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optimization problem which always yields an admissible solution. In this way, suboptimal-
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Nearly-Optimal Simple Explicit MPC Regulators with Recursive

Feasibility Guarantees

Bálint Takács, Juraj Holaza, Michal Kvasnica, and Stefano Di Cairano

Abstract—Explicit Model Predictive Control (MPC) is an
attractive control strategy, especially when one aims at a
fast, computationally less demanding implementation of MPC.
Although leading to a fast implementation of optimization-
based control, the main downside of explicit MPC is its high
complexity in terms of memory occupancy, which often limits
practical applicability of such a control methodology. Therefore
in this paper we propose to obtain simple explicit MPC con-
trollers that provide guarantees of recursive satisfaction of input
and state constraints. The task is accomplished by optimizing,
off-line, the parameters of the feedback law such that an
integrated square error between the optimal, but complex
controller and its simpler replacement is minimized. We show
that the task can be formulated as a quadratic optimization
problem which always yields an admissible solution. In this
way, suboptimality of simple feedbacks with respect to their
complex optimal counterparts is significantly mitigated.

I. INTRODUCTION

Model predictive control (MPC) has become a very pop-

ular control strategy especially in process control [1], [2].

MPC is endorsed mainly due to its natural capability of

designing feedback controllers for large multi-input-multi-

output (MIMO) systems, while considering all of the systems

physical constraints which are implicitly embedded in the

optimization problem. Solution of such an optimization prob-

lem yields a sequence of predicted optimal control inputs,

from which only the first one is applied to the system to

achieve feedback.

To mitigate the required computational effort, explicit

MPC [3] was introduced. In explicit MPC we pre-compute

the function that generates the sequence of optimal control

inputs for each admissible initial condition. The task of ob-

taining optimal control inputs then reduces to a mere function

evaluation, which can be performed efficiently even with

small computational resources. The downside is that such

a pre-computed explicit solution consumes lots of memory.

As was shown by numerous authors (see e.g. [4], [5]), com-

plexity of explicit MPC solutions grows exponentially with

the prediction horizon. To satisfy limits of implementation

hardware, it is therefore important to keep complexity of

explicit MPC controllers at an acceptable level.

Numerous procedures for simplifying explicit MPC con-

trollers were proposed in the literature. For a comprehensive

overview, the interested reader is referred to [6, Chapter 6]

and the references therein. From more recent results we can
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mention construction of suboptimal controllers by exploit-

ing freedom of Lyapunov functions by [7], simplification

of feedbacks by using canonical PWA functions [8], and

approximation of the optimal feedback by polynomials [9],

[10]. In short, most of the simplification techniques focus

at replacing the original complex controller by a simpler

feedback law. The replacement must be done such that the

simpler controller provides recursive satisfaction of con-

straints, but is allowed to sacrifice optimality in favor of

achieving smaller complexity.

A simplification procedure along these lines is proposed in

this paper. We assume that we are given a complex explicit

MPC feedback law µ(x), encoded as a Piecewise Affine

(PWA) function of the state measurements x. Our objective
is to replace µ(·) by a simpler PWA function µ̃(·) such that:
a) µ̃(x) generates a feasible sequence of control inputs for

all admissible values of x; and b) the integrated square error
between µ(·) and µ̃(·) is minimized. By doing so we obtain
a simpler explicit feedback law µ̃(·), which is safe (i.e.,

provides constraint satisfaction), and is nearly optimal.

Designing an appropriate approximate controller µ̃(·) first
requires construction of polytopic regions over which µ̃(·)
is defined, and then synthesizing local affine expressions

in each of the regions. We propose to approach the first

task by solving a simpler MPC optimization problem with a

shorter prediction horizon. In this way, we obtain a simple

feedback µ̂(·) as a PWA function. We then refine local affine

expressions of this function as to obtain the function µ̃(·)
such that the error between µ(·) and µ̃(·) is minimized.

We show that if the MPC problem is formulated with

an additional set of constraints (which employs a control

invariant set), then the problem of finding µ̃(·) is always

feasible. In other words, we can always refine µ̂(·) as to

obtain a better-performing explicit controller µ̃(·).

