
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Projection-free Parallel Quadratic
Programming for Linear Model Predictive

Control

Di Cairano, S.; Brand, M.; Bortoff, S.

TR2013-059 July 2013

Abstract

A key component in enabling the application of model predictive control (MPC) in fields such
as automotive, aerospace and factory automation is the availability of low-complexity fast op-
timization algorithms to solve the MPC finite horizon optimal control problem in architectures
with reduced computational capabilities. In this paper we introduce a projection-free iterative
optimization algorithm and discuss its application to linear MPC. The algorithm, originally de-
veloped by Brand for non-negative quadratic programs, is based on a multiplicative update rule
and it is shown to converge to a fixed point which is the optimum. An acceleration technique
based on a projection-free line search is also introduced, to speed-up the convergence to the op-
timum. The algorithm is applied to MPC through the dual of the quadratic program (QP) formu-
lated from the MPC finite time optimal control problem. We discuss how termination conditions
with guaranteed degree of suboptimality can be enforced, and how the algorithm performance
can be optimized by pre-computing the matrices in a parametric form.We show computational
results of the algorithm in three common case studies and we compare such results with the
results obtained by other available free and commercial QP solvers.

International Journal of Control

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2013
201 Broadway, Cambridge, Massachusetts 02139

MERLCoverPageSide2

DI CAIRANO, BRAND, BORTOFF 1

Projection-free Parallel Quadratic Programming for Linear Model
Predictive Control

S. Di Cairano∗,†, M. Brand†, S.A. Bortoff

Abstract

A key component in enabling the application of model predictive control (MPC) in fields such as automotive,
aerospace and factory automation is the availability of low-complexity fast optimization algorithms to solve the MPC
finite horizon optimal control problem in architectures with reduced computational capabilities. In this paper we
introduce a projection-free iterative optimization algorithm and discuss its application to linear MPC. The algorithm,
originally developed by Brand for non-negative quadratic programs, is based on a multiplicative update rule and
it is shown to converge to a fixed point which is the optimum. Anacceleration technique based on a projection-
free line search is also introduced, to speed-up the convergence to the optimum. The algorithm is applied to MPC
through the dual of the quadratic program (QP) formulated from the MPC finite time optimal control problem. We
discuss how termination conditions with guaranteed degreeof suboptimality can be enforced, and how the algorithm
performance can be optimized by pre-computing the matricesin a parametric form. We show computational results
of the algorithm in three common case studies and we compare such results with the results obtained by other
available free and commercial QP solvers.

Index Terms
model predictive control, optimization, numerical algorithms, constrained control.

I. INTRODUCTION

Model predictive control (MPC) [1] is a powerful framework for optimal control of multivariable constrained
systems. MPC is based on the repeated, receding horizon solution of a finite-time optimal control problem formulated
from the system dynamics, the constraints on system states,inputs, and outputs, and the cost function describing
the control objectives and their relative priority.

A fundamental component of any MPC strategy is the numericalalgorithm for solving the finite-time optimal
control problem. MPC was originally developed for applications in process control [2] where the systems to be
controlled are significantly complex (hundreds of inputs and outputs), but the available computational power is
large and the system time constants are also large. Althoughthe resulting optimal control problems are of large
scale, the readily available computer resources are generally sufficient to meet the relatively loose chronometric
requirements. In recent years MPC has shown potential in other domains including automotive, aerospace, and
factory automation [3]–[6], see also the recent surveys [7], [8]. In these applications the MPC controller is executed
on embedded controllers with relatively low computationalpower, and the control update cycle is much faster
(down to milliseconds or less) with the consequent need for fast algorithms for small-to-medium scale optimal
control problems. Due to the cost and safety requirements, these algorithms need to be simple to code and verify,
have limited memory footprint, and be able to solve problemswith tens to hundreds variables within milliseconds
or less in low complexity processors.

In this paper we consider MPC with linear prediction models subject to polyhedral constraints and with per-
formance objectives formulated by convex quadratic functions. As a consequence, the MPC finite-time optimal
control problem can be formulated as a constrained convex quadratic program (QP) for which convergence to the
global optimum is guaranteed [9]. Several classes of algorithms are available for solving QPs, depending on the
problem size, sparsity and computational and memory requirements of the target platform. Active set methods [10]
and interior points methods [9], are among the most powerfuland customizable methods for solving constrained
quadratic programs. Their high performance is obtained by solving linear systems exploiting complex routines of
linear algebra such as QR and Cholesky factorization [10], and by keeping those factorizations in memory for future

∗Corresponding author. Email: dicairano@ieee.org
†These authors had equal contributions in this paper.

DI CAIRANO, BRAND, BORTOFF 2

use. Recently, MPC-tailored interior point solvers [11]–[13] and active set solvers [14] have been introduced, and
they have been proven capable of achieving high performanceby taking advantage of the MPC problem structure.
Indeed both active sets and interior-point methods are capable of rapidly solving large problems. On the other
hand, they have significant computational requirements dueto the use of complex routines for linear algebra, in
particular for solving systems of linear equations, that results in complex, and hence difficult to validate, code, and
large program memory occupancy (e.g., hundreds of kilobytes).

An alternative approach proposed in [15] is based on the explicit solution of the MPC parametric quadratic
program. By computing the parametric solution offline, the optimization algorithm is not executed at controller
runtime. The explicit MPC controllers has been proved successful, especially in automotive applications [3],
[16], [17]. However, the parametric solution complexity increases combinatorially as a function of the number
of constraints. Thus, explicit MPC can be implemented even in minimal computational platforms, but is applicable
only to problems with few constraints and hence with a short prediction horizon.

For the intermediate cases of medium-size problems that need to be solved in simple, yet not minimal, embedded
control architectures, gradient-based iterative algorithms [10] are interesting candidates. Iterative algorithmsare
based on (many) repeated executions of few basic operations. While the number of iterations can be large,
each iteration requires little time and operations that do not require complex subroutines. In [18], a fast-gradient
algorithm [19]–[21] is proposed for MPC controllers where the constraints are expressed in terms of “simple
sets”. Such sets can be used to enforce, for instance, input bounds. For constraints that cannot be formulated by
simple sets, [22] proposes an iterative procedure based on the dual of the problem where the system equations
are relaxed. In [23] a fast gradient algorithm is proposed for the dual of the MPC quadratic program. For the
algorithm in [23] there are no additional restrictions on the constraints that can be handled. A key property of the
algorithms in [22], [23] is that, under mild assumptions, a bound on the number of iterations to converge to the
solution can be computed, thus making the algorithm maximumnumber of operations predictable. An algorithm
based on the fast gradient method combined with the Lagrangemethod of multipliers was proposed in [24] and
accelerated gradient methods for problems with a structure, and in particular for distributed MPC, were proposed
in [25], [26]. The iterative algorithms in [22]–[24] perform two steps at every iteration. First, they update the current
solution by performing simple operations on the cost function gradient without accounting for the constraints, and
then project the updated solution into the feasible set. Although for “simple” sets the projection operation may
be computationally inexpensive, forcefully changing the updated candidate solution a-posteriori can significantly
reduce the improvement achieved in the iteration. This is a well known problem that limits the performance of
classical projected-gradient iterative methods [27], andwhich led to the development of fast gradient methods,
where such problem is reduced, but it is still present.

In this paper1 we propose a projection-free algorithm for constrained QP for application to linear MPC where
the iteration update guarantees that the update solution maintains feasibility. Hence, a-posteri projections on the
feasibile set, which in general reduce the improvement achieved in the iteration itself, are not needed. The algorithm,
related to the one proposed in [30], was initially formulated in [31] for solving non-negative least squares problems
arising in image processing, and it was named Parallel Quadratic Programming (PQP) because it can be efficiently
parallelized. The name PQP can also be interpreted as Projection-free Quadratic Programming to highlight this
additional feature of the algorithm. Here, we show how PQP can be compounded with an acceleration technique
that performs a projection-free line search, which is particularly useful to reduce the number of iterations needed
to reach the optimum. We show how to apply PQP to the MPC optimization problem by solving the dual of
the QP formulated from the MPC finite-time optimal control problem. For this approach, termination conditions
guaranteeing a requested degree of suboptimality can be enforced. We also show that for MPC problems several
computations can be executed offline, hence avoiding dynamic memory allocation and large input/output dataflow.

The paper is organized as follows. In Section II we introducethe PQP algorithm for non-negative least squares
problems, we prove the convergence of the algorithm, and we introduce an acceleration technique based on a
projection-free line search. In Section III we formulate the linear MPC problem, the resulting convex quadratic
program, and the notion of suboptimal solution. Then, we discuss the application of PQP to the MPC quadratic
program and the termination conditions guaranteeing the desired degree of solution suboptimality. In Section IV

1Preliminary results related to this subject have been presented in [28] and [29]. This paper provides more details on thealgorithms and the
related convergence proofs and more detailed simulation studies and comparisons. Also, the algorithm implementations have been improved,
thus leading to improved performance in the simulations.

DI CAIRANO, BRAND, BORTOFF 3

we discuss how to efficiently apply PQP to MPC by exploiting the parametric primal and dual QP form of MPC to
pre-compute and pre-store several matrices and to reduce calculations. In Section V we present simulation results
on thee MPC benchmark problems and compare the PQP performance in terms of computation time with the ones
of available open source and commercial QP solvers. Finally, in Section VI we summarize conclusions and future
work.

