ≤ xmax, i ∈ Z[1,N ] (3d)

umin ≤ ui|k ≤ umax, i ∈ Z[0,N−1] (3e)

ymin ≤ yi|k ≤ ymax, i ∈ Z[0,N−1] (3f)

x0|k = xk, (3g)

where QM ≥ 0, PM, RM > 0 are matrices of appropriate

dimensions,N is the problem horizon, Uk = [u′0|k . . . u
′(N−

1|k)]′ ∈ R
Nm is the input vector to be optimized. At step

k, (3) initialized from xk is solved to obtain the optimal

sequence U∗
k . Then, uk = u∗0|k is applied to system (1). A

new optimization problem is solved at step k + 1.
Given xk, (3) is formulated as the QP

2

min
U

Jp(U) =
1

2
U ′QpU + F ′

pU +
1

2
Mp (4a)

s.t. GpU ≤ Kp, (4b)

where U = Uk, Qp ∈ R
nu×nu , nu = Num, Qp > 0, Gp ∈

R
nq×nu , Kp ∈ R

nq , Mp ∈ R0+.

The following concept of solution is considered.

Definition 1: Consider (4) and the non-negative 4-tuple

ε ∈ R
4
0+, ε = (εrJ ε

a
J ε

r
c ε

a
c ). An ε-solution for (4) is a vector

1If multiple optimal solutions exist, the definition applies to all.
2Extensions to (3) for output tracking, control and constraints horizons,

stabilizing constraints, etc., are straightforward and still result in (4).

Ũ such that the constraint violation and the duality gap are ε-

bounded in either relative (εrc , ε
r
J ) or absolute (ε

a
c , ε

a
J ) errors

GpŨ ≤ Kp +max{εrc|Kp|, ε
a
c1} (5a)

J(Ũ)− J(U∗) ≤ max{εrJ |J(U
∗)|, εaJ}. (5b)

III. PARALLEL QUADRATIC PROGRAMMING

The Parallel Quadratic Programming (PQP) algorithm was

originally developed in [19] to solve the NNLS problem

min
z

J(z) =
1

2
z′Hz + F ′z +M (6a)

s.t. z ≥ 0, (6b)

where M ∈ R0+, z, F ∈ R
nz , H ∈ R

nz×nz , H ≥ 0, and
1
2z

′Hz+F ′z+M = 1
2‖Alsz−bls‖

2, for appropriate matrices

Als, bls. The KKT optimality conditions for (6) imply

[z]i · [∇zL(z, λ)]i = 0, i ∈ Z[0,nz], (7a)

[λ]i · [∇λL(z, λ)]i = 0, i ∈ Z[0,nz ], (7b)

where L(z, λ) = 1
2z

′Hz+F ′z−λ′z is the Lagrangian of (6).
We derive the PQP iteration by considering

[z]i · [∇zL(z, λ)]i =

[z]i · [(H
+z + F+)− (H−z + F− + λ)]i, i ∈ Z[0,nz].

(8)

Assume that zi > 0 (possibly infinitesimally) for all i ∈
Z[1,nz]. As a consequence, [λ]i = 0 for all i ∈ Z[1,nz], and

[z]i =
[H−z + F−]i
[H+z + F+]i

[z]i, ∀i ∈ Z[1,nz ]. (9)

Thus, For a fixed diagonal matrix φ ∈ R
nz×nz that, as ex-

plained later, guarantees convergence, we define the iteration

based on (9),

[z(h+1)]i =
[(H− + φ)z(h) + F−]i

[(H+ + φ)z(h) + F+]i
[z(h)]i (10)

The iteration (10) needs to be initialized from an arbitrary

strictly feasible value of (6), while the termination conditions

are discussed extensively later. The convergence of the

iteration (10) to the optimizer is guaranteed for a suitable

choice of the matrix φ by the following theorem.

Theorem 1: Let be z∗ ∈ R
nz

0+ be the optimum of (6) . For

a proper choice of the diagonal matrix φ ≥ 0, (10) converges
asymptotically to z∗, i.e., limh→∞ z(h) = z∗.

Due to limited space the proofs are reported in [20].

While, the optimal choice of φ is not yet known, several

choices that guarantee convergence are available, the simplest

being [φ]ii ≥ [H−
1]. Next, we summarize some of the

properties of the PQP algorithm.