II. PRELIMINARIES AND PROBLEM DEFINITION

A. Notation and Definitions

We denote by R, R
n and by R

n×m the real numbers,

n-dimensional real vectors, and n × m dimensional real

matrices, respectively. Furthermore, N denotes the set of non-

negative integers, and N
j
i the set of consecutive integers,

i.e., N
j
i = {i, . . . , j}, i ≤ j. For a vector-valued function

f : R
n → R

m, dom(f) denotes its domain. For an arbitrary
set S, int(S) denotes its interior.

Definition 2.1 (Polytope): A polytope P is a convex,

closed, and bounded set defined as the intersection of a

finite number c of closed affine half-spaces aT
i x ≤ bi,



ai ∈ R
n, bi ∈ R, ∀i ∈ N

c
1. Each polytope can be compactly

represented as

P = {x ∈ R
n | Ax ≤ b}, (1)

with A ∈ R
c×n, b ∈ R

c.

Definition 2.2: Every polytope P ⊂ R
n in (1) can be

equivalently written as

P = {x | x =
∑

i λivi, 0 ≤ λi ≤ 1,
∑

i λi = 1}, (2)

where vi ∈ R
n, ∀i ∈ N

M
1 are vertices of the polytope.

Definition 2.3 (Polytopic partition): The collection of

polytopes {Ri}
M
i=1 is called the partition of polytope Q if:

1) Q = ∪iRi,

2) int(Ri) ∩ int(Rj) = ∅, ∀i 6= j.

We call each polytope of the collection a region of the

partition.

Definition 2.4 (Polytopic PWA function): Vector-valued

function f : Ω → R
m is called PWA over polytopes if

1) Ω ⊂ R
n is a polytope,

2) there exist polytopes Ri, i = 1, . . . ,M such that

{Ri}
M
i=1 is the partition of Ω,

3) for each i ∈ N
M
1 we have f(x) = Fix + gi, with

Fi ∈ R
m×n, gi ∈ R

m.

Definition 2.5 (Maximum control invariant set): Let

xk+1 = Axk + Buk be a linear system that is subject to

constraints x ∈ X , u ∈ U , X ⊆ R
n, U ⊆ R

m. Then the set

C∞ = {x0 ∈ X | ∀k ∈ N : ∃uk ∈ U s.t.

xk+1 = Axk + Buk ∈ X} (3)

is called the maximum control invariant set.

Remark 2.6: Under mild assumptions, the set C∞ in (3) is

a polytope (see e.g. [11]) which can be computed for instance

by the MPT Toolbox [12]. ¤

B. Explicit Model Predictive Control

We consider control of linear discrete-time systems in the

state-space form

x(t + 1) = Ax(t) + Bu(t), (4)

with x ∈ R
n, u ∈ R

m, (A,B) controllable. System in (4) is

subject to state and input constraints

x(t) ∈ X , u(t) ∈ U , (5)

where X ⊂ R
n, U ⊂ R

m are polytopes that contain

the origin in their respective interiors. We are interested

in obtaining a feedback law µ : R
n → R

m such that

u(t) = µ(x(t)) drives all states of (4) to the origin while

providing recursive satisfaction of state and input constraints,

i.e., ∀t ∈ N we have x(t) ∈ X , u(t) ∈ U .

As shown for instance in [3], the feedback law µ(x) can
be obtained by computing the explicit representation of the

optimizer to the following optimization problem:

µ = arg min
N−1∑

k=0

(xT
k+1Qxxk+1 + uT

k Quuk) (6a)

s.t. xk+1 = Axk + Buk, ∀k ∈ N
N−1
0 (6b)

uk ∈ U , ∀k ∈ N
N−1
0 (6c)

x0 ∈ C∞, x1 ∈ C∞, (6d)

where xk, uk denote, respectively, predictions of the states

and inputs at the time step t+ k, initialized from x0 = x(t).
Moreover, N ∈ N is the prediction horizon and Qx º 0,
Qu ≻ 0 are weighting matrices of appropriate dimensions.

In the receding horizon implementation of MPC, we are

only interested in the first element of the optimal sequence

of inputs U∗
N = [u∗

0
T , . . . , u∗

N−1
T ]T . Hence the receding

horizon feedback law is given by

µ(x) := [Im×m 0m×m · · · 0m×m]U∗
N . (7)

Remark 2.7: Note that constraint (6d) implies that if C∞
is a control invariant set satisfying (3), then xk ∈ X will be

satisfied ∀k ∈ N
N
0 . ¤

By solving (6) using parametric programming (see [4],

[13]), one obtains the explicit representation of the explicit

MPC feedback law µ(·) in (7) as a function of the initial

condition x0 = x(t):

µ(x0) :=





F1x0 + g1 if x0 ∈ R1

...