Notation:R, R0+, R+, Z, Z0+, Z+ denote real, nonnegative real, positive real, integer, nonnegative integer, and
positive integer numbers, respectively, andZ[a,b] , {z ∈ Z : a ≤ z ≤ b}. For a vectorφ, [φ]i denotes theith

component, for a matrixΦ ∈ R
n×m, [Φ]ij denotes the element at theith row andjth column. We denote the vector

entirely composed of ones of dimensionm by 1m, the identity matrix byIm, and the matrix entirely composed
of zeros by0m, where the subscripts are dropped when clear from the context. By ◦ we denote the Hadamard
(element-wise) product between two vectors. Inequalitiesbetween vectors are intended componentwise, while for a
symmetric matrixQ, Q > 0 (Q ≥ 0) indicates positive definiteness (semidefiniteness). For avectorx and a matrix
Q ≥ 0 of appropriate dimension,‖x‖2Q = x′Qx. Given a matrixΦ ∈ R

n×m, we defineΦ+,Φ− ∈ R
n×m such

that [Φ+]ij = max(0, [Φ]ij) [Φ−]ij = max(0,−[Φ]ij). Given the vectorv ∈ R
n, diag(v) ∈ R

n×n is the diagonal
matrix havingv on the diagonal. Given the optimization problemminz∈Z J(z), the optimum isJ∗ and the optimal
solution2 is z∗, i.e.,J∗ = J(z∗). Given a continuous time signal,ac(t), t ∈ R0+ the discrete time (sampled) signal
with periodTs, a(k), k ∈ Z0+, is such thata(k) = ac(kTs). The notationa(i|k) denotes the value ofa predicted
i steps ahead based on data at timek.

II. PARALLEL QUADRATIC PROGRAMMING FORNON-NEGATIVE LEAST SQUARES

For a regressor data matrixAls ∈ R
nℓ×nz and a response data vectorbls ∈ R

nℓ, the (linear) least squares (LS)
problem seeks the value of the parameter vectorz ∈ R

nz that minimizes the2-norm of the residual vectorre ∈ R
nℓ ,

re = Alsz − bls, i.e., that minimizes‖re‖ =
√

∑nℓ

i=1([Alsz]i − [bls]i)2. This is achieved by minimizing the squared
norm of the residual vector

z∗ = arg min
z∈Rnz

1

2
‖Alsz − bls‖

2. (1)

For the common case wherenℓ ≥ nz, the solution of (1) can be computed in closed form asz∗ = (A′A)−1A′b.
Several variants of the LS problem (1) exist [32]. A problem that appears in several applications in fields as

different as image processing, control theory, and data mining is the non-negative least squares (NNLS) problem,
where (1) is compounded with the constraints that the parameter vectorz has to belong to the non-negative cone,
i.e., z ∈ R

nz

0+, i.e.,

z∗ = arg min
z∈R

nz
0+

1

2
‖Alsz − bls‖

2. (2)

Although very similar to (1), for problem (2) it is not simpleto compute a closed-form solution, and hence it is
solved by appropriate numerical algorithms. NNLS problem (2) can be formulated as

min
z

J(z) =
1

2
z′Hz + F ′z +M (3a)

s.t. z ≥ 0, (3b)

whereF ∈ R
nz , H ∈ R

nz×nz , H ≥ 0, and 1
2z

′Hz + F ′z +M = 1
2‖Alsz − bls‖

2, whereM ≥ 0. Problem (3) is a
convex quadratic program (QP) subject to linear constraints.

In order to compute the optimal solution of (3), first the Lagrangian of (3) is computed,

L(z, λ) =
1

2
z′Hz + F ′z − λ′z. (4)

Based on (4), the optimality conditions for (3) are obtainedby variational calculus [33] as

z ◦ ∇zL(z, λ) = 0 (5a)

λ ◦ ∇λL(z, λ) = 0, (5b)

2If there exists multiplez ∈ Z such thatJ(z) = J∗ they are all called optimal solutions.

DI CAIRANO, BRAND, BORTOFF 4

where for (3), (5a) results in

z ◦ ∇zL(z, λ) = z ◦ (Hz + F − λ) (6)

= z ◦ ((H+z + F+)− (H−z + F− + λ)).

Assume momentarily thatzi > 0 (possibly infinitesimally) for alli ∈ Z[1,nz]. As a consequence,[λ]i = 0 for all
i ∈ Z[1,nz], and (5) reduces to the fixed point

[z]i =
[H−z + F−]i
[H+z + F+]i

[z]i, ∀i ∈ Z[1,nz] (7)

Remark 1:Optimality conditions (5) are derived from variational calculus, and hence related to optimal control
theory. They are well known to be equivalent, under mild assumptions, to the KKT optimality conditions for
numerical optimization [9], see [33]. An alternative way toexpress (5) is

0 ≤ z ⊥ ∇J(z) ≥ 0 (8)

where⊥ denotes orthogonality. Such a notation is common in linear complementarity problems [34]. By (8) the
fixed point (7) is obtained without the need for explicitly assumingλi = 0, i ∈ Z[1,nz].

In what follows we use (7) to obtain an iteration that moves each zi in the direction of the anti-gradient without
leaving the feasible region. In caseλ∗i > 0, and thusz∗i = 0, the iteration can be shown to drivezi to 0 without
explicitly estimatingλi. For a fixed matrixφ ∈ R

nz×nz chosen to guarantee convergence as explained later, the
Parallel Quadratic Programming algorithm is derived as described in Algorithm 1.

Algorithm 1 Parallel Quadratic Programming (PQP)

1: seth = 0, z(h) = z̄ > 0.
2: repeat
3: for i = 1 : nz do
4: compute update

[z(h+1)]i =
[(H− + φ)z(h) + F−]i

[(H+ + φ)z(h) + F+]i
[z(h)]i, (9)

5: end for
6: h = h+ 1
7: until (termination condition)

In Algorithm 1 the initial value in Line 1 is an arbitrary strictly feasible value, i.e., any point in the positive
cone. The termination condition in Line 7 is discussed extensively later.

The PQP algorithm, originally proposed by [31], has some interesting properties. As for projected-gradient
methods, the update rule is completely parallelizable, with communications overhead determined by the bandwidth
of the HessianH. Significant speed-ups can be obtained on GPUs, multicore CPUs, and Single Instructions Multiple
Data (SIMD) architectures. In contrast to projected-gradient methods, the iteration itself maintains feasibility, hence
there is no need for a-posteriori projections onto the feasible set which may significantly reduce the solution
improvement obtained during the iteration. Finally, the convergence rate of the algorithm is linear.

Remark 2:For the PQP algorithm the dominant operation is a matrix-vector product, resulting in a complexity
of O(mz · p), wherep is the number of desired bits of precision andmz ≤ n2z is the number of nonzeros inH.
For parallel implementations the time complexity reduces to O(bz · p), wherebz ≤ nz is the bandwidth ofH. In
comparison, interior-point methods typically have complexity O(n3z · log(p)), the dominant operation being matrix
inversion/division. Thus, the PQP algorithm is attractivefor large scale sparse problems [31]. However, as it is
shown in this paper, it has also advantage for the size of problems that are typical of MPC applications.

Remark 3:Each iteration of the PQP update has been proven to reduce error by at least a constant fraction,
resulting in a linear rate of convergence [31] and superlinear convergence is often observed. While no formal proof
is yet available, in numerous tests the convergence rate coefficient appears to be proportional to the square root of
the Hessian condition number [29], similarly to fast-gradient methods [18].

DI CAIRANO, BRAND, BORTOFF 5

A. PQP algorithm convergence

The convergence of Algorithm 1 to the optimumz∗ of (3) can be guaranteed by a suitable choice of the matrix
φ ∈ R

nz×nz in (9). Consider a series expansion ofJ(z) aroundz ∈ R
nz ,

J(ξ) = J(z) + (ξ − z)′∇J(z) +
1

2
(ξ − z)′H(ξ − z). (10)

For z > 0, we define an auxiliary function by modifying the last term in(10),

G(ξ, z) = J(z) + (ξ − z)′∇J(z) +
1

2
(ξ − z)′K(z)(ξ − z), (11)

whereK(z) ∈ R
nz×nz is the diagonal matrix

K(z) = diag((H+ + φ)z + F+)diag(z)−1.

Clearly,G(z, z) = J(z). Next we prove that by properly choosingφ:
1) G upper-boundsJ , i.e, for all ξ ≥ 0, z > 0, G(ξ, z) ≥ J(ξ);
2) the multiplicative update (9) yieldsz(h+1) = argminξ G(ξ, z(h));
3) for any givenz(0) > 0, the sequence{z(h)}h obtained from (9) is such thatJ(z(h+1)) < J(z(h)), for all

h ∈ R0+;
4) the sequence{z(h)}h converges to the optimum of (3), i.e.,limh→∞ z(h) = z∗, andz∗ ≥ 0.
We first prove some technical lemmas.
Lemma 1:Let P ∈ R

nz×nz

0+ be a nonnegative real symmetric matrix with at least one nonzero element in each
row, ξ ∈ R

nz

+ . Let D ∈ R
nz×nz be a diagonal matrix with elements

[D]ii =
[Pξ]i
[ξ]i

, for i = 1, 2, · · · , nz . (12)

Then (D − P) ≥ 0 and (D + P) > 0.
Proof: Consider the matricesM1,M2 ∈ R

nz×nz ,

M1 = diag(ξ)(D + P)diag(ξ), M2 = diag(ξ)(D − P)diag(ξ).

Sinceξ > 0, diag(ξ) is invertible. Hence,D + P andD − P are congruent withM1 andM2, respectively, and
(D + P) > 0, (D − P) ≥ 0 if and only if M1 > 0 (M2 ≥ 0) [35]. For anyζ ∈ R

n
z , ζ 6= 0,

ζ ′M1ζ =

nz
∑

i,j=1

([D]ij + [P]ij)[ξ]i[ξ]j [ζ]i[ζ]j =

nz
∑

i,j=1

[D]ij [ξ]i[ξ]j [ζ]i[ζ]j +

nz
∑

i,j=1

[P]ij [ξ]i[ξ]j [ζ]i[ζ]j

=

nz
∑

i,j=1

[P]ij [ξ]i[ξ]j[ζ]
2
i +

nz
∑

i,j=1

[P]ij [ξ]i[ξ]j [ζ]i[ζ]j =
1

2

nz
∑

i,j=1

[P]ij [ξ]i[ξ]j([ζ]i + [ζ]j)
2 > 0

Thus,D + P is positive definite. Similarly,ζ ′M2ζ = 1
2

∑nz

i,j=1[P]ij [ξ]i[ξ]j([ζ]i − [ζ]j)
2 ≥ 0. Therefore,D − P is

positive semidefinite.
Lemma 2:For some non-negative matrixφ ∈ R

nz×nz

0+ that depends only onH, G(ξ, z) upper-boundsJ(ξ), i.e.,
for all ξ ≥ 0, z > 0, J(ξ) ≤ G(ξ, z).