Corollary 1: For (10), (i) the update rule is completely

parallelizable, (ii) the problem objective decreases mono-

tonically while the iteration maintains feasibility, (iii) the

convergence rate is linear.

For PQP the dominant operation is a matrix-vector prod-

uct, resulting in a computational complexity of O(mzpz),



where pz is the number of desired bits of precision and mz

is the number of nonzeros inH . For parallel implementations

in SIMD and GPU that have almost constant communication

time, the time complexity reduces to O(bzpz), where bz ≤
nz is the bandwidth of H [19].

Remark 1: Although two matrix-vector products appear

in (10), since the matrices have complementary non-zero ele-

ments, the computations are the same as for a single gradient

calculation. The update requires nz scalar divisions that are

more computationally expensive than multiplications.

A. PQP acceleration by line search

While several unconstrained optimization algorithms com-

pute the solution update by two steps, a descent direction

selection, and a step size selection (also called line search),

(10) performs the two actions at once in (10). PQP can be

seen as a dynamically scaled gradient method by reformu-

lating (10), where for simplicity φ = 0, as

[z(h+1)]i = [z(h)]i −
[z(h)]i

[H+z(h) + F+]i
[Hz(h) + F ]i,

hence obtaining z(h+1) = z(h)−T (z(h))∇zJ(z). T (z(h)) is a

diagonal matrix, where [T (z(h))]ii =
[z(h)]i

[H+z(h)+F+]i
, that pre-

conditions the gradient, such that feasibility of the updated

solution is preserved. Indeed, one degree of freedom (the

step-size) is lost, which can cause the algorithm to slow down

if the numerators of some variables are very close to zero

but the optimal values of the variable are not.

Slowdown can be mitigated by compounding PQP with a

gradient descent method that preserves feasibility.

Lemma 1: Let z(h) ∈ R
nz be a feasible solution for

NNLS (6), and let

ph = (∇zJ(z(h)))
−. (11)

Then z(h+1) ∈ R
nz obtained as

α(z(h)) =

{

−
∇zJ(z(h))

′ph

p′
h
Hph

if p′

hHph>0

0 otherwise

(12a)

z(h+1) = z(h) + α(z(h))ph, (12b)

is feasible (z(h+1) ∈ R
nz

0+), and J(z(h+1)) ≤ J(z(h)).

Proof: see [20].

The iteration in Corollary 1 selects the direction of the

non-negative components of the anti-gradient, hence main-

taining feasibility. If ph = 0 or α(z(h)) = 0, z(h+1) = z(h).

Theorem 2: Let z(h) for h = 0 be a feasible solution

for (6), let φ be chosen such that Theorem 1 holds. Then,

by alternating iteration (10) and iteration (12) such that after

every iteration (12), (10) is executed at least once, converges

asymptotically to the optimum z∗.

Proof: see [20].

Line search (12) can be activated in different ways. A

simple yet effective strategy is to perform a line search

iteration every few PQP iterations. In experimental tests,

for weakly convex problems, a rate of 2% − 10% seems

to provide the best results.

B. Application to general quadratic programs

Problem (6) is a subclass of the general (convex) QP (4).

We can solve (4) by (10) through duality [4]. The dual

problem of (4) is

min
z

Jd(Y ) =
1

2
Y ′QdY + F ′

dY +
1

2
Md (13a)

s.t. Y ≥ 0, (13b)

where Qd = GpQ
−1
p G′

p, Fd = (Kp +GpQ
−1
p Fp), and Y ∈

R
nq , i.e., the number of variables in (13) is equal to the

number of constraints in (4). In (13), Md = F ′
pQ

−1
p Fp−Mp

does not affect the optimal solution, but affects the optimum

value. Let (4) admit a strictly feasible point. Then strong

duality holds, and the optimal solution Y ∗ of (13) is bounded.

From Y ∗, the optimal solution of (4) is

U∗ = ψd2p(Y
∗) = −Q−1

p (Fp +GpY
∗). (14)

Thus, solving (3) through the algorithm alternating it-

erations (10) and (12) consists of the following steps. At

step k, given the current state xk: (i) formulate (4); (ii)
formulate (13); (iii) solve (13); (iv) compute (14); (v) apply
uk = u∗0|k to (1).

Solving (4) via (13) has the drawback that in the MPC

problems where there are more constraints than variables

(nz < ny), (13) has more variables than (4), and Qd ≥ 0,
even if Qp > 0. However, solving the dual allows to enforce
the termination conditions in Definition 1 through the duality

gap.