FMx0 + gM if x0 ∈ RM ,

(8)

with Fi ∈ R
m×n and gi ∈ R

m.

Theorem 2.8 ([14]): The function µ : R
n → R

m in (8) is

a polytopic PWA function (cf. Definition 2.4) where Ri ⊂
R

n are polytopes ∀i ∈ N
M
1 , and M denotes the total number

of polytopes. Moreover, the domain of µ(·) is Ω = ∪iRi

where Ω is a polytope such that

Ω = {x0 | ∃u0, . . . , uN−1 s.t. (6c)− (6d) holds} (9)

is the set of all initial conditions for which problem (6)

is feasible. Furthermore, {Ri} is the partition of Ω, cf.
Definition 2.3. ¥

C. Problem Statement

The main issue of explicit MPC is that complexity of

explicit MPC feedback controllers µ(·) in (8), expressed

by the number of polytopes M , grows quickly with the

prediction horizon N . The more polytopes constitute µ(·),
the more memory is required to store the function in the

control hardware and the longer it takes to obtain value of

the optimizer for a particular value of the state measurements.

Therefore we want to replace µ(·) by a similar, yet less

complex, PWA feedback law µ̃(·) while preserving recursive
satisfaction of constraints in (5). The price we are willing to

pay for obtaining a simpler representation is suboptimality

of µ̃(·) with respect to the optimal representation µ(·).
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Fig. 1. The function µ(·), shown in black, is given. The task in Problem 2.9
is to synthesize the function eµ(·), shown in red, which is less complex (here
it is defined just over 3 regions instead of 7 for µ(·)) and minimizes the
integrated square error (11).

Problem 2.9: Given an explicit representation of the MPC

controller µ : R
n → R

m as in (8), we want to synthesize a

PWA function µ̃ : R
n → R

m with

µ̃(x) = F̃ix + g̃i if x ∈ R̃i, ∀i ∈ N
fM
1 , (10)

i.e., to find the integer M̃ < M , polytopes R̃i ⊂ R
n, i =

1, . . . , M̃ , and gains F̃i ∈ R
m×n, g̃i ∈ R

m such that:

R1: for each x ∈ dom(µ) we have that the simpler

feedback µ̃(·) provides recursive satisfaction of state

and input constraints in (5), i.e., ∀t ∈ N we have that

µ̃(x(t)) ∈ U and Ax(t) + Bµ̃(x(t)) ∈ X ;

R2: µ̃(·) is chosen such that the squared error between the
PWA functions µ(·) and µ̃(·), when integrated over the
domain of µ(·), Ω, is minimized:

min

∫

Ω

‖µ(x) − µ̃(x)‖2
2 dx. (11)

¤

In (11), dx is the Lebesgue measure of Ω, see [15]. The task
of Problem 2.9 is illustrated graphically in Fig. 1.

Remark 2.10: It is important to note that solutions ob-

tained by solving Problem 2.9 do not posses an a-priori

guarantee of closed-loop stability. It is, however, straight-

forward to a-posteriori certify whether a particular feedback

µ̃(·) possesses such a property by constructing a suitable

Lyapunov function, see e.g. [16]. Moreover, in order to

render the origin an equilibrium of system (4), the constraint

µ̃(0) = 0 should be added to the set of requirements in

Problem 2.9. ¤

III. SYNTHESIS OF NEARLY-OPTIMAL SIMPLE

CONTROLLERS

We propose to solve Problem 2.9 in two steps. In the first

step, we construct the polytopes R̃i, i ∈ N
fM
1 with M̃ < M

(recall that M is the number of polytopes defining µ(·)) such
that

∪iR̃i = ∪jRj , (12)

hence such that the domain of µ̃(·) is identical to the domain

of µ(·). Then, in the second step, for each i ∈ N
fM
1 we choose

the gains F̃i and offsets g̃i in (10) such that µ̃(·) in (10)

provides recursive satisfaction of constraints in (5) and the

approximation error in (11) is minimized.