Proof: We prove thatK(z) −H ≥ 0 from which it follows that

G(ξ, z) − J(ξ) = (ξ − z)′(K(z) −H)(ξ − z) ≥ 0, ∀ξ ≥ 0, ∀z > 0.

DefineH̄+ , H+ + φ, H̄− , H+ −H. We splitK(z) −H into the sum of two matrices,

K(z) −H = diag(H̄+z + F+)diag(z)−1 − (H̄+ − H̄−)

= (diag(H̄+z)diag(z)−1 − H̄+) + (diag(F+)diag(z)−1 + H̄−)

= Kpsd(z) +Knn(z)

whereKpsd(z) = diag(H̄+z)diag(z)−1 − H̄+ andKnn(z) = φ+ diag(F+)diag(z)−1 +H−. From Lemma 1 we
have thatKpsd(z) ≥ 0 for all z > 0. Then, we can chooseφ so thatKnn(z) ≥ 0, for all z > 0. For example,

DI CAIRANO, BRAND, BORTOFF 6

chooseφ to be a nonnegative diagonal matrix, i.e.,[φ]ii ≥ 0, and[φ]ij = 0 if i 6= j, where[φ]ii ≥ [H− · 1]i for all
i = Z[1,nz]. Then,H̄− is diagonally dominant and thus positive semidefinite, and hence alsoKnn andK(z) −H

are positive semidefinite.
In this paper we use the above definition forφ, i.e., [φ]ij = 0 if i 6= j, [φ]ii ≥ [H− · 1]i for all i, j = Z[1,nz].

However, all the proofs reported next do not depend on this specific choice.
Remark 4:For the considered choice ofφ, larger values of[φ]ii reduce the speed of convergence of Algorithm 1

by moving the gain in the multiplicative update (9) towards1. In many useful cases it can be shown that convergence
can be obtained for small values of[φ]ii, i = Z[1,nz]. In several cases, for instance whenH− is already diagonally
dominant, it is possible to set[φ]ii = 0 for all i = Z[1,nz].

Lemma 3:Given anyz > 0, ξ ∈ R
nz obtained by

[ξ]i =
[(H− + φ)z(h) + F−]i

[(H+ + φ)z(h) + F+]i
[z(h)]i, i ∈ Z[1,nz], (13)

is such thatξ > 0, and it yields the minimum ofG(ξ, z).
Proof: For any fixedz > 0, G(ξ, z) is quadratic and positive semidefinite inξ, hence it has global minimum

for ξ such that
∇ξG(ξ, z) = ∇J(z) +K(z)(ξ − z) = 0. (14)

Solving (14) forξ we recover (13) in matrix form,

ξ = z −K(z)−1∇J(z) = z −K(z)−1(Hz + F)

= z −K(z)−1((H+ + φ)z + F+) +K(z)−1((H− + φ)z + F−)

= z − z +K(z)−1((H− + φ)z + F−)

= diag(z)diag((H+ + φ)z + F+)−1((H− + φ)z + F−).

Sincez > 0 and the matrices in (13) are all nonnegative, it is straightforward thatξ ≥ 0.
Lemma 4:Given anyz(h) 6= z∗, if there existsi ∈ Z[1,nz] such that[z]i(h)((H

+ + φ)z(h) + F+)i 6= 0, the
objective function decreases with iteration (9), i.e.,

J(z(h+1)) ≤ G(z(h+1), z(h)) < G(z(h), z(h)) = J(z(h)). (15)

Proof: The first inequality in (15) follows from Lemma 2. Next, we prove the second inequality.G(z(h+1), z(h))
is convex inz(h+1) by construction, and strictly convex with respect to[z(h+1)]i, i ∈ Z[1,nz], such that[z(h)]i[(H

+z(h)+
F+]i 6= 0, because

∂2

∂[z(h+1)]
2
i

G(z(h+1), z(h)) = [K(z(h))]ii =
[(H+ + φ)z(h) + F+]i

[z(h)]i
> 0 .

Since[K(z(h))]ii > 0 andz(h) 6= z∗, [z(h+1)]i = [argminξ G(ξ, z(h))]i 6= [z(h)]i, because

[z(h+1)]i − [z(h)]i = −[K(z(h))
−1∇J(z(h))]i 6= 0. (16)

Thus,ξ = z(h) is not a minimizer ofG(ξ, z(h)), andG(z(h+1), z(h)) < G(z(h), z(h)).
Theorem 1:Let φ ∈ R

nz×nz

0+ be chosen to satisfy the assumptions of Lemma 2, and such that[H + φ]ii > 0,
for all i ∈ Z[1,nz]. Given any positivez0 > 0 the update (9) generates a sequence{z(h)}h such that the sequence
{J(z(h))}h converges to the optimum, i.e.,limh→∞ J(z(h)) = J∗, and

lim
h→∞

z(h) = z∗. (17)

Proof: Since [H + φ]ii > 0, for all i ∈ Z[1,nz], the assumptions of Lemma 4 are satisfied and monotonic
decrease of{J(z(h))}h is guaranteed. From (16) we know thatz is a stationary point if and only if

z ◦ ∇zJ(z) = 0.

According to (8), this is also the KKT optimality condition for (3) when∇(z) ≥ 0 andz ≥ 0. Next we show that
the update has no other fixpoints in the positive cone. Assuming z > 0 (possibly infinitesimally), a fixpoint requires

DI CAIRANO, BRAND, BORTOFF 7

∇J(z) = 0. Due to convexity ofJ(z), ∇J(z) = 0 only for z = z∗. Consequently any fixpoint of the update (9) is
a solution of (3). SinceJ(z) is lower bounded, the decreasing sequence{J(z(h))}h converges to the lower bound
J∗. Since the update is stationary only atz∗ whereJ(z∗) = J∗, z∗ = limh→∞ z(h). Thus,{J(z(h))}h converges to
the minimumJ(z∗) as{z(h)}h approaches the limitz∗.

Remark 5:Although all iterates remain in the positive cone, elementsof z that correspond to active constraints
(at optimum) in (3) are seen to rapidly (albeit asymptotically) decay to zero. These can be thresholded to zero and
the corresponding rows and columns ofH, F , z can be removed from subsequent iterations of the update. If the
QP is only weakly convex and therefore does not have a unique global optimum, the sequencez(h)h will converge
to an optimal point determined byφ.

B. PQP acceleration by line search

While classical optimization algorithms usually compute the solution update by performing two steps, a descent
direction selection, and a step size selection (also calledline search), Algorithm 1 performs the two actions at once
by (9). In fact, PQP may be interpreted as a dynamically scaled gradient method. In order to see this, consider the
PQP update (9), where for simplicityφ = 0, and sum and subtract from each component the denominator toobtain

[z(h+1)]i = [z(h)]i −
[z(h)]i

[H+z(h) + F+]i
[Hz(h) + F]i,

and hence
z(h+1) = z(h) − T (z(h))∇zJ(z).

The matrixT (z(h)) is diagonal matrix where

[T (z(h))]ii =
[z(h)]i

[H+z(h) + F+]i
, ∀i ∈ Z[1,nz],

thus it scales the gradient, or alternatively it preconditions the Hessian [36], such that the solution remains feasible.
The gradient scaling view reveals a weakness of the PQP fixpoint: progress toward the optimum can be slowed if
the numerator[z(h)]i is very close to zero but the optimal value of this variable[z∗]i is not. This can be remedied
by moving all such variables away from zero. The following lemma provides a locally optimal move that can be
computed in the same number of flops as the PQP iteration.

Lemma 5: Let thez(h) ∈ R
nz be a feasible solution for NNLS (3). The vectorz(h+1) ∈ R

nz obtained by

α(z(h)) =

{

−
∇zJ(z(h))′ph

p′

hHph
if p′hHph > 0

0 otherwise,
(18a)

z(h+1) = z(h) + α(z(h))ph, (18b)

where
ph = (∇zJ(z(h)))

−, (19)

is feasible (z(h+1) ∈ R
nz

0+) andJ(z(h+1)) ≤ J(z(h)).
Proof: The decrease directionph is the component of the (negative) gradient3 that points inside the feasible

cone. Thus, givenz(h) ≥ 0, for anyα ≥ 0, z(h+1) = z(h)+αph is such thatz(h+1) ∈ R
nz

0+, and hence it is a feasible
solution of (3). For the quadratic functionJ(z), (18a) selects the optimal step length [10] for direction (19). �

The update iteration in Lemma 5 selects the decrease direction in the subspace spanned by the non-negative
components of the anti-gradient. Thus, for any step length the value of each variable cannot decrease, and, since
it was nonnegative at steph, it is nonnegative at steph + 1, hence guaranteeing recursive feasibility. In general,
J(z(h+1)) < J((h)) wheneverph 6= 0 andα(z(h)) 6= 0. Whenα(z(h)) = 0, (18) does not have any effect.

By using (18) in combination with Algorithm 1, the accelerated PQP algorithm is obtained, as described in
Algorithm 2. The following theorem guarantees convergenceof the accelerated PQP algorithm.

3This is obtained by applying to the gradient the operator(·)−, which changes the sign to the negative components and set the positive
components to0.

DI CAIRANO, BRAND, BORTOFF 8

Algorithm 2 Line Search-accelerated PQP

1: seth = 0, z(h) = z̄ > 0.
2: repeat
3: if LS conditionthen
4: compute decrease direction and step length

ph = (∇zJ(z(h)))
−

α(z(h)) =

{

−
∇zJ(z(h))′ph

p′

hHph
if p′hHph > 0

0 otherwise

5: compute update
z(h+1) = z(h) + α(z(h))ph

6: else
7: for i = 1 : nz do
8: compute update

[z(h+1)]i =
[(H− + φ)z(h) + F−]i

[(H+ + φ)z(h) + F+]i
[z(h)]i

9: end for
10: end if
11: h = h+ 1
12: until (termination condition)

Theorem 2:Let z(h) for h = 0 be a feasible solution for the NNLS (3), and letφ be chosen such that Theorem 1
holds. Then, Algorithm 2 where the acceleration activationpolicy in Line 9 is any policy such that at least one
PQP iteration is executed between any two acceleration iterations converges asymptotically to the optimumz∗.