Let Y(h), h ∈ Z0+ be a candidate solution of (13), and

compute a candidate primal solution U(h) by (14). Assume

U(h), Y(h) are primal and dual feasible, respectively, and let

Jp(U(h)) + Jd(Y(h)) ≤ εaJ . (15)

By duality, −Jd(Y(h)) ≤ Jp(U(h)), where, if strong duality

holds, equality holds at optimum. Indeed,

−Jd(Y(h)) ≤ −Jd(Y
∗) ≤ Jp(U

∗)) ≤ Jp(U(h)), (16)

and hence (15) implies Jp(U(h))− Jp(U
∗) ≤ εaJ .

Similarly, if the condition

Jp(U(h)) + Jd(Y(h))

−Jd(Y(h))
≤ εrJ if −Jd(Y(h)) > 0 (17a)

Jp(U(h)) + Jd(Y(h))

−Jp(Y(h))
≤ εrJ if Jp(U(h)) < 0, (17b)

holds, (16) guarantees Jp(U(h))− Jp(U
∗) ≤ εrJ |Jp(U

∗)|.
Remark 2: Before computing (15), (17), we have assumed

feasibility of U(h) and Y(h). Primal feasibility of U(h) accord-

ing to (5a) has to be verified before checking (15), (17).

IV. PQPMPC CONTROLLER SYNTHESIS

The application of PQP to MPC problem (3) would require

at every step the formulation of the dual QP, its solution,

and the generation of the primal solution. However, the

structure of the QP problem of MPC can be exploited to

perform part of the calculations offline, and to synthesize a

controller embedding the optimization algorithm. The MPC



problem (3) where the current state is a parameter, can be

written in parametric form [9], [21]

min
U

1

2
U ′QpU + x′C′

pU +
1

2
x′Ωpx (18a)

s.t. GpU ≤ Spx+W. (18b)

The dual problem of (18) is the parametric QP,

min
U

1

2
Y ′QdY + x′S′

dY +WdY +
1

2
x′Ωdx (19a)

s.t. Y ≥ 0, (19b)

where Qd = GpQ
−1
P G′

p, Sd = (GpQ
−1
p Cp+Sp),Wd =Wp,

Ωd = C′
pQ

−1
p Cp − Ωp. The primal optimizer is computed

from the dual optimizer by

U(Y ∗) = Ψd2p(x, Y
∗) = Γdx+ ΞdY

∗, (20)

where Ξd = −Q−1
p Gp, Γd = −Q−1

p Cp.

The matrices of (19), (20) can be computed beforehand.

At every step k, the dual problem (13) is instantiated by

substituting x = xk into (19). For the termination conditions,

by substituting (20) into (18b), (5a) results in

−Sdx−Wd −QdY ≤ max{εrc(|Spx+Wp|), ε
a
c1}. (21)

Similarly, by substituting (20) into (18a), the primal solu-

tion cost is Jp(Ψd2p(x, Y )) = 1
2 (Y

′QdY − x′Ωdx). Since,
due to the MPC cost (3a), Jp(U) ≥ 0 the termination

condition (5b) results in

Y ′QdY + (x′S′
d +Wd)Y ≤ max{−εrJ

1

2
(Y ′QdY+

2(x′Sd +Wd)
′Y + x′Ωdx), ε

a
J}. (22)

where for the duality gap only (17a) is checked, because

by (3a), Jp(U(h)) < 0 is infeasible. Accordingly the maxi-

mization in (22) ignores the relative duality gap in the cases

where −Jd(Y(h)) < 0.
As a result, the PQP-based MPC controller is synthesized

and executed as described in Algorithm 1.

V. NUMERICAL SIMULATIONS

In this section we discuss the results from two benchmark

examples from [22], the control of pitch and angle of attack

of a jet aircraft, and the position control of a DC-motor. We

compare the algorithm based on alternating iterations (10)

and (12) in Matlab M-code (PQPM) and C-mex (PQPMEX)

and Algorithm 1 (PQPMPC) with: (i) the QUADPROG rou-

tine (QPROG) of the Matlab Optimization Toolbox 5.1(part

M-code, part C-mex) that for medium size problems imple-

ments an active set method; (ii) a C-mex implementation

of Dantzig’s active set algorithm (DANTZ) [23]; (iii), the
QP solver (C-mex) in the commercial NAG toolbox for

