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Abstract
A novel sampling method is proposed for estimating a continuous multi-scale mixture model.
The multi-scale mixture models we assume have a hierarchical structure in which each compo-
nent of the mixture is represented by a Gaussian mixture model (GMM). In speaker modeling
from speech, this GMM represents intra-speaker dynamics derived from the difference in the
attributes such as phoneme contexts and the existence of non-stationary noise and the mix-
ture of GMMs (MoGMMs) represents inter-speaker dynamics derived from the difference in
speakers. Gibbs sampling is a powerful technique to estimate such hierarchically structured
models but can easily induce the local optima problem depending on its use especially when
the elemental GMMs are complex in structure. To solve this problem, a highly accurate
and robust sampling method based on the blocked Gibbs sampling and iterative conditional
modes (ICM) is proposed and effectively applied for reducing a singularity solution given in
the model with complex multi-modal distributions. In speaker clustering experiments under
non-stationary noise, the proposed sampling-based model estimation improved the clustering
performance by 17% on average compared to the conventional sampling-based methods.
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ABSTRACT
A novel sampling method is proposed for estimating a continu-
ous multi-scale mixture model. The multi-scale mixture models
we assume have a hierarchical structure in which each compo-
nent of the mixture is represented by a Gaussian mixture model
(GMM). In speaker modeling from speech, this GMM represents
intra-speaker dynamics derived from the difference in the attributes
such as phoneme contexts and the existence of non-stationary noise
and the mixture of GMMs (MoGMMs) represents inter-speaker
dynamics derived from the difference in speakers. Gibbs sampling
is a powerful technique to estimate such hierarchically structured
models but can easily induce the local optima problem depending
on its use especially when the elemental GMMs are complex in
structure. To solve this problem, a highly accurate and robust sam-
pling method based on the blocked Gibbs sampling and iterative
conditional modes (ICM) is proposed and effectively applied for
reducing a singularity solution given in the model with complex
multi-modal distributions. In speaker clustering experiments under
non-stationary noise, the proposed sampling-based model estimation
improved the clustering performance by 17% on average compared
to the conventional sampling-based methods.

Index Terms— Fully Bayesian approach, blocked Gibbs sam-
pling, iterative conditional modes, multi-scale mixture model,
speaker clustering

1. INTRODUCTION

Robust speech modeling is a key for many applications of recog-
nition based on statistical models. Unsupervised speaker model-
ing from speech, which is also referred to as speaker clustering,
plays an important role in speech applications. The difficulty is
that speech segments involve multi-scale dynamics, e.g., utterance-
level and frame-level dynamics. Utterance-level dynamics, which
can be observed in every utterance, are mainly driven by the acous-
tic changes in global attributes such as speakers, their emotions, and
spoken topics. Frame-level dynamics, on the other hand, which can
be observed in short-time analysis in a period of a few dozen mi-
croseconds, are mainly derived from local acoustic variations such
as phoneme contexts and background non-stationary noise.

Latent variable models are effective in modeling such hierarchi-
cally structured data. In the research field of natural language
processing, for example, probabilistic latent semantic analysis
(pLSA) [1] and its fully Bayesian extension, latent Dirichlet allo-
cation (LDA) [2], are successful approaches to expressing multiple
scales on discrete data. For speech data as well, which are ordinar-
ily composed of multivariate continuous data, multi-scale mixture

models have been used to represent the hierarchical structure of
speech [3, 4, 5].

Bayesian estimation can play an essential role in robust model
estimation on real data. Many researchers have attempted to use
Bayesian approaches for speech modeling; the maximum a poste-
rior (MAP) based method [6] and variational Bayesian (VB) based
method [7] were applied to speaker recognition [8] and speaker clus-
tering [3, 9]. These approaches are based on deterministic algo-
rithms using the expectation maximization (EM) algorithm.