Proof: The proof is obtained in a similar manner to the stability proofs of switched systems, while noting
that z∗ is an equilibrium for (9) and for (18) and thatV(z) = J(z) − J∗ ≥ 0, with equality only at (an) optimal
solution, thus makingV similar to a Lyapunov function [37].

Algorithm 2 switches between PQP iteration and projection-free acceleration. Consider the sequence of iteration
indices{h}h∈Z0+

, and the subsequence of indices where the acceleration is performed,{hς}ς∈Z0+
. Let ‖z(h)−z

∗‖ >
0, possibly infinitesimally. Due to Theorem 1, for allς ∈ Z0+, J(h + 1) < J(h), for all h ∈ Z[hς+1,hς+1]. Also,
due to the properties of the projection-free accelerationJ(hς + 1) ≤ J(hς), for all ς ∈ Z0+. Due to the properties
guaranteed by the linear search activation condition (Line3), for all ς ∈ Z0+ we haveJ(hς+1) < J(hς), and
J(hς+1 + 1) < J(hς+1). Thus, whenever entering any of the two modes, the value fromthe previous time that
mode was entered has decreased. Convergence ofJ(z) to J∗ (i.e., toV(z) = 0) independently of the line search
activation policy used is thus straightforwardly obtainedas in [38] for the stability of switched systems. �

Theorem 2 guarantees convergence of Algorithm 2, for many choices of activation of line search (18). A simple
yet effective strategy is to perform a line search iterationeverynls ∈ Z(1,∞) PQP iterations. If the problem is only
weekly convex, the line search iteration should not be performed excessively often, because it may be expensive to
compute compared to the resulting speedup. In experimentaltestsnls ∈ Z[10,50] seems to provide the best results.
An alternative approach is based on comparing consecutive gradient directions while guaranteeing the condition in
Theorem 2. If these directions are almost aligned, the line search should be executed, since it may increase the
step size with respect to what the PQP iteration would provide.

III. C ONSTRAINED LINEAR MPC

Model predictive control [1] is an advanced technique for optimal control of constrained dynamical systems
that has found several applications in different domain from process control [2] to automotive [3], [17], from
aerospace [5], [6] to mechatronic systems [39], [40]. MPC selects the control input by computing the optimal
control sequence along a finite future horizon for the predicted system dynamics with respect to a user-defined
performance (cost) function and subject to constraints on system state, input, and output. Different classes of model

DI CAIRANO, BRAND, BORTOFF 9

predictive control have been developed, differentiated bythe properties of the system model, cost function and
constraints. In this paper we focus on linear-quadratic model predictive control for regulation and tracking, also
known simply as linear model predictive control.

Linear model predictive control is based on the linear prediction model

x(k + 1) = Ax(k) +Bu(k) (21a)

y(k) = Cx(k) +Du(k), (21b)

wherex ∈ R
n, u ∈ R

m, y ∈ R
p are the state, input, and output vectors subject to constraints

xmin ≤ x(k) ≤ xmax , (22a)

umin ≤ u(k) ≤ umax , (22b)

ymin ≤ y(k) ≤ ymax , (22c)

wherexmin, xmax ∈ R
n, umin, umax ∈ R

m, andymin, ymax ∈ R
p are the lower and upper bounds on the state, input,

and output vectors, respectively. At every control cyclek ∈ Z0+, model predictive control solves the finite horizon
optimal control problem

min
Ū(k)

‖x(N |k)‖2PM
+

N−1
∑

i=0

‖x(i|k)‖2QM
+ ‖u(i|k)‖2RM

(23a)

s.t. x(i+ 1|k) = Ax(i|k) +Bu(i|k) (23b)

y(i|k) = Cx(i|k) +Du(i|k) (23c)

xmin ≤ x(i|k) ≤ xmax, i ∈ Z[1,Nc] (23d)

umin ≤ u(i|k) ≤ umax, i ∈ Z[0,Ncu−1] (23e)

ymin ≤ y(i|k) ≤ ymax, i ∈ Z[1,Nc] (23f)

u(i|k) = Kfx(i|k), i ∈ Z[Nu,N−1] (23g)

x(0|k) = x(k), (23h)

whereQM ≥ 0, PM, RM > 0 are symmetric weight matrices of appropriate dimensions,N is the prediction horizon,
Nu ≤ N is the control horizon (the number of free control moves),Ncu ≤ N , Nc ≤ N are the input and output
constraint horizons along which constraints are enforced,and Ū(k) = [u′(0|k) . . . u′(N − 1|k)]′ ∈ R

Nm is the
vector to be optimized. The performance criterion is definedby (23a), and (23d)–(23f) enforce the constraints.
Equation (23g) defines the pre-assigned terminal controller whereKf ∈ R

m×n, so that the optimization vector
effectively isU(k) = [u′(0|k) . . . u′(Nu − 1|k)]′ ∈ R

Num.
Remark 6:Although the optimal control problem (23) does not explicitly mention a reference, tracking is

achieved by including in the state update equation (21a) thereference prediction dynamics

rr(k + 1) = Arrr(k),

and an additional output in (21b) representing the trackingerror

ye(k) = Cx(k)−Crrr(k),

which is then accounted for in the cost function (23a) as shown later in the case studies, see also [6], [17] for
practical cases.

At time k, the MPC problem (23) is initialized with the current state valuex(k) by (23h) and solved to obtain
the optimal sequencēU∗(k). Then, the inputu(k) = uMPC(k) = u∗(0|k) = [Im 0 . . . 0]Ū(k) is applied to the
system.

Given the current statex(k), problem (23) can be formulated as the quadratic program

min
U

Jp(U) =
1

2
U ′QpU + F ′

pU +
1

2
Mp (24a)

s.t. GpU ≤ Kp, (24b)

DI CAIRANO, BRAND, BORTOFF 10

whereU = U(k), Qp ∈ R
nu×nu , nu = Num, Qp > 0, andGp ∈ R

nq×nu , Fp ∈ R
nu , andMp are computed as

explained, for instance, in [41].
For numerical algorithms, termination conditions yielding appropriate approximations of the solution of (24) have

to be defined.
Definition 1: Consider problem (24). Given the non-negative 4-tupleε ∈ R

4
0+, ε = (εrJ εaJ εrc ε

a
c), we call an

ε-solution for problem (24) a vector̃U such that

GpŨ ≤ Kp +max{εrc |Kp|, ε
a
c} (25a)

J(Ũ)− J(U∗) ≤ max{εrJ |J(U
∗)|, εaJ} . (25b)

According to Definition 1 anε-solution is a vectorŨ such that the constraint violation and the duality gap are
ε-bounded in either relative (εrc , ε

r
J) or absolute (εac , ε

a
J) errors

A. PQP-based solution of MPC quadratic programs

The NNLS problem (3) is a subclass of the general (convex) QP (24) that needs to be solved to compute the
MPC command. While Algorithm 1 cannot be directly applied to(24), it can still be exploited to obtain a solution
of (24) through duality [9]. The dual problem of (24) is

min
z

Jd(Y) =
1

2
Y ′QdY + F ′

dY +
1

2
Md (26a)

s.t. Y ≥ 0 , (26b)

whereQd = GpQ
−1
p G′

p, Fd = (Kp +GpQ
−1
p Fp) andY ∈ R

nq , i.e., the number of variables in (26) is equal to the
number of constraints in (24). In (26),Md = F ′

pQ
−1
p Fp−Mp does not affect the optimal solution, but it affects the

value of the optimum, and it is included for the subsequent discussion. LetY ∗ be the (bounded) optimal solution
of (26). Then, the optimal solution of the primal QP (26) is

U∗ = ψd2p(Y
∗) = −Q−1

p (Fp +G′
pY

∗). (27)

The approach for solving the MPC finite-time optimal controlproblem through Algorithm 1 consists of the
following steps. At stepk, given the current statex(k):
(i) formulate (24);
(ii) construct (26);
(iii) solve (26) by Algorithm 2;
(iv) compute the solution of (24) by (27);
(v) apply the MPC commandu(k) = uMPC(k).
Solving the QP problem (24) via its dual (26) has the drawbackthat if in (24) there are more constraints than

variables (nz < ny), (26) has more variables than (24), andQd ≥ 0 (while Qp > 0). On the other hand, solving
the dual allows us to enforce termination conditions guaranteeing anε-solution according to Definition 1 by using
the duality gap.

Let Y(h), h ∈ Z0+ be a candidate solution of (26), a “candidate” primal solution U(h) is found by (27). Assume
U(h) andY(h) are primal and dual feasible, respectively, and let

Jp(U(h)) + Jd(Y(h)) ≤ εaJ . (28)

By duality, −Jd(Y(h)) ≤ Jp(U(h)), where equality holds at optimum if strong duality holds, e.g. by Slater’s
conditions, see [9]. Indeed,

−Jd(Y(h)) ≤ −Jd(Y
∗) ≤ Jp(U

∗) ≤ Jp(U(h)), (29)

and hence (28) impliesJp(U(h))− Jp(U
∗) ≤ εaJ .