A. Selection of the Polytopic Partition

The objective here is to find polytopic regions R̃i, i ∈

N
fM
1 such that (12) holds with M̃ < M . First, recall that

from Theorem 2.8, ∪jRj = Ω by (9). Hence we require

∪iR̃i = Ω. We propose to obtain polytopes R̃i by solving (6)

again, but with a lower value of the prediction horizon, say

with N̂ < N , where N is the prediction horizon for which

the original (complex) controller µ was obtained. Then, by

Theorem 2.8, we obtain the feedback law µ̂(·) as a PWA

function of x:

µ̂(x) = F̂ix + ĝi if x ∈ R̃i, ∀i ∈ N
fM
1 , (13)

which is defined over M̃ polytopes R̃i.

Lemma 3.1: Let µ(·) as in (8) be obtained by solving (6)
according to Theorem 2.8 for some prediction horizon N . Let

µ̂(·) be the explicit MPC feedback function in (13), obtained

by solving (6) for some N̂ < N . Then (12) holds. ¥

Hence we can obtain polytopic regions R̃i of the simpler

function (10) by solving (6) explicitly for a shorter value

of the prediction horizon. To achieve the least complex

representation of µ̃(·), it is recommended to choose low

values of N̂ . The smallest number of polytopes, i.e., M̃ ,

will be achieved for N̂ = 1.
Remark 3.2: The advantage of the procedure presented

here is that the domain of µ(·) is partitioned into {R̃i} in

such a way that the approximation problem (11) is always

feasible, i.e., there always exist parameters F̃i, g̃i in (10)

such that µ̃ guarantees recursive satisfaction of input and

state constraints. This is not always the case if an arbitrary

partition is selected. ¤

Remark 3.3: By solving (6) for N̂ < N we obtain the

explicit representation of a simple controller µ̂(·) as a PWA
function in (13). Such a function already provides recursive

satisfaction of constraints in (5) due to (6d), and therefore

solves R1 in Problem 2.9. However, there is no guarantee

that µ̂(·) minimizes the approximation error (11). ¤

B. Function Fitting

In the previous section we have shown how to compute

the polytopic partition {R̃i}, i = 1, . . . , M̃ by solving (6)

using parametric programming for N̂ < N . Next we need to

find parameters F̃i, g̃i of µ̃(·) in (10) such that requirements
R1 and R2 of Problem 2.9 are satisfied.

First, recall that, from Theorem 2.8, the polytopes R̃i form

the partition of the domain of µ̂, i.e., their respective interiors
do not overlap. Therefore we can split the search for F̃i, g̃i

for i = 1, . . . , M̃ in Problem 2.9 into a series of M̃ problems

of the following form:

min
eFi,egi

∫

eRi

‖µ(x) − µ̃(x)‖2
2 dx (14a)

s.t. ∀x ∈ R̃i :

{
F̃ix + g̃i ∈ U ,

Ax + B(F̃ix + g̃i) ∈ C∞.
(14b)



Here, recall that µ̃(x) = F̃ix + g̃i is the approximate

affine control law valid for all x ∈ R̃i via (10). The first

constraint in (14b) ensures satisfaction of input constraints,

while the second case provides recursive satisfaction of state

constraints since C∞ is assumed to satisfy Definition 2.5.

However, there are three technical issues which complicate

the search for F̃i, g̃i from (14):

1) Even when x is restricted to a particular polytope R̃i,

µ(·) over R̃i is still a PWA function, cf. Fig. 1.

2) The integration in (14a) has to be performed over

polytopes in dimension n ≥ 1.
3) The constraints in (14b) have to hold for all points

x ∈ R̃i, i.e., for an infinite number of points.

The first issue can be tackled as follows. Consider a fixed

index i, i.e., take R̃i, and recall that the (complex) optimal

feedback µ(·) is defined over M polytopes Rj . For each

j = 1, . . . ,M , compute first the intersection between R̃i

and Rj , i.e.,

Qi,j = R̃i ∩Rj , ∀j ∈ N
M
1 . (15)

Indeed, each Qi,j is a polytope. In each intersection Qi,j ,

the expressions for both µ(·) and µ̃(·) are affine, which

follows from (8). Hence, we can equivalently represent the

approximation objective (14a) as

min
eFi,egi

∑

j∈Ji

∫

Qi,j

‖(Fjx − gj) − (F̃ix + g̃i)‖
2
2 dx, (16)

where Fj and gj are the gains and offsets of the optimal

feedback. The outer summation only needs to considers

indices of polytopes of µ(·) for which the intersection in (15)
is non-empty, i.e., Ji = {j ∈ N

M
1 | R̃i ∩Rj 6= ∅} for a fixed

i.