Matlab (NAG) [24], which is an inertia-controlling active

set method exploiting Cholesky factorization. PQP-based

solvers generate and solve the dual problem, while the

others solve the primal problem. For all solvers, termination

conditions have the same numerical precision. We have also

implemented the fast gradient algorithm GPAD in [13] in

Matlab M-code (GPADM) as described in [13, Sec. 4]. The

Algorithm 1 PQP-based Model Predictive Control

(PQPMPC)

1: OFFLINE:
2: Compute Qp, Cp,Ωp, Gp

3: Compute and store Wp, Sp, Qd, Cd, Ωd, Wd, Sd, Ξd, Γd,
Q+

d + φ, Q−

d + φ
4: ONLINE: k = 0
5: loop
6: Fd = Sdxk + Wd, Md = x′

kΩdxk, γd = Γdxk, Kp =
Spxk +Wp

7: h = 0, Y(h) = Ȳ > 0
8: repeat
9: if LS condition then
10:

ph = (QdY(h) + Fd)
−

α(Y(h)) =

{

−

(Y ′

(h)
Qd+F ′

d
)ph

p′
h
Qdph

if p′hQdph>0

0 otherwise

Y(h+1) = Y(h) + α(Y(h))ph

11: else
12: for i = 1 : nd do
13:

[Y(h+1)]i =
[(Q−

d + φ)Y(h) + F−

d ]i

[(Q+
d + φ)Y(h) + F+

d ]i
[Y(h)]i

14: end for
15: end if
16: h = h+ 1
17: until (21) and (22)
18: uk =

[

Im 0 . . . 0
]

(γd + ΞdY )
19: k = k + 1
20: end loop

data reported here is obtained by using as Lipschitz constant

the Frobenious norm of the Hessian ( [13, Sec. 5]), but we did

not notice any significant difference by using the maximum

eigenvalue of the Hessian instead. For GPAD, we have used

the same termination conditions (5) for both, even though

in [13] only absolute tolerances are used.

The simulations are executed in Matlab 2010b, in a

MacBook-Pro with Intel i7 processor 2.8GHz, and 8GB

RAM. We report the time to execute the main function of

each solver on a single core.

A. Aircraft control

We consider the control of pitch and angle of attack of

a jet aircraft. The linearized dynamics (1) is an unstable

fourth order systems with elevator and flaperon angles as

control inputs. The objective is to track references on pitch

angle and angle of attack. The constraints (2) enforce upper

and lower bounds on elevator, flaperon, pitch angles and

angle of attack. We design an LQR controller that stabilizes

the unconstrained plant, and let MPC control the resulting

closed-loop system. Thus, the command to elevators and

flaperons is vk = KLQRxk+u
MPC
k where KLQR is the LQR

gain and uMPC
k is the MPC command at step k. Because

of this, the constraints on elevators and flaperons become

state-input constraints. The sampling period is Ts = 50ms,
and the prediction horizon is N = 5 steps, resulting in a
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Fig. 1: Distribution of PQPMPC computation time in the aircraft example.

parametric QP with nq = 32 constraints, and nu = 10
variables. To assess the complexity, the optimization problem

was solved explicitly [9] resulting in more than 1700 regions
which, for 8B double precision variables, requires more than

1.25MB storage memory. Such an amount is prohibitive

for many embedded control systems [2], [11]. The total

memory required by the PQPMPC controller, without any

optimization, is approximately 50KB.

Solver Avg[ms] Min[ms] Max[ms]

GPADM: 46.567 0.222 196.481

PQPM: 11.515 0.319 42.618

QUADPROG: 2.954 1.462 7.948

QPACT: 0.597 0.445 0.986
NAG: 0.917 0.615 1.387

PQPMEX: 0.937 0.069 3.553
PQPMPC: 0.444 0.032 1.985

TABLE I: Computation time for the aircraft example.

The average, minimum, and maximum computation time

for solving the QP along a simulation of 50 steps, where sev-
eral constraints are active, are reported in Table I. PQPMEX

algorithm is in line with the fastest algorithms, although

slightly slower than some. The PQPMPC controller is the

fastest approach, due to moving offline several matrix cal-

culations. It shall be noted that the PQP algorithms are

much simpler than the ones they are compared with, with

the exception of GPAD. The variability between minimum

and maximum computing time is due to the cases when

the constraints are not active (PQP converges extremely fast

to the solution), versus the ones where many constraints

are active. The distribution of the computation time of the

PQPMPC controller is shown in Figure 1, where one can

clearly see the two peaks. The execution time for PQP and

the dual fast gradient algorithm GPAD during the simulation

are compared in Figure 2. In the initial part of the simulation,

when several constraints are active, PQP is faster. In the final

part of the simulation, when the constraints are all inactive,

GPAD is sometimes slightly faster because it terminates in

a single iteration [13], while that is not necessarily the case

for PQP.
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Fig. 2: Computation time for GPADM (solid) and PQPM (dash) in the
aircraft example.