Similarly, if the condition

Jp(U(h)) + Jd(Y(h))

−Jd(Y(h))
if −Jd(Y(h)) > 0, (30a)

Jp(U(h)) + Jd(Y(h))

−Jp(Y(h))
if Jp(U(h)) < 0, (30b)

DI CAIRANO, BRAND, BORTOFF 11

1 2 3 4 5 6 7 8 9 10
−600

−400

−200

0

200

1 2 3 4 5 6 7 8 9 10

0

200

400

600

800

h

h
J
p
,−

J
d

J
p
−

J
d

Fig. 1: Cost value throughout the iterations of Algorithm 2. Upper plot: Primal cost (solid), and dual cost (dash). Lower plot: Duality gap.

holds, (29) guarantees thatJp(U(h))− Jp(U
∗) ≤ εrJ |Jp(U

∗)|.
Remark 7:Condition (30) does not account for the case whereJp(U(h)) > 0 and Jd(Y(h)) < 0, which may

occur. However, for this to occur close to the optimum,Jp(U
∗) ≈ 0, and hence, due to themax operator in (25b),

the termination condition to be considered is the absolute error.
An example of the primal and dual cost throughout the iterations of Algorithm 1 is shown in Figure 1. Termination

conditions (28), (30) are valid only for solutions that are primal and dual feasible. While dual feasibility is guaranteed
by the PQP properties, primal feasibility ofU(h) has to be verified before checking (28), (30). By checking feasibility
according to (25) an error is induced in (25b), because onlyε-feasibility is verified. However, for reasonably small
values ofεac , εrc such error will be small, and it can be also accounted for in conditions (28), (30). Alternatively,
εac , εrc can be set to0.

IV. PQPMPC CONTROLLER DESIGN

As described in Section III-A, the application of PQP to the MPC problem (23) requires at every step the formu-
lation of the dual QP, its solution, and the calculation of the primal solution. The first step may be computationally
demanding due to the need to generate and perform I/O operations on possibly large matrices (hundreds of bytes).

However, the special structure of the QP problem formulatedfrom MPC can be exploited to perform part of the
calculations offline. From (23), the MPC controller is a static (nonlinear) state feedback. Thus, a control algorithm
implementing MPC needs only the state to generate the control input. In fact, the MPC problem (23) where the
current statex(k) = x is considered a parameter, can be written in parametric form[15], [42] as

min
U

1

2
U ′QpU + x′C ′

pU +
1

2
x′Ωpx (31a)

s.t. GpU ≤ Spx+Wp . (31b)

The dual problem of (31) is the parametric QP

min
U

1

2
Y ′QdY + x′S′

dY +W ′
dY +

1

2
x′Ωdx (32a)

s.t. Y ≥ 0 , (32b)

whereQd = GpQ
−1
P G′

p, Sd = (GpQ
−1
p Cp + Sp), Wd =Wp, Ωd = C ′

pQ
−1
p Cp − Ωp.

Furthermore, the primal optimal solution can be computed from the dual optimal solution via

U(Y ∗) = Ψd2p(x, Y
∗) = Γdx+ ΞdY

∗, (33)

DI CAIRANO, BRAND, BORTOFF 12

whereΞd = −Q−1
p G′

p, Γd = −Q−1
p Cp.

Thus, the matrices of the dual parametric problem (32) and the parametric expression (33) can be computed
beforehand. Givenx, the dual problem (26) is instantiated by substitutingx into (32). In order to account for the
termination conditions, by substituting (33) into (31b), avectorY ≥ 0 results in a primal feasible solution when

−Sdx−Wd −QdY ≤ 0. (34)

Thus, (25a) can be expressed as

−Sdx−Wd −QdY ≤ max{εrc(|Spx+Wd|), ε
a
c1}. (35)

Similarly, by substituting (33) into (31a), the primal solution cost is

Jp(Ψd2p(x, Y)) =
1

2
Y ′QdY −

1

2
x′Ωdx. (36)

SinceJp(U) ≥ 0 due to the MPC cost (23a), the termination condition (25b) isexpressed as

Y ′QdY + (x′Sd +W ′
d)Y ≤ max

{

εrJ
2
(Y ′QdY + 2(x′S′

d +W ′
d)Y + x′Ωdx), ε

a
J

}

,

where obviously the maximizations on the right hand side is equal to εaJ , whenJd(Y(h)) < 0. Thus, the relative
duality gap is ignored whenJd(Y(h)) < 0, because eitherJp(U(h)) < 0 and hence, due to (23a),U(h) cannot be
feasible, or it is the case whereJd(Y(h)) < 0, Jp(U(h)) > 0 and the relative duality gap should not be used.

Based on the above considerations, an MPC controller based on Algorithm 2 is synthesized and executed as
described in Algorithm 3.

Remark 8:Pre-computing and pre-storing in memory the matrices of theparametric primal and dual QP as done
in Algorithm 3 is fundamental for allowing the execution of the algorithm in low complexity embedded controllers
for at least three reasons. First, it reduces the number of computations during the controller execution, especially for
the cases when the dual problem matrices are used. Second, itreduces significantly the amount of I/O operations
(from several matrices to a single vector), which are slowerthan computations, and the amounts of operating system
calls, which are also time consuming. Third, it avoids entirely dynamic memory allocation, which is recommended
in real-time embedded controllers due to the non-determinism of the operating system calls and the consequent
complexity in guaranteeing real-time task execution [43].In fact, thanks to the simplicity of the operations in
Algorithm 3, the reduced I/O operations, and the absence of dynamic memory allocation, an operating system is
basically not needed to execute the controller proposed here.

V. CASE STUDIES

In this section we discuss the results in applying the Algorithm 2 and 3 to three benchmark case studies:
stabilization of a double integrator, control of pitch and angle of attack of a jet aircraft, and position control of a
DC-motor. The case studies are available in the free toolbox[44]. All the case studies results in small-to-medium
scale optimization problems, with less than100 (primal) variables, and less than400 constraints. While large
scale problems may arise in process control applications ofMPC, in applications with fast dynamics and low
computational platform such values are reasonable. In fact, in practical applications the sampling period is chosen
approximately one order of magnitude smaller than the system dominant time constant, and the MPC prediction
horizon is chosen to cover the system response time, and hence approximately4-25 sampling steps (i.e.,40%-250%
the dominant time constant). Thus, for1 to 4 control inputs, this results in up to100 optimization variables. Some
extremal cases where longer prediction horizons are neededmay arise when the system modes have large time
scale separation (due to the need of oversampling to ensure constraint satisfaction for the faster modes), which
however is not common in the applications that are the focus of this paper, namely, automotive, aerospace, and
factory automation [7].

A. QP solvers used in the case studies

In the case studies we simulate the system model in closed-loop with the model predictive controllers. The
simulations are executed in a MacBook-Pro with Intel i7 (quad-core) processor 2.8GHz, and 8GB RAM, in Matlab

DI CAIRANO, BRAND, BORTOFF 13

Algorithm 3 PQP-based Model Predictive Controller (PQPMPC)

1: OFFLINE:
2: Compute

Qp, Cp,Ωp, Gp,Wp

3: Compute and store in memory

Sp, Qd, Cd,Ωd,Wd, Sd, Ξd,Γd, Q
+
d + φ, Q−

d + φ

4: ONLINE:
k = 0

5: loop
6: setKp = Spx(k) +Wd, Fd = Sdx(k) +Wd, Md = x(k)′Ωdx(k), γd = Γdx(k)
7: initialize h = 0, Y(h) = Ȳ > 0.
8: repeat
9: if LS conditionthen

10:

ph = (∇Y Jd(Y(h)))
−

α(Y(h)) =

{

−
∇Y Jd(Y(h))′ph

p′

hQdph
if p′hQdph > 0

0 otherwise

Y(h+1) = Y(h) + α(Y(h))ph

11: else
12: for i = 1 : nd do
13:

[Y(h+1)]i =
[(Q−

d + φ)Y(h) + F−
d]i

[(Q+
d + φ)Y(h) + F+

d]i
[Y(h)]i,

14: end for
15: end if
16: h = h+ 1
17: until (35) and (37)
18: setu(k) =

[

Im 0 . . . 0
]

(γd + ΞdY)
19: k = k + 1
20: end loop

R2010b, executed in a single core of the processor by disabling multithreading. In order to assess the behavior of
the algorithms introduced in this paper, in the simulationswe use all the following QP solvers.

• PQP-M: Algorithm 2 for solving QP (24) implemented in MatlabM-code.
• PQPMEX: Algorithm 2 for solving QP (24) implemented in a C-coded mex function.
• PQPMPC: Algorithm 3 that synthesizes the MPC controller, implemented in a C-coded mex function.
• QPROG:QUADPROG routine of the Matlab Optimization Toolbox ver. 5.1 [45] implemented mainly in C-coded

mex functions and partly in M-code. Due to the problem size inthe case studies, which is consistent with
standard size of the MPC optimization problems in mechatronics applications such as automotive, aerospace
and factory automation, the medium scale algorithm is used,which is an active set method.

• DANTZ: Dantzig’s active set algorithm [46] implemented by aC-coded mex function. This method has also
been used in the Matlab MPC Toolbox [47] for several years4.

• NAG: Inertia-controlling active set method using Cholesky-factorization in the commercial NAG toolbox for
Matlab [48] implemented in a C-coded mex function.

4In recent versions of the toolbox, the QP algorithm is changed, mainly due to a different toolbox architecture.

DI CAIRANO, BRAND, BORTOFF 14

• GPAD-M: Accelerated dual projected gradient method [23] implemented in M-code5. GPAD is based on the
fast gradient method originally proposed in [19]. Similarly to PQP, and differently from [18], GPAD allows
for any type of primal QP constraints, because it solves the dual problem. Thus, it appears the best candidate
among the fast gradient methods to be compared with PQP. The termination conditions from [23] have been
relaxed to include also the relative errors on cost functionand constraints, according to Definition 1.

• QPOAS:qpOASES solver [14], which implements an active set method tailoredto MPC problems.
Note that PQP-M and GPAD-M are implemented in M-code and hence significantly slower than the other

solvers. However, including these results allows to assessthe behavior of PQP with respect to a type of fast
gradient algorithm. Also, from the relative performance ofPQP with respect to GPAD, additional conclusions can
be drawn as regards its behavior, by exploiting the comparison of C-coded implementation of GPAD-M with many
other solvers reported in [49].

All the algorithms receive the data of the primal QP problem (24), and the inverse of the Hessian matrix,Q−1
p .