In contrast, we have focused on the stochastic approach based
on the Markov chain Monte Carlo (MCMC) approach [4, 5]. We
applied a simple collapsed Gibbs sampler to obtain the utterance-
and frame-level latent variables from their joint posterior distribu-
tion. This approach involves first sampling the frame-level latent
variables (fLVs) and then sampling the utterance-level latent vari-
ables (uLVs). Both MCMC- and VB-based approaches are based
on the estimation of posterior distribution of latent variables. The
MCMC-based approach, however, has an obvious advantage that the
posterior distribution can be marginalized over the model parameters
and the instantiated values of the latent variables can be directly ob-
tained. The VB-based approach, on the other hand, needs to evaluate
the posterior distribution of model parameters and it can provide the
severe over-fitting problem in the case where the number of spoken
utterances is small [5]. However, this sampler has a severe restric-
tion in that the sampling step of uLVs is strictly determined by the
values of fLVs that are obtained in the previous sampling step. This
restriction can induce the local optima problem in uLVs because the
uLVs estimated in every iterations can be highly correlated. To re-
lax this constraint, we propose a novel sampling method based on
blocked Gibbs sampling, which samples both uLVs and fLVs at the
same time. This sampler makes it possible to efficiently evaluate the
enormous combination of fLVs and uLVs and therefore find a more
appropriate solution than the conventional sampling method. We
evaluated the effectiveness of the proposed sampling method using
speaker clustering experiments under non-stationary noise.

2. FORMULATION

We explain a multi-scale mixture model with GMMs. Let out ∈ RD

be a D-dimensional observation vector (e.g., mel-frequency cepstral
coefficients; MFCCs) at the t-th frame in the u-th utterance, Ou

∆
=

{out}Tu
t=1 be the u-th utterance that comprises the Tu observation

vectors, and O ∆
= {Ou}U

u=1 be a set of U utterances.
We introduce a generative model in which all utterances O are

generated from a mixture of GMMs (MoGMMs) in which each
GMM represents the speaker characteristics (i.e., intra-speaker vari-
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Fig. 1. Graphical representations of multi-scale mixture model.

ability) and a mixture of these GMMs represents the entire speaker
space (i.e., inter-speaker variability). We call this multi-scale mix-
ture model.

To deal with this hierarchical mixture model, we introduce two
types of latent variables; Z = {zu}U

u=1 represents the utterance-
level latent variables, each of which identifies the MoGMMs com-
ponent (i.e., speaker distribution) to which the u-th utterance is as-
signed; and V = {{vut}Tu

t=1}U
u=1 represents the frame-level latent

variables, each of which identifies the intra-speaker GMM compo-
nent to which the t-th frame-wise observation in the u-th utterance
is assigned. By introducing these latent variables, we can describe
the conditional probability of all utterances given the latent variables
as follows 1:

p(O|Z,V,Θ)=

U
Y

u=1

hzu

Tu
Y

t=1

wzuvutN (out|µzuvut
,Σzuvut),(1)

P (V|Z,w) =

U
Y

u=1

Tu
Y

t=1

S
Y

i=1

K
Y

j=1

w
δ(vut,j)δ(zu,i)
ij , (2)

P (Z|h) =

U
Y

u=1

S
Y

i=1

h
δ(zu,i)
i , (3)

where Θ
∆
=
˘

{hi} , {wij} ,
˘

µij

¯

, {Σij}
¯

denote the weight,
mean vector, and covariance matrix of the component of the intra-
speaker GMM, respectively; δ(a, b), Kronecker’s delta, which takes
one if a = b and zero otherwise. Note that we have assumed Σij is
a diagonal covariance matrix whose (d, d)-th element is represented
by σij,d. In a Bayesian approach, the conjugate prior distributions
of the parameters are often introduced as follows:

p(Θ|Θ0) =

8

<

:

h ∼ D(h0)
wi ∼ D(w0)
{µij,d, σij,d} ∼ NG(ξ0, η0, µ0

j,d, σ0
j,d)

(4)

where D
`

h0
´

and D
`

w0
´

denote the Dirichlet distribution with a
hyperparameter h0 and w0, respectively. NG

`

ξ0, η0, µ0
j,d, σ0

j,d

´

1We use notation p(·) for the continuous probability function and P (·)
for the discrete probability function.

denotes the Gaussian-Gamma distribution with hyperparameters ξ0,
η0, µ0

j,d, and σ0
j,d. Figure 1 shows a graphical representation of this

model.

3. MODEL INFERENCE

The key issue in Bayesian learning in the latent variable model is es-
timating the posterior distribution of latent variables, p(V,Z,Θ|O).
When the multi-scale mixture model described in the previous sec-
tion is used, the speaker clustering problem is reduced to the problem
of finding the optimal assignments of the utterances to the speakers
(i.e., the utterance-level latent variables Z) so as to maximize the
posterior probability. However, the direct optimization of posterior
distribution p(V,Z,Θ|O) is infeasible, and therefore, some approx-
imation is required.