To evaluate the integral in (16) recall that, for each i-j
combination, Fj and gj are known matrices/vectors, but F̃i,

g̃i are optimized variables. Furthermore, Qi,j are polytopes

in R
n. To obtain an analytic expression for the integral, we

use the result of [17], extended by [15]:

Lemma 3.4 ([15]): Let f be a homogeneous polynomial

of degree d in n variables, and let s1, . . . , sn+1 be the

vertices of an n-dimensional simplex ∆. Then

Z

∆

f(y)dy = γ
X

1≤i1≤···≤id≤n+1

X

ǫ∈{±1}d

ǫ1 · · · ǫdf(
Pd

k=1
ǫksik

)

(17)

where

γ =
vol(∆)

2dd!
(
d+n

d

) , (18)

and vol(∆) is the volume of the simplex. ¥

However, Lemma 3.4 is not directly applicable to evaluate

the integral in (16) because the polytopesQi,j are, in general,

not simplices. To proceed, we therefore first have to tessellate

each polytope Qi,j into simplices ∆i,j,1, . . . ,∆i,j,K with

int(∆i,j,k1
) ∩ int(∆i,j,k2

) = ∅ for all k1 6= k2, and

∪k∆i,j,k = Qi,j . Then we can rewrite (16) as a sum of

the integrals evaluated over each simplex:

min
eFi,egi

∑

j∈Ji

K∑

k=1

∫

∆i,j,k

‖(Fjx − gj) − (F̃ix + g̃i)‖
2
2 dx, (19)

where K is the number of simplices tessellating Qi,j . Fur-

thermore, note that Lemma 3.4 only applies to homogeneous

polynomials. The integral error in (19), however, is not

homogeneous. To see this, expand f(x) := ‖(Fjx + gj) −
(F̃ix + g̃i)‖

2
2 to f(x) := xT Qx + rT x + q with

Q = FT
j Fj − 2FjF̃i + F̃T

i F̃i, (20a)

r = 2(FT
j g̃i + F̃T

i g̃i − F̃T
i gj − FT

j g̃i), (20b)

q = gT
j gj − 2gT

j g̃i + g̃T
i g̃i. (20c)

Then we can see that f(x) is a quadratic function in the opti-
mization variables F̃i and g̃i, but is not homogeneous, since

not all of its monomials have the same degree (in particular,

we have monomials of degrees 2, 1 and 0 in f ). However,
since an integral is closed under linear combinations, we

have that
∫

∆

f(x) =

∫

∆

fquad(x) +

∫

∆

flin(x) +

∫

∆

fconst, (21)

with fquad(x) := xT Qx, flin := rT x and fconst := q and the

integrand dx is omitted for brevity. Since each of these newly

defined functions is a homogeneous polynomial of degree 2,
1 and 0, respectively, the integral

∫
∆

f(x)dx can now be

evaluated by applying (17) of Lemma 3.4 to each integral

in the right-hand-side of (21). We hence obtain an analytic

expression for the integral error as a quadratic function of

the unknowns F̃i and g̃i.

Remark 3.5: The integral of a constant q over a set ∆ ⊆
R

n is equal to a scaled volume of ∆, i.e.,
∫
∆

q = q vol(∆).
¤

Finally, when optimizing for F̃i and g̃i, we need to ensure

that the constraints in (14b) hold for all points x ∈ R̃i. By

our assumptions, the sets U and C∞ are polytopes, hence

can be represented by U = {u |Huu ≤ hu} and C∞ =
{x |Hcx ≤ hc}. By using u = F̃ix + g̃i, constraint (14b)

can be compactly written as

∀x ∈ R̃i : f(x) ≤ 0, (22)

with

f(x) :=

[
HuF̃i

Hc(A + BF̃i)

]
x +

[
Hug̃i − hu

Hcg̃i − hc

]
. (23)

Then we can state our next result.

Theorem 3.6: Let Vi = {vi,1, . . . , vi,nv,i
}, vi,j ∈ R

n be

the vertices of polytope R̃i (see Definition 2.2). Then (22)

is satisfied ∀x ∈ R̃i if and only if f(vi,j) ≤ 0 holds for all

vertices. ¥

By combining Theorem 3.6 with the integration results

reported above, we can hence equivalently recast the search



for F̃i, g̃i from (14) as

min
eFi,egi

∑

j∈Ji

K∑

k=1

∫

∆i,j,k

‖(Fjx − gj) − (F̃ix + g̃i)‖
2
2 dx, (24a)

s.t. ∀vi,ℓ ∈ vert(R̃i) :

{
F̃ivi,ℓ + g̃i ∈ U ,

Avi,ℓ + B(F̃ivi,ℓ + g̃i) ∈ C∞,

(24b)

where vert(R̃i) enumerates all vertices of the corresponding
polytope. Since each polytope R̃i has only finitely many

vertices [18], problem (24) has a finite number of constraints.