PQP, PQPMEX, PQPMPC, and GPAD construct and solve the dual problem, and compute the solution of the
primal problem. When possible, the solvers have been set with the same numerical precision (εac , ε

a
J = 10−6,

εrc, ε
r
J = 10−4), and warm-starting techniques are not used in any algorithm. We report the time taken to execute

the main function of each solver as called from Matlab and runon a serial (single-core) processor, averaged for
each test on five runs. Note that a parallel implementation ofPQP would offer a speed-up approximately linear in
the number of cores/processors, especially when there is no-communication delay such as in GPU, multiprocessors,
and multicore architectures. In fact such a speed up is already visible for the M-coded implementation of PQP
when executed in Matlab with enabled multithreading, due tothe automated parallelization of core functions such
as vector sums and matrix-vector products.

Remark 9:By the results in the following test cases, we do not aim at claiming the superiority in terms of
execution speed of the approach proposed here. In fact, there are always problem instances where an algorithm
is outperformed by another one. By the following results we only aim at showing that the approaches proposed
here are capable of operating at rates with the same orders ofmagnitude as other well established and currently
proposed methods. This, together with the code simplicity,makes the algorithm proposed here very attractive for
several applications domains.

B. Stabilization of a constrained double integrator

In the first case study we consider a system modeling a double integrator with statexc ∈ R
2, input uc ∈ R,

outputyc ∈ R, and for which the dynamics are expressed in continuous timeas

ẋc(t) =

[

1 1
0 1

]

xc(t) +

[

0
1

]

uc(t), (38a)

yc(t) =
[

1 0
]

xc(t). (38b)

The double integrator (38) is subject to constraints on the inputs and on the “velocity” state

−1 ≤ uc(t) ≤ 1, (39a)

−1 ≤ [xc(t)]2. (39b)

The double integrator model (38) is sampled with periodTs = 1s to obtain the discrete-time model (21). The
objective is to drive the system state to the origin.

We design an MPC controller with prediction, constraint, and control horizonsN = Nc = Ncu = Nu = 4,
resulting in a parametric QP withnq = 12 constraints, andnu = 4 variables. The MPC cost function (23a) is
implemented with

QM =

[

1 0
0 0

]

, RM = 0.8,

5This algorithm was implemented by the authors of this paper,but it was shown to and discussed with the authors of [23] to verify its
correct implementation.

DI CAIRANO, BRAND, BORTOFF 15

0 10 20 30 40
−5

0

5

10

15

0 10 20 30 40
−2

0

2

[x
] 1
,[
x
] 2

u

t[s]

t[s]

Fig. 2: Trajectories for the double integrator case study. Upper plot: states (solid), constraint (dash). Lower plot: controlinputs (solid),
constraints (dash).

and the matrixPM and the terminal controllerKf in (23) are obtained by solving the discrete-time Riccati equation

PM = A′PMA−A′PMB(B′PMB +RM)−1B′PMA+QM , (40a)

Kf = −(B′PMB +RM)−1B′PMA . (40b)

We consider the initial statex(0) = [10 0]′ and we simulate the system in closed-loop with the MPC controller
for 40s. The state trajectory and the input profile are reported in Figure 2.

The average, minimum, and maximum computation time for solving the QP problem along a40s simulation are
reported in Table I. The solution time of the M-coded PQP has the same order of magnitude of QPROG, which

TABLE I: Computation time results for the double integrator case study.

Solver Avg[ms] Min[ms] Max[ms]

PQP-M: 1.086 0.323 5.097
GPAD-M: 1.750 0.207 9.440
QPROG: 1.597 1.349 2.380
QPACT: 0.450 0.356 0.629
QPOAS: 0.146 0.116 0.227

NAG: 0.614 0.355 0.839
PQPMEX: 0.065 0.038 0.135
PQPMPC: 0.031 0.013 0.104

exploits C-mex routines. The computation time of PQPMEX andof PQPMPC are well below1ms, and outperform
the other solvers.

Figure 3 shows the distribution of the computation time for PQPMEX (in red) and NAG (in blue). Note that the
largest computation time of PQPMEX is smaller than the smallest computation time of NAG.

DI CAIRANO, BRAND, BORTOFF 16

−5 −4.5 −4 −3.5 −3 −2.5 −2
0

2

4

6

8

10

12

14

16

18

log
10
(t)

Fig. 3: Distribution of the computation time for the double integrator case study for PQPMEX (red) and NAG (blue).

C. Control of pitch and angle of attack of an unstable jet aircraft

The second case study is the control of pitch and angle of attack of a jet aircraft [50]. The linearized continuous
time dynamics results in a model withxc ∈ R

4, uc ∈ R
2, yc ∈ R

2, and

ẋc(t) =

−0.015 −60.6 0 −32.2
−0.0001 −1.34 0.992 0
0.0002 43.2 −0.869 0
0 0 1.0 0

xc(t) +

−2.51 −13.1
−0.169 −0.251
−17.2 −1.58

0 0

uc(t), (41a)

yc(t) =

[

0 1 0 0
0 0 0 1

]

xc(t) , (41b)

whereyc models the angle of attack and the pitch angle, anduc models the elevator and flaperon angles. Model (41)
has one real stable pole, one real unstable pole and two lightly damped stable complex poles. The aircraft is subject
to the constraints

[

−0.5
−90

]

≤ yc(t) ≤

[

0.5
90

]

, (42a)
[

−25
−25

]

≤ uc(t) ≤

[

25
25

]

, (42b)

where all the angles are measured in degrees.
The objective of the controller is to track references for pitch and angle of attack. Thus model (41) is sampled

with periodTs = 0.05s, and augmented with a reference prediction model that assumes a constant reference,

rr(k + 1) = rr(k),

whererr ∈ R
2, and with an incremental formulation of the control input

v(k + 1) = v(k) + ∆v(k) = v(k) + u(k),

wherev ∈ R
2 is the vector of the elevator and flaperon angle commands andu ∈ R

2 is the vector of step-to-step
variation of such angles, thus resulting in prediction model (21), subject to constraints (22) that enforce (42).

DI CAIRANO, BRAND, BORTOFF 17

0 0.5 1 1.5 2

0

5

10

0 0.5 1 1.5 2

−20

0

20

y
,r

r
[d

eg
]

v
[d

eg
]

t[s]

t[s]

Fig. 4: Trajectories for the jet aircraft control case study. Upperplot: outputs (solid), references (dash), constraints (dot). Lower plot: control
inputs (solid), constraints (dash).

We design an MPC controller where the cost function is

JMPC =

N
∑

i=1

‖y(i|k) − rr(i|k)‖
2
Qy

+ ‖∆v(i|k)‖2Rv
,

whereQy = [10 0
0 10] andRv = [0.01 0

0 0.01], which is then formulated as (23a). The prediction, constraints, and control
horizons are set equal toN = Nc = Ncu = Nu = 6, resulting in a parametric QP (31) withnq = 48 constraints,
andnu = 12 variables.

TABLE II: Computation time results for the jet aircraft control case study.

Solver Avg[ms] Min[ms] Max[ms]

PQP-M: 19.168 0.297 51.778
GPAD-M: 174.898 0.230 398.593
QPROG: 4.146 1.545 8.591
DANTZ: 0.661 0.483 1.063
QPOAS: 0.663 0.496 1.033

NAG: 0.791 0.388 1.584
PQPMEX: 0.890 0.103 1.593
PQPMPC: 0.452 0.049 0.986

The output and reference trajectories and the input profile for a 2s simulation wherex(0) = [0 0 0 0]′ and
rr = [10 0]′ are shown in Figure 4, where one can see that during most of thesimulation, several constraints
are active. The average, minimum, and maximum computation time for solving the QPs along the simulation are
reported in Table II.

The PQPMEX solver is slightly slower than other algorithms,but the PQPMPC controller is faster, due to moving
offline several matrix calculations thus reducing the dataflows and avoiding dynamic memory allocation. Still it is
worth noting that the PQP algorithms are much simpler than the ones they are compared with, even though the
PQP code is not optimized. The variability between minimum and maximum computation time is due to the cases
where the constraints are not active, versus the ones where many constraints are active. In the former ones, PQP

DI CAIRANO, BRAND, BORTOFF 18

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1
0

5

10

15

20

25

log
10
(t)

Fig. 5: Distribution of the computation time for the jet aircraft control case study for PQPMPC (red) and DANTZ (blue).

converges extremely fast to the solution. The distributionof the computation time of the PQPMPC controller (red)
and DANTZ (blue) is shown in Figure 5, where one can see that the computation time for PQPMPC is distributed
in two areas. The one with smaller time value is due to few or noactive constraints, and the one at larger time
value is due to many active constraints. In any case, the largest computation time of PQPMPC is slightly smaller
than the largest computation time of the other solvers.