In [3], the VB approach is introduced in order to find the optimal
posterior distribution. The VB-based methods, however, can suffer
from overfitting of the posterior hyperparameters for cases with a
limited number of observations O is limited [5]. To address this
problem, we can marginalize out the model parameters, Θ, from the
joint distribution and obtain: P (V,Z|O) ∝

R

p(O,V,Z,Θ)dΘ.
In this case, since estimation of the model parameters is no longer
needed, we can robustly estimate the posterior distribution even for a
limited amount of data. In contrast, with the VB method, it is usually
infeasible to marginalize them without any approximation [10].

MCMC has been introduced as an alternative to VB approxi-
mation [4, 5]. In this approach, we can directly obtain the latent
variables from their posterior distribution (P (V,Z|O)).

In the rest of this section, we review the conventional model
estimation method using Gibbs sampling [4, 5] (3.1). Then, we dis-
cuss the problem induced by the conventional method and propose a
more accurate sampling method using blocked Gibbs sampling (3.2
and 3.3).

3.1. Collapsed Gibbs sampling approach

The marginalized likelihood for the complete data p(O,V,Z) can
be analytically obtained by substituting Eqs. (1) to (3) for Eq. (4)
into the following integral equation:

p(O,V,Z)

=

Z

p(O,V,Z|Θ)p(Θ)dΘ

=
Γ(h0)

Q

i Γ(h̃i)

Γ(h0/S)SΓ(
P

i h̃i)
·
Y

i

Γ(
P

j w0
j )
Q

j Γ(w̃ij)
Q

j Γ(w0
j )Γ(

P

j w̃ij)

·
Y

i,j

(2π)−
nijD

2

(ξ0)
D
2

„

Γ

„

η0
j

2

««−D
`

Q

d σ0
j,dd

´

η0
j
2

(ξ̃ij)
D
2

“

Γ
“

η̃ij

2

””−D̀
Q

d σ̃ij,dd

´

η̃ij
2

. (5)

Here, Θ̃ij
∆
=
n

h̃i, w̃ij , ξ̃ij , η̃ij , µ̃ij,d, σ̃ij,d

o

denote the hyperpa-
rameters of the joint distribution as follows:

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

h̃i = h0 + ci,
w̃ij = w0

j + nij ,

ξ̃ij = ξ0 + nij ,
η̃ij = η0 + nij ,

µ̃ij =
ξ0µ0

j+mij

ξ̃ij
,

σ̃ij,d = σ0
j,d + rij,d + ξ0(µ0

j,d)2 − ξ̃ij(µ̃ij,d)2,

(6)



Algorithm 1 Conventional Gibbs sampling based model estimation.
M(·) denotes the multinomial distribution.

1: Initialize {zu, vut : u = 1, · · · , U, t = 1, · · · , Tu}.
2: repeat
3: for all utterances u and frames t do
4: for all components j do
5: Compute γvut=j|zu=i,Vt,Z\u

by Eq. (8).
6: end for
7: Draw frame-level latent variable (fLV), v∗

ut,
from its conditional posterior distribution,

M
„

γvut=j|zu=i,Vt,Z\u
P

j γvut=j|zu=i,Vt,Z\u

«

.

8: end for
9: for all utterances u do

10: for all speakers i do
11: Compute γzu=i|V,Z\u

by Eq. (9)
12: end for
13: Draw utterance-level latent variable (uLV), z∗

u, from its

conditional posterior distribution, M
„

γzu=·|V,Z\u
P

i γzu=i|V,Z\u

«

.

14: end for
15: until some condition is met

where ci, nij , mij , and rij.d denote the zero-th, first, and second
order sufficient statistics as follows:

8

>

>

<

>

>

:

ci =
P

u δ(zu, i),
nij =

P

u,t δ(zu, i) · δ(vut, j),
mij =

P

u,t δ(zu, i) · δ(vut, j) · out,

rij,d =
P

u,t δ(zu, i) · δ(vut, j) · (out,d)2,

(7)

where ci denotes the number of utterances assigned to the i-th com-
ponent of the entire speaker MoGMMs; nij , the number of frames
assigned to the j-th component of the i-th intra-speaker GMM of the
MoGMMs; and mij and rij , the first and second sufficient statistics,
respectively.