Moreover, the objective in (24a) is a quadratic function in

the unknowns F̃i, g̃i and its analytic form can be obtained

via (17). Finally, since the sets U and C∞ are assumed

to be polytopic, all constraints in (24b) are linear. Thus

problem (24) is a quadratic optimization problem for each

i ∈ N
fM
1 , where M̃ is the number of polytopes that constitute

the domain of µ̃(·) in (10).

As our final result we show that if polytopes R̃i are chosen

as suggested by Lemma 3.1, then (24) is feasible for each

i = 1, . . . , M̃ .

Theorem 3.7: Let R̃i, i = 1, . . . , M̃ be obtained by

Lemma 3.1 for N̂ < N . Then the optimization problem (24)

is always feasible, i.e., for each i = 1, . . . , M̃ there exist

matrices F̃i and vectors g̃i such that the simplified feedback

µ̃(x) from (10) provides recursive satisfaction of constraints

in (5) for an arbitrary x ∈ Ω. ¥

Remark 3.8: The improved feedback µ̃(·) in (10), whose

parameters F̃i, g̃i are obtained from (24), is not necessarily

continuous. If desired, continuity can be enforced by adding

the constraints F̃iwk + g̃i = F̃jwk + g̃j to (24b), where

wk are all vertices of the n − 1 dimensional intersection

R̃i ∩ R̃j , ∀i, j ∈ N
fM
1 . Note that, since the simple feedback

µ̂ is continuous, the choice F̃i = F̂i, g̃i = ĝi is a

feasible continuous solution in (24). Hence the conclusions

of Theorem 3.6 hold even if continuity of (10) is enforced.

Needless to say, sacrificing continuity allows for a greater

reduction of the approximation error in (24a). ¤

Remark 3.9: The gain-optimization problem (24) natu-

rally covers the multi-input scenario where F̃i ∈ R
m×n,

g̃i ∈ R
m with m > 1. ¤

C. Complete Procedure

To solve Problem 2.9 and to devise a simpler explicit

feedback law µ̃(·) in (10) that approximates a given complex
solution µ(·), we can proceed as follows:

1) Obtain R̃i by solving (6) for N̂ < N , and for each

i ∈ N
fM
1 do:

2) Compute Qi,j from (15) for each j ∈ N
M
1 .

3) Triangulate each intersection Qi,j into simplices

∆i,j,1, . . . ,∆i,j,K and enumerate their respective ver-

tices.

4) Obtain the analytic expression of the integrals in (24a)

by (17).

5) Enumerate vertices of R̃i and obtain F̃i, g̃i by solv-

ing (24) as a quadratic optimization problem.
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Fig. 2. Regions of the complex controller µ(·) and of the approximate
feedback eµ(·) from Section ??.

Obtaining the polytopes R̃i by solving (6) explicitly can

be performed e.g. by the MPT Toolbox [12] or by the Hybrid

Toolbox [19]. Computation of intersections, tessellation (via

Delaunay triangulation), and enumeration of vertices in Steps

2 and 3 can also be done via MPT. Finally, the optimization

problem (24) can be formulated by YALMIP [20] and

solved using off-the-shelf software, e.g. by GUROBI [21]

or quadprog of MATLAB.

IV. EXAMPLE

Consider the second order, discrete-time, linear time-

invariant system

x(t + 1) =

[
0.9539 −0.3440

−0.4833 −0.5325

]
x(t) +

[
−0.4817
−0.5918

]
u(t),

(25)

which is subject to state constraints −10 ≤ xi(t) ≤ 10, i ∈
N

2
1 and input bounds −0.5 ≤ u(t) ≤ 0.5. We remark that the

system is open-loop unstable with eigenvalues λ1 = 1.0584
and λ2 = −0.6370. The complex explicit MPC controller

µ(·) in (8) was obtained by solving (6) for Qx = I2×2, Qu =
2 and N = 20. Its explicit representation was defined over

M = 127 polytopic regions Ri ⊂ R
2, shown in Fig. 2(a).