D. DC-motor position control

The third case study is the angular position control of a loadconnected by a flexible shaft to a voltage actuated
DC motor [51]. The states are the load angle and angular rate,and the motor angle and angular rate, the control
input is the motor voltage, and the outputs are the load angleand the torque acting on the flexible shaft. The model
for the system is

ẋc(t) =

0 1 0 0

− kl

Jl
− βl

Jl

kl

gJl
0

0 0 0 1
kl

gJm
0 − kl

g2Jm
−βm+R−1

A K2
m

Jm

xc(t)

0
0
0

Km

RAJm

uc(t) (43a)

yc(t) =

[

1 0 0 0

kl 0 −kl

g
0

]

xc(t) (43b)

wherexc ∈ R
4 is the state vector,uc ∈ R is the input vector, andyc ∈ R

2 is the output vector. In (43)RA[Ω]
is the armature resistance,Km[Nm/A] is the motor constant,Jl[kgm2], βl[Nms/rad],kl[Nm/rad], are the inertia,
friction and stiffness of load and flexible shaft,Jm[kgm2], βm[Nms/rad], are the inertia and friction of the motor,
and g is the gear ratio between motor and load. The numerical values used in the simulations areRA = 10Ω,
Km = 10Nm/A, Jl = 25kgm2, βl = 25Nms/rad,kl = 1.28 · 103Nm/rad,Jm = 0.5kgm2, βm = 0.1Nms/rad. The
system is subject to constraints on motor voltage and shaft torque

−78.5 ≤ [yc(t)]2 ≤ 78.5, (44a)

−220 ≤ uc(t) ≤ 220. (44b)

The control objective is to track a time varying load angle position reference signalrl(t), and the prediction

DI CAIRANO, BRAND, BORTOFF 19

0 5 10 15 20
−5

0

5

0 5 10 15 20
−100

0

100

0 5 10 15 20
−200

0

200

[y
] 1
,r

l[
d

eg
]

[y
] 2

[N
m

]
v
[V

]

t[s]

t[s]

t[s]

Fig. 6: Trajectories in the DC-motor control simulation for reference withar = 2.5. Upper plot: load angle (solid), reference (dash). Middle
plot: shaft torque (solid), constraints (dash). Lower plot: control inputs (solid), constraints (dash).

model is obtained by sampling (43) with periodTs = 0.1s, and augmenting the model with a constant reference
prediction model and with an incremental input formulationas for the case study in Section V-C. The cost function
is

JMPC =

N
∑

i=1

‖[y(i|k)]1 − rl(i|k)‖
2
Qy

+ ‖∆v(i|k)‖2Rv
,

whereQy = 103 andRv = 0.05, prediction, constraints, and control horizons areN = 20, Nc = Ncu = Nu = 4,
andKf = 0 in (23g), resulting in a parametric QP withnq = 16 constraints, andnu = 4 variables. In the subsequent
simulations, we consider initial statex(0) = [0 0 0 0]′ and referencerl(t) = ar sin(0.5t), wherear > 0 changes in
the different simulations.

The trajectories for reference and output and the input profile for a simulation of20s from initial state where
ar = 2.5 are reported in Figure 6 that shows that only voltage constraints are active. The computation time is

TABLE III: Computation time results for the DC-motor case study for reference withar = 2.5.

Solver Avg[ms] Min[ms] Max[ms]

PQP-M: 0.588 0.304 2.264
GPAD-M: 3.450 0.252 18.733
QPROG: 1.545 1.348 2.557
QPACT: 0.454 0.321 0.920
QPOAS: 0.210 0.155 0.376

NAG: 0.610 0.410 1.115
PQPMEX: 0.068 0.041 0.154
PQPMPC: 0.022 0.018 0.049

reported in Table III.
Next, we simulate the trajectory obtained for an aggressivereference signal wherear = 4.0. The obtained

trajectory and control input profile are reported in Figure 7, where one can see that both voltage and torque

DI CAIRANO, BRAND, BORTOFF 20

0 5 10 15 20
−5

0

5

0 5 10 15 20
−100

0

100

0 5 10 15 20
−200

0

200

[y
] 1
,r

l[
d

eg
]

[y
] 2

[N
m

]
v
[V

]

t[s]

t[s]

t[s]

Fig. 7: Trajectories in the DC-motor control simulation for reference withar = 4.0. Upper plot: load angle (solid), reference (dash). Middle
plot: shaft torque (solid), constraints (dash). Lower plot: control inputs (solid), constraints (dash).

constraints are active. The system response is dominated bythe active constraints, so that the position is not
achieving the reference profile. The computation time for this case is reported in Table IV, and the comparison
between the PQPMPC computation time distribution for the cases wherear = 2.5 (blue) andar = 4.0 (red) is
reported in Figure 8. The results show that PQP usually needsmore time when (many) constraints are active in

TABLE IV: Computation time results for the DC-motor case study for reference withar = 4.0.

Solver Avg[ms] Min[ms] Max[ms]

PQP-M: 2.037 0.305 5.819
GPAD-M: 20.596 0.246 38.820
QPROG: 2.139 1.344 11.121
QPACT: 0.534 0.364 0.721
QPOAS: 0.190 0.114 0.371

NAG: 0.516 0.267 0.955
PQPMEX: 0.113 0.042 0.242
PQPMPC: 0.062 0.028 0.107

the QP (24), that is when many dual variables in (26) are non-zero. This is the opposite of solvers such as NAG,
which are most effective when many constraints are active [48]. The behavior of PQP can certainly be influenced
by appropriate initialization, but such warm-starting techniques are not used here.

The impact of the acceleration technique described in Section II-B executed once every20 PQP iterations is
shown in Figure 9 in terms of number of iterations executed inthe algorithm. The acceleration is particularly
effective in reducing the high peaks in number of iterations, and hence the optimization of the acceleration strategy,
which is currently being studied, may lead to an effective reduction of the variance in the computation time.

For this case study we evaluate how the computation time changes while increasing the problem size. We
select the “aggressive” reference signal (ar = 4), and we compare the computation time results of PQPMPC and
NAG, for the case in Table IV, and for the cases whereN = 30, Nc = Ncu = Nu = 10, whereN = 40,

DI CAIRANO, BRAND, BORTOFF 21

−5 −4.8 −4.6 −4.4 −4.2 −4 −3.8 −3.6 −3.4 −3.2 −3
0

20

40

60

80

100

120

140

log
10
(t)

Fig. 8: Distribution of the computation time of PQPMPC in DC-motor control simulations for references withar = 2.5 (blue) andar = 4.0
(red).

0 20 40 60 80 100 120 140 160 180 200
10

0

10
1

10
2

10
3

10
4

k

#
it
er

Fig. 9: Effect of the acceleration technique on the DC-motor control case study for reference withar = 4.0. Number of iterations without
acceleration (dash) and with acceleration (solid) every20 PQP iterations.

Nc = Ncu = Nu = 20, whereN = 80, Nc = Ncu = Nu = 40, and whereN = 160, Nc = Ncu = Nu = 80.
Due to the many active constraints, the inertia-controlling algorithm in the NAG solver is particularly effective

DI CAIRANO, BRAND, BORTOFF 22

TABLE V: Computation time results for different problem sizes for PQPMPC and NAG solver for the DC motor case study.

Solver Avg[ms] Min[ms] Max[ms]

NAG-04: 0.516 0.267 1.153
NAG-10: 0.693 0.328 2.023
NAG-20: 1.306 0.520 4.840
NAG-40: 6.237 1.538 20.233
NAG-80: 28.847 3.318 348.110

PQPMPC-04: 0.062 0.028 1.933
PQPMPC-10: 0.302 0.044 1.063
PQPMPC-20: 1.019 0.117 3.190
PQPMPC-40: 3.494 0.384 7.917
PQPMPC-80: 7.301 5.478 12.237

for this case, and in fact its computation time varies less throughout the different cases. However, the PQPMPC
algorithm tends to always execute slightly faster, partly due to computing offline part of the QP matrices. It shall
also be remarked that PQPMPC is significantly simpler than the NAG algorithm and it can obtain clear benefits
from (massive) parallelization.

E. Memory occupancy and code complexity

For the three case studies presented so far we have mainly discussed the computing time of PQP algorithms when
compared to other established and developing algorithms. These comparisons have to be considered as indicative,
because in many cases small optimizations in the code and in the options may drastically change the performance.
However, those are known only to the developers or to extremely experienced users of the algorithm. We suggest that
these results are to be read as indicating that the algorithms proposed here can execute at the same time scales of the
algorithms used for comparison. In fact, for applications with fast dynamics and limited computational resources,
such as automotive, aerospace, and factory automation, themost appealing qualities of the PQP algorithms are the
simplicity and the memory occupancy. The simplicity of PQP,which is evident from Algorithms 1–3, results in a
code that has very small memory occupancy, and that is simpleto validate and certify. Code certification before
its application to real products is a complex and time consuming step. An algorithm with few lines of code may
be certified in some weeks, while complex algorithms may require years of testing and validation before being
certified. The simplicity of the code is an element shared also by other iterative algorithms, such as the fast gradient
algorithm in [18], [23], and in fact the importance of code simplicity for solver certification was highlighted in [23].

As regards memory, too often memory occupancy is ignored when discussing numerical control algorithms. In
applications such as automotive [7], [8], [52], the memory requirements are actually several orders of magnitude
more stringent than the chronometrics requirements. For instance, automotive control units running several tens of
control loops and significant amount of control logics may have only in the order of a megabyte of memory for
code and data, for all the controllers and logics. Due to the simplicity of the code, the PQPMEX function code
requires less than30kB memory, including the Matlab interfaces, as opposed to the more than300kB of qpOASES.
Also, for the PQPMPC controller, the memory occupancy of code and data can be precisely evaluated, since all
the matrices are pre-allocated. For all the PQPMPC controllers but the last three cases in Table V, the memory
occupancy for code and data was less than50kB. For the largest case in Table V with dense matrices, the memory
occupancy of the PQPMPC controller reached almost1MB, with only less than30kB due to the code. In fact,
memory occupancy is one of the reasons that limit the number of variables and constraints of MPC problems for
the application domains mentioned above.

VI. CONCLUSIONS

In this paper we have introduced an algorithm for the solution of non-negative least squares problems and we have
shown how the base algorithm can be accelerated using a projection-free line search. The algorithm is extremely
simple, offers a linear convergence rate, does not require a-posteriori projection, and is easily parallelizable. We

DI CAIRANO, BRAND, BORTOFF 23

have discussed how the algorithm can be applied to the quadratic program formulated for linear MPC, and how
it can be equipped with termination conditions that guarantee the desired degree of suboptimality. Finally, we
have shown how the online computations can be reduced by to pre-computing and pre-allocating most of the data,
thus reducing the computation time. The algorithm has been compared with some available free and commercial
solvers in three classical case studies for linear MPC, showing interesting performance in terms of computation
time and memory occupancy. Future work will involve optimizing the acceleration strategy, defining warm-start
and termination strategies that are specific MPC, and deriving a bound on the number of iterations.