The MCMC-based method estimates the utterance- and frame-
level latent variables by directly obtaining the samples of the latent
variables from their posterior distribution. In [4, 5], we applied col-
lapsed 1 Gibbs sampling [11]. In each step of collapsed Gibbs sam-
pling, we replace the value of the latent variable (e.g., zu) with a
value drawn from the distribution p(zu|Z\u), where Z\u denotes
the set of variables but with zu omitted (i.e. Z\u = {zu′ |u′ 6=u}).
In the case of a multi-scale mixture model, the frame- and utterance-
level latent variables are respectively sampled from the conditional
posterior distribution as follows:
[Frame-level latent variables]

γvut=j′|zu=i,Vt,Z\u

= p(vut = j′|O,V\t,Z\u, zu = i)

=
p(O,V\t, vut = j′,Z\u, zu = i)

p(O\t,V\t,Z\u, zu = i)

= exp
“

gij′(Ψ̃i,j′) − gij′(Ψ̃i,j′\t)
”

(8)

[Utterance-level latent variable]

1The term collapsed means that samples are drawn from the marginalized
distribution with respect to model parameter Θ.

γzu=i′|V,Z\u

= p(zu = i′|O,V,Z\u)

=
p(O,V,Z\u, zu = i′)

p(O\u,V\u,Z\u)

=exp

 

log
Γ(
P

j w̃i′\u,j)

Γ(
P

j w̃i′,j)
+
X

j

“

gij(Ψ̃i′,j) − gij(Ψ̃i′\u,j)
”

!

(9)

where gij(Ψ̃i,j) denotes the joint logarithmic probability described
as:

gij(Ψ̃i,j)
∆
= log p(O,V\ut, vut = j,Z\u, zu = i)

∝ log Γ(w̃ij) −
D

2
log ξ̃ij

+D log Γ

„

η̃ij

2

«

− η̃ij

2

X

d
log σ̃ij,d, (10)

where h̃i, w̃ij , ξ̃ij , η̃ij , µ̃ij , and σ̃ij,d are described in Eq. (6), and D

denotes the dimensionality of observation vectors. Here, gij(Ψ̃i,j\t)
is computed using O\t, Z , and V\t.

This sampling process is iterated across all frame- and utterance-
level latent variables. For the multi-scale mixture model used, the
collapsed Gibbs sampling procedure is carried out as Algorithm 1.
M(·) denotes the multinomial distribution.

3.2. Blocked Gibbs sampling

As described in 3.1, the conventional method using collapsed Gibbs
sampling carries out sampling of frame-level latent variables (fLVs)
followed by sampling of utterance-level latent variables (uLVs). In
this case, the values of uLVs are drawn from their posterior distribu-
tion conditioned by the sampled values of fLVs. This indicates that
the posterior distribution of uLV described in Eq. (9) is evaluated
using the identical values of fLVs (i.e., assignments of every frames
to the components of GMM) for all intra-speaker GMMs clusters.
The restriction in which the sampled uLVs are evaluated using the
fixed fLVs can result in a serious problem in that the convergence
speed might be slow, especially for complex distributions that are
composed of a large number of mixtures. Since a substantial quan-
tity of samples is needed in order to evaluate a lot of combinations of
the fLVs and uLVs, the sampling process necessarily needs substan-
tial iterations until the chains of samples are converged to the true
posterior distribution.

To avoid this problem, we propose a new sampling method that
can evaluate a larger number of hypotheses at each iteration. In each
step of the proposed sampling method, once the u-th utterance is
chosen, the set of fLVs and uLV, {zu,Vu}, is drawn from their joint
and posterior distribution, P (zu,Vu|Z\u,V\u,O). Here, this distri-
bution can be factorized as

P (zu,Vu|Z\u,V\u,O)

= P (zu|Z\u,Vu,V\u,O)P (Vu|zu,Z\u,V\u,O). (11)

We can obtain the samples from this factorized distribution by an-
cestral sampling [12]. In this case, we attempt to introduce another
Gibbs sampler that draws the values of fLVs from the second term
on the right side of Eq. (11) as

V∗
u ∼ P (V∗

u|zu,Z\u,V\u,O). (12)



Algorithm 2 Blocked Gibbs sampling-based model estimation with
iterated conditional modes (ICM) approximation. M(·) denotes
multinomial distribution.