B. DC-motor position control

We consider a 4th order linear system (1) modeling a

voltage controlled DC motor connected by a flexible shaft

to a load. The control objective is to track a time varying

load angle position reference signal rθ(t). The constraints (2)
enforce upper and lower bounds on input voltage and motor

torque. We design an MPC controller where the control input

is the step-to-step voltage variation, with sampling period

Ts = 100ms, prediction horizon N = 10, resulting in a

parametric QP with nq = 40 constraints, and nu = 10
variables. The explicit solution [9] of this problem results

in more than 4000 regions, and more than 2MB memory,

which is often prohibitive. The total memory required by the

PQPMPC controller, without any optimization, is approxi-

mately 60KB. The computation times for a simulation of

Solver Avg[ms] Min[ms] Max[ms]

GPADM: 9.481 0.268 43.356

PQPM: 1.418 0.367 8.891

QUADPROG: 1.847 1.406 4.082

QPACT: 0.571 0.452 0.896
NAG: 0.865 0.599 1.637

PQPMEX: 0.178 0.077 0.987
PQPMPC: 0.084 0.040 0.491

TABLE II: Computation time for the DC-motor example (“mild” reference).

200 steps are reported in Table II, for a “mild” reference

that causes few constraints to be active.

The computation times for the case of an “aggressive”

reference that causes several constraints to be active at

every step are reported in Table III. The results show that

Solver Avg[ms] Min[ms] Max[ms]

GPADM: 38.896 0.270 127.560
PQPM: 8.771 0.371 68.309

QUADPROG: 2.363 1.489 7.551
QPACT: 0.644 0.451 2.525

NAG: 0.852 0.371 1.669
PQPMEX: 0.727 0.078 6.469
PQPMPC: 0.367 0.040 3.037

TABLE III: Computation time for the DC-motor example (“aggressive”
reference).

PQP is more sensitive than other solvers to the activation

of constraints, but still converges rapidly. For the case in



Table III , the impact of the acceleration technique described

in Section III-A executed once every 20 PQP iterations is

shown in Figure 3, in terms of number of iterations executed

by the algorithm during the simulation. The acceleration is

particularly effective in reducing the peaks of number of

iterations, and hence the optimization of the acceleration

strategy, which is currently being studied, may lead to an

effective reduction of the variance in the computation time.
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Fig. 3: Effect of the acceleration technique on the DC-motor example
reported in Table III. Number of iterations without acceleration (solid) and
with acceleration every 20 iterations (dash) during the simulation.

For this example we have also studied how the computa-

tion time changes while increasing the problem size. For the

“aggressive” reference signal, (Table III), we compare the

computing time results of PQPMPC and NAG, for N = 10,
N = 25, N = 40, and N = 80. The results in Table IV show

Solver Avg[ms] Min[ms] Max[ms]

NAG-10: 0.852 0.371 1.669
NAG-25: 3.587 1.051 8.212
NAG-40: 7.198 1.602 16.226

NAG-80: 34.764 3.357 81.130

PQPMPC-10: 0.367 0.040 3.037
PQPMPC-25: 0.424 0.157 3.704
PQPMPC-40: 0.941 0.377 6.481

PQPMPC-80: 5.058 3.939 10.228

TABLE IV: Computation time for different problem sizes for the DC-motor
example (“aggressive” reference).

that PQPMPC maintains a margin over the NAG solver.

VI. CONCLUSIONS

We have discussed how the PQP algorithm can be effec-

tively applied to linear MPC. We have introduced termination

conditions that guarantee the desired degree of suboptimality,

and an acceleration based on projection-free line search. We

have also shown how a PQP-based MPC controllers can

be synthesized by pre-computing and pre-allocating several

matrices. The algorithms were compared with free and com-

mercial solvers showing interesting performance. Ongoing

work involves improving the acceleration, developing warm-

starting, and deriving bounds on the number of iterations.
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