All computations were carried out on a 2.7 GHz CPU using

MATLAB and the MPT Toolbox.

To derive a simple representation of the MPC feedback

as in (10), we have proceeded as outlined in Section III-C.

First, we have solved (6) with shorter prediction horizons

N̂ ∈ {1, 2, 3, 4}. This gave rise to simple feedbacks µ̂(·) as
in (13) with lower performances. Domains of these feedbacks

were defined, respectively, by M̃ = {3, 5, 11, 17} regions

R̃i. These regions were then employed in (24) to optimize

parameters F̃i, g̃i of improved simple feedbacks µ̃(·) in (10).
The fitting problems (24) were formulated by YALMIP and

solved by quadprog.

Remark 4.1: In practice, to get the least complex approx-

imate controller µ̃(·) one would only consider the case with
the smallest number of regions. We only consider various

values of M̃ to assess suboptimality of µ̃(·) as a function of
the number of regions, M̃ . ¤

Next, we have assessed degradation of performance in-

duced by employing simpler feedbacks µ̂(·) and µ̃(·) instead
of the optimal controller µ(·). To do so, for each subopti-

mal controller we have performed closed-loop simulations



TABLE I

COMPLEXITY AND SUBOPTIMALITY COMPARISON FOR THE EXAMPLE IN

SECTION ??.

Pred. horizon # of regions
Suboptimality w.r.t. µ(·) in (8)
bµ(·) in (13) eµ(·) in (10)

1 3 60.8 % 25.1 %
2 5 32.9 % 18.0 %
3 11 11.4 % 8.3 %
4 17 6.9 % 1.7 %

for 10000 equidistantly spaced initial conditions from the

domain of µ(·). In each simulation we have evaluated the

performance criterion Jsim =
∑Nsim

i=1
xT

i Qxxi + uT
i Quui

for Nsim = 100. For each investigated controller we have

subsequently computed mean values of this criterion over

all investigated starting points. This “average” performance

indicators are denoted in the sequel as Jopt for the opti-

mal feedback µ(·), Jsimple for the simple, but suboptimal

controller µ̂(·), and Jimproved for µ̃(·), whose parameters

were optimized in (24). Then we can express the average

suboptimality of µ̃(·) by Jsimple/Jopt, and the suboptimality of

µ̃(·) by Jimproved/Jopt. The higher the figure, the more suboptimal

a respective controller is with respect to the optimal feedback

µ(·).
Concrete numbers are reported in Table I. As can be ob-

served, lowering the prediction horizon significantly reduces

complexity. However, suboptimality is inverse-proportional

to complexity. For instance, solving (6) with N = 1 gives

µ̂(·) that performs by 60% worse compared to the optimal

feedback µ(·) obtained for N = 20. Improving parameters

of the feedback function via (24) resulted in an improved

controller µ̃(·) whose average suboptimality is only 25%.

The amount of suboptimality can be further reduced by

considering more complex partition of the feedback function.

V. CONCLUSIONS

In this paper we have introduced a novel method for reduc-

ing complexity of explicit MPC controllers. The procedure

was based on replacing regions of the complex feedback µ(·)
by a simpler partition {R̃i}, followed by assigning to each

region R̃i a local affine expression F̃ix + g̃i such that loss

of optimality with respect to µ is mitigated. The simpler

partition was obtained by solving a simpler version of (6)

with a lower value of the prediction horizon. Even though

by doing so we already obtain a simpler feedback law µ̂(·),
by using the procedure of Section III-B we can significantly

reduce the amount of suboptimality (cf. Remark 3.3). We

have shown that the search for parameters F̃i, g̃i in (10)

can be formulated as a quadratic optimization problem.

Moreover, we have proved that such a fitting problem is

always feasible if a control invariant constraint is employed

in (6d).
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(MPT),” 2004, available from http://control.ee.ethz.ch/∼mpt/.

[13] M. Baotić, “Optimal Control of Piecewise Affine Systems – a Multi-
parametric Approach,” Dr. sc. thesis, ETH Zurich, Zurich, Switzerland,
Mar. 2005.

[14] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The
explicit linear quadratic regulator for constrained systems,” vol. 38,
no. 1, pp. 3–20, Jan. 2002.

[15] V. Baldoni, N. Berline, J. A. De Loera, M. Köppe, and M. Vergne,
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