1: Initialize {zu, vut : u = 1, · · · , U, t = 1, · · · , Tu}.
2: repeat
3: for all utterances u do
4: for all speakers i do
5: for all frames t do
6: for all components j do
7: Compute γvut=j|zu=i,Vt,Z\u

by Eq. (8).
8: end for
9: Decide the value of fLV, v∗

ut, from its posterior prob-
ability by v∗

ut = arg maxj γvut=j |z∗
u

10: end for
11: Compute γzu=i|V∗,Z\u

by Eq. (9) conditioning on the

sampled fLVs, {v∗
ut}Tu

t=1.
12: end for
13: end for
14: for all utterances u do
15: Draw the value of uLV, z∗

u, from its posterior distribution

by z∗
u ∼ M

„

γzu=·|V∗,Z\u
P

i γzu=i|V∗,Z\u

«

16: end for
17: until some condition is met

This Gibbs sampler can be constructed using the posterior distribu-
tion of fLVs of the u-th utterance given fLVs of the remaining ut-
terances. Then, the posterior distribution of uLV conditioned by the
sampled value of fLVs, V∗

u, is evaluated and a uLV is drawn from its
posterior distribution as

zu ∼ P (zu|Z\u,V∗
u,V\u,O). (13)

An essential difference between the proposed and the conventional
sampler is that the proposed sampler simultaneously draws the fLVs
and uLV by nesting the Gibbs sampler for uLV and that for fLV,
whereas the conventional sampler alternately draws them. It should
be noted that the proposed sampler is regarded as a kind of blocked
Gibbs sampling [13] because it samples a group of variables.

3.3. Greedy approximation for sampling of frame-level latent
variables in blocked Gibbs sampler

Trace plots of the K values, which are frequently applied as an eval-
uation measure of speaker clustering, are shown in Figure 2 (a). Also
shown are marginalized likelihoods computed using the samples ob-
tained from the aforementioned blocked Gibbs sampler. In can be
seen in this figure that the K values and marginalized likelihoods
decrease at around the fourth iteration. We discuss the reason for
this by showing the mean vectors of 26-dimensional acoustic feature
parameters that are assigned to the components of GMM represent-
ing a speaker in Figure 3. This figure describes the mean vectors
obtained at the (1) fourth and (2) fifth iterations. In these examples,
an intra-speaker GMM has four components. This figure indicates
that all components in this GMM have degenerated to the identical
distribution. This singular solution is undesirable because the data
assigned to the corresponding single speaker cluster should essen-
tially be drawn from the multi-modal distribution. This should be
attributed to the properties of sampling techniques e.g., the stochas-
tic decision process randomly assigns a frame-level feature vector
to a component when the probabilities of the frame-level data be-
ing assigned to all components are almost the same. This problem

Table 1. Details of test set.
Test set number of number of average total

speakers utterances duration [min.]
T1 24 192 9.7
T2 144 1152 58.8
A1 5 25 2.8
A2 5 50 5.6
A3 5 100 11.1
B1 10 50 5.6
B2 10 100 11.3
B3 10 200 22.5

would often occur in the sampling of fLVs because each speaker
has relatively small variability on the feature space and the multiple
components are unduly determined as the identical component even
though those components should be distinguished. We can avoid this
problem by taking an enormous number of chains in Gibbs sampling
with respect to fLVs. However, this is usually infeasible from the
viewpoint of computational costs. In contrast, we attempt to address
this problem by applying the iterated conditional modes (ICM) algo-
rithm [14] rather than using strict Gibbs sampling to estimate fLVs
described in Eq. (12). ICM is regarded as a greedy approximation of
Gibbs sampling. When using ICM, a point estimate of fLV is given
by the maximum of the conditional distribution instead of drawing a
sample from the corresponding conditional distribution at each stage
of sampling the fLVs. Namely, we determine the value of fLV in the
u-th utterance by

v∗
ut = arg maxj γvut=j |z∗

u. (14)

This ICM-based approximation can deterministically assign frame-
level feature vectors to an adequate component even if the posterior
probabilities of the frame-level features being assigned to compo-
nents are almost the same.

Algorithm 2 is the algorithm of the proposed model estimation
using the blocked Gibbs sampler with the ICM approximation. It
should be noted that an ICM algorithm is substituted for the Gibbs
sampling procedure for obtaining the samples of fLVs in the line 9.

Figure 2 (b) shows the trace plots of the K values and marginal-
ized likelihoods obtained from blocked Gibbs sampling with ICM
approximation. We can see from this figure that the singular solu-
tion can be avoided by introducing the ICM to the sampling of fLVs.

4. EXPERIMENTS

We compared three model estimation methods as follows:
• b-Gibbs (proposed): MCMC-based model estimation with

the proposed blocked Gibbs sampler
• Gibbs: MCMC-based model estimation with the conven-

tional Gibbs sampler [4, 5]
• VB: VB-based model estimation [3]

Experimental comparisons in terms of speaker clustering accuracy
were carried out using the TIMIT acoustic-phonetic continuous
speech corpus (TIMIT) and the corpus of spontaneous Japanese
(CSJ).

4.1. Evaluation conditions

All experiments were conducted using eight evaluation sets obtained
from TIMIT and CSJ. Table 1 lists the number of speakers and ut-



(a) (b)

Fig. 2. K values and logarithmic marginalized likelihood obtained by (a) blocked Gibbs sampling and (b) iterated conditional modes (ICM).

(1) (2)

Fig. 3. Mean vectors of 26-dimensional acoustic feature parame-
ters (MFCCs) assigned to four Gaussian components of a specific
speaker GMM at (1) fourth and (2) fifth iterations. Each line corre-
sponds to an assignment to each Gaussian component.

terances in those evaluation sets used. T1 and T2 were constructed
using TIMIT. T1 corresponds to the core test set of TIMIT, which in-
cludes 192 utterances spoken by 24 speakers. T2 was the complete
test set, which includes 1,152 utterances spoken by 144 speakers. In
this case, there are no overlaps between T1 and T2. The remaining
six evaluation sets were constructed using CSJ as follows: all of the
lecture speech in CSJ were divided into utterance units on the ba-
sis of silence segments in their transcriptions; then, 5 speakers were
randomly selected; and their 5, 10, and 20 utterances were chosen
for A1, A2 and A3. In the same way, we randomly selected 10 dif-
ferent speakers and their 5, 10, and 20 utterances for B1, B2 and
B3. We evaluated five combinations of different speakers on each
data set. The resulting performance for each data set is the average
for these five combinations. The speech data from TIMIT and CSJ
are basically uncorrupted by noise. In addition to those clean speech
data, we used noisy speech data that were developed by overlapping
each utterance with two types of non-stationary noise at a signal-to-
noise ratio (SNR) of about 10 dB. The speech data were sampled
at 16 kHz and quantized into 16-bit data. We used 26-dimensional
acoustic feature parameters that consisted of 12-dimensional mel-
frequency cepstral coefficients (MFCCs) with log energy and their
∆ parameters. The frame length and frame shift were 25 ms and
10 ms, respectively.

The evaluation criterion we applied in speaker clustering was the
K value, which is the geometric mean of the average speaker purity
and average cluster purity [15].

We conducted the same experiments but with different seeds

Fig. 4. Logarithmic marginalized likelihood obtained from blocked
Gibbs w/ ICM on T1. Eight lines correspond to the results of eight
trials with different seeds.

eight times. Then, we evaluated the marginalized likelihood for each
result and selected the result with the highest likelihood.

The hyperparameters in Eq. (6) were set as follows: w0 = 1
and w(0) =

˘

w0, · · · , w0
¯

for all components; h0 = 1 and h(0) =
˘

h0, · · · , h0
¯

for all clusters; η(0) = 1 and ξ(0) = 1; µ(0) and
Σ(0) were set to the mean vectors and covariance matrices estimated
from the whole dataset, respectively. The number of mixtures in the
intra-speaker GMMs was set to four for T1 and T2, and eight for the
remaining datasets. We randomly initialized both the utterance- and
frame-level latent variables.

4.2. Results

Table 2 lists the K values given by three estimation methods for
clean speech data. Here, note that the data from CSJ (i.e., A1 to
B3) follow an approximately unimodal distribution, and those from
TIMIT (i.e., T1 and T2) follow a multi-modal distribution. The con-
ventional VB-based method (VB) gave relatively worse performance
all the datasets. This implies that the number of data is small for VB
in all of these datasets. On the other hand, the proposed sampler-
based estimation (b-Gibbs) and the conventional sampler-based es-
timation (Gibbs) adequately model the all data from CSJ (i.e., A1
to B3), whereas the conventional Gibbs failed to model the data
from TIMIT (i.e., T1 and especially T2). Table 3 lists the results
for noisy data. We can assume that those noisy data follow a multi-



Table 2. K value for clean test sets.
Evaluation data b-Gibbs Gibbs VB
T1 (spkr:24 utt:192) 0.87 0.81 0.71
T2 (spkr:144 utt:1152) 0.74 0.52 0.41
A1 (spkr:5 utt:25) 0.99 0.92 0.88
A2 (spkr:5 utt:50) 0.99 0.91 0.95
A3 (spkr:5 utt:100) 1.00 0.90 0.98
B1 (spkr:10 utt:50) 0.88 0.89 0.73
B2 (spkr:10 utt:100) 0.95 0.90 0.76
B3 (spkr:10 utt:200) 0.97 0.90 0.80

modal distribution because the noise overlapped are non-stationary.
This table shows that the proposed b-Gibbs outperformed the con-
ventional Gibbs and VB, irrespective of the evaluation sets also un-
der the noisy conditions. These results imply that the conventional
Gibbs, cannot model the data drawn from complex multi-modal dis-
tributions (T1 and T2 for clean data and A1 to B3 for noisy data)
accurately while it can model the data drawn from simple unimodal
distributions (A1 to B3 for clean data). In contrast, the proposed
b-Gibbs can adequately model the data drawn from both of them.

Next, we discuss the computational cost. In the experiment for
use in the T1 dataset (i.e., 24 speakers and 192 utterances), the VB
took about 14.8 seconds on average in one iteration when using an
Intel Xeon 3.00GHz processor. The proposed b-Gibbs, on the other
hand, took about 41.4 seconds on average in one iteration whereas
the conventional Gibbs took about 1.58 seconds. It should be noted
that both Gibbs and b-Gibbs required few iterations for conver-
gence, although MCMC-based methods generally require a lot of
iterations compared with the VB-based method. Figure 4 shows the
logarithmic marginalized likelihood obtained from b-Gibbs on T1.
We can see from this figure that the likelihoods are converged af-
ter twenty iterations at most. This fast convergence comes from the
effect of collapsing the model parameters.

As aforementioned, the proposed b-Gibbs requires heavier com-
putation in each iterations, although it achieves higher accuracy than
the conventional Gibbs and VB approaches. In addition, the com-
putational cost of b-Gibbs will drastically increase as the number of
utterances increases because a lot of iterations are needed in the sam-
pling process. Fortunately, it is easy to parallelize the sampling of
fLVs because the calculation of the posterior distribution of fLVs is
independent with respect to the utterances. We can therefore reduce
the computational time by using the parallelized techniques such
as general purpose graphical processing unit (GPGPU) and multi-
threading technologies.

5. CONCLUSION

We proposed a method of estimating a multi-scale mixture model us-
ing blocked Gibbs sampling and ICM. We showed that the proposed
method could estimate the model accurately for the speech utter-
ances drawn from a complex multi-modal distribution while the re-
sults from the conventional Gibbs sampler-based method got trapped
in a local optima.

We have studied a non-parametric Bayesian version of multi-
scale mixture model and showed that that model was effective in
estimating the number of speakers [16]. This model, however, is
based on the conventional Gibbs sampling. We would therefore like
to introduce a blocked Gibbs sampling based method for this non-
parametric Bayesian model.

Table 3. K value for noisy test sets.
Evaluation data b-Gibbs Gibbs VB
A1 +noise1 (spkr:5 utt:25) 0.89 0.67 0.64
A2 +noise1 (spkr:5 utt:50) 0.88 0.71 0.72
A3 +noise1 (spkr:5 utt:100) 0.84 0.67 0.74
B1 +noise1 (spkr:10 utt:50) 0.75 0.65 0.57
B2 +noise1 (spkr:10 utt:100) 0.75 0.66 0.62
B3 +noise1 (spkr:10 utt:200) 0.77 0.69 0.74
A1 +noise2 (spkr:5 utt:25) 0.84 0.71 0.53
A2 +noise2 (spkr:5 utt:50) 0.80 0.66 0.63
A3 +noise2 (spkr:5 utt:100) 0.88 0.68 0.72
B1 +noise2 (spkr:10 utt:50) 0.77 0.72 0.56
B2 +noise2 (spkr:10 utt:100) 0.75 0.61 0.63
B3 +noise2 (spkr:10 utt:200) 0.74 0.63 0.71
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