ACKNOWLEDGEMENTS

The authors acknowledge Prof. A.V. Knyazev, Univ. Colorado, Denver and MERL, for useful insight in inter-
preting PQP as a variable-preconditioned iterative algorithm, Dr. P. Patrinos, IMT Lucca, for useful insights in the
implementation of the GPAD algorithm, and several colleagues and interns at MERL for testing the implementation
of PQP algorithms and providing useful data and comments.

REFERENCES

[1] J. Rawlings and D. Mayne,Model predictive control: Theory and design. Madison, WI: Nob Hill Publishing, LLC, 2009.
[2] S. Qin and T. Badgwell, “A survey of industrial model predictive control technology,”Control Engineering Practice, vol. 93, no. 316,

pp. 733–764, 2003.
[3] S. Di Cairano, D. Yanakiev, A. Bemporad, I. Kolmanovsky,and D. Hrovat, “Model predictive idle speed control: Design, analysis, and

experimental evaluation,”IEEE Tr. Contr. Sys. Technology, vol. 20, no. 1, pp. 84 –97, 2012.
[4] T. Fan and C. De Silva, “Dynamic modelling and model predictive control of flexible-link manipulators,”Int. Jour. Robotics and

Automation, vol. 23, no. 6, pp. 227–234, 2008.
[5] E. Hartley, J. Jerez, A. Suardi, J. Maciejowski, E. Kerrigan, and G. Constantinides, “Predictive control of a boeing747 aircraft using

an fpga,” inProc. 4th IFAC Nonlinear Model Predictive Control Conference, Noordwijkerhout, The Netherlands, 2012, pp. 80–85.
[6] S. Di Cairano, H. Park, and I. Kolmanovsky, “Model predictive control approach for guidance of spacecraft rendezvous and proximity

maneuvering,”Int. J. Rob. Nonlinear Control, 2012, special Issue dedicated to Prof. David W. Clarke. In press.
[7] S. Di Cairano, “An industry perspective on MPC in large volumes applications: Potential Benefits and Open Challenges,” in Proc. 4th

IFAC Nonlinear Model Predictive Control Conference, Noordwijkerhout, The Netherlands, 2012, pp. 52–59.
[8] D. Hrovat, S. Di Cairano, H. Tseng, and I. Kolmanovsky, “The development of model predictive control in automotive industry: A

survey,” in IEEE Int. Conf. Control Applications, Dubrovnik, Croatia, 2012, pp. 295–302.
[9] S. Boyd and L. Vandenberghe,Convex optimization. Cambridge University Press, 2004.

[10] J. Nocedal and S. Wright,Numerical optimization. Springer verlag, 1999.
[11] C. V. Rao, S. J. Wright, and J. B. Rawlings, “Applicationof interior-point methods to model predictive control,”J. optimization theory

and applications, vol. 99, no. 3, pp. 723–757, 1998.
[12] Y. Wang and S. Boyd, “Fast model predictive control using online optimization,”IEEE Tr. Contr. Sys. Technology, vol. 18, no. 2, pp.

267–278, 2010.
[13] J. Mattingley and S. Boyd, “CVXGEN: a code generator forembedded convex optimization,”Optimization and Engineering, pp. 1–27,

2012.
[14] H. Ferreau, H. Bock, and M. Diehl, “An online active set strategy to overcome the limitations of explicit MPC,”Int. J. Rob. Nonlinear

Control, vol. 18, no. 8, pp. 816–830, 2008.
[15] A. Bemporad, M. Morari, V. Dua, and E. Pistikopoulos, “The Explicit Linear Quadratic Regulator for Constrained Systems,”Automatica,

vol. 38, no. 1, pp. 3–20, 2002.
[16] G. Stewart and F. Borrelli, “A Model Predictive ControlFramework for Industrial Turbodiesel Engine Control,” inProc. 47th IEEE

Conf. on Dec. and Control, Cancun, Mexico, Dec 2008, pp. 5704–5711.
[17] S. Di Cairano, H. Tseng, D. Bernardini, and A. Bemporad,“Vehicle yaw stability control by coordinated active frontsteering and

differential braking in the tire sideslip angles domain,”IEEE Tr. Contr. Sys. Technology, pp. 1–13, 2012, in press.
[18] S. Richter, C. Jones, and M. Morari, “Real-time input-constrained mpc using fast gradient methods,” inProc. 48th IEEE Conf. on Dec.

and Control, Shangai, China, 2009, pp. 7387–7393.
[19] Y. Nesterov, “A method of solving a convex programming problem with convergence rateo(1/k2),” Soviet Mathematics Doklady,

vol. 27, no. 2, pp. 372–376, 1983.
[20] P. Tseng, “On accelerated proximal gradient methods for convex-concave optimization,” University of Washingthon, Dept. Mathematics,

Tech. Rep., 2008.
[21] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,”SIAM J. Imaging Sciences,

vol. 2, no. 1, pp. 183–202, 2009.
[22] S. Richter, M. Morari, and C. Jones, “Towards computational complexity certification for constrained mpc based on lagrange relaxation

and the fast gradient method,” inProc. 50th IEEE Conf. on Dec. and Control, Orlando,FL, 2011, pp. 5223–5229.
[23] A. Bemporad and P. Patrinos, “Simple and certifiable quadratic programming algorithms for embedded control,” inProc. 4th IFAC

Nonlinear Model Predictive Control Conference, Noordwijkerhout, The Netherlands, 2012.
[24] M. Kögel and R. Findeisen, “A fast gradient method for embedded linear predictive control,” inProc. IFAC World Congress, Milan,

Italy, 2011, pp. 1362–1367.

DI CAIRANO, BRAND, BORTOFF 24

[25] I. Necoara and J. Suykens, “Application of a smoothing technique to decomposition in convex optimization,”IEEE Tr. Automatic
Control, vol. 53, no. 11, pp. 2674–2679, 2008.

[26] P. Giselsson, “Execution time certification for gradient-based optimization in model predictive control,” inProc. 51st IEEE Conf. on
Dec. and Control, Maui, HI, 2012, pp. 3165–3170.

[27] D. P. Bertsekas, “Projected newton methods for optimization problems with simple constraints,”SIAM J. Control and Optimization,
vol. 20, no. 2, pp. 221–246, 1982.

[28] M. Brand, V. Shilpiekandula, C. Yao, S. Bortoff, T. Nishiyama, S. Yoshikawa, and T. Iwasaki, “A parallel quadratic programming
algorithm for model predictive control,” inProc. IFAC World Congress, Milan, Italy, 2011.

[29] S. Di Cairano and M. Brand, “On a multiplicative update dual optimization algorithm for constrained linear mpc,” 2013, submitted.
[30] F. Sha, Y. Lin, L. K. Saul, and D. D. Lee, “Multiplicativeupdates for nonnegative quadratic programming,”Neural Computation,

vol. 19, no. 8, pp. 2004–2031, 2007.
[31] M. Brand and D. Chen, “Parallel quadratic programming for image processing,” inProc. 18th IEEE Int. Conf. Image Processing, 2011,

pp. 2261–2264.
[32] R. Myers,Classical and modern regression with applications. Duxbury Press Belmont, CA, 1990.
[33] G. C. Goodwin, M. M. Seron, and J. A. De Doná,Constrained Control and Estimation: And Optimization Approach. London, UK:

Springer, 2005.
[34] K. G. Murty, Linear complementarity, linear and nonlinear programming. Berlin, Germany: Heldermann, 1988.
[35] R. Horn and C. Johnson,Matrix Analysis. Cambridge University Press, 1990.
[36] A. V. Knyazev, “Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method,”

SIAM Jour. scientific computing, vol. 23, no. 2, pp. 517–541, 2001.
[37] H. Khalil, Nonlinear systems. Prentice hall, New Jersey, 1996.
[38] D. Liberzon and A. Morse, “Basic problems in stability and design of switched systems,”Control Systems Magazine, vol. 19, no. 5,

pp. 59–70, 1999.
[39] S. Di Cairano, A. Bemporad, I. Kolmanovsky, and D. Hrovat, “Model predictive control of magnetically actuated massspring dampers

for automotive applications,”Int. J. Control, vol. 80, no. 11, pp. 1701–1716, 2007.
[40] A. Grancharova and T. Johansen, “Explicit model predictive control of an electropneumtaic clutch actuator using on/off valves and

pulsewidth modulation,” inProc. European Control Conf., Budapest, Hungary, 2009, pp. 4278–4283.
[41] J. Maciejowski,Predictive control with constraints. Englewood Cliffs, NJ: Prentice Hall., 2002.
[42] S. Di Cairano and A. Bemporad, “Model predictive control tuning by controller matching,”IEEE Tr. Automatic Control, vol. 55, no. 1,

pp. 185–190, 2010.
[43] G. C. Buttazzo,Hard real-time computing systems: predictable schedulingalgorithms and applications. New York, NY: Springer,

2011, vol. 24.
[44] A. Bemporad,Hybrid Toolbox – User’s Guide, Dec. 2003.
[45] The Mathworks Inc.,Matlab Optimization Toolbox, Natick, MA, 2011, http://www.mathworks.com.
[46] N. Ricker, “Use of quadratic programming for constrained internal model control,”Ind. Eng. Chem. Process Design Devel., vol. 24,

no. 4, pp. 925–936, 1985.
[47] A. Bemporad, M. Morari, and N. L. Ricker,Model Predictive Control Toolbox User’s Guide v.3. Mathworks Inc., 2008.
[48] NAG Ltd.,e04nf, E04 Minimizing or Maximizing a Function,in NAG Toolbox for MATLAB, Oxford, U.K., 2011, http://www.nag.co.uk.
[49] P. Patrinos and A. Bemporad, “An accelerated dual gradient-projection algorithm for linear model predictive control,” in Proc. 51st

IEEE Conf. on Dec. and Control, Maui, HI, 2012, pp. 662–667.
[50] P. Kapasouris, M. Athans, and G. Stein, “Robust vehiclestability controller based on multiple sliding mode control,” in Proc. 1st IFAC

Symp. Nonlin. Control Design. New York: Pergamon, 1990, pp. 302–307.
[51] A. Bemporad and E. Mosca, “Fulfilling hard constraints in uncertain linear systems by reference managing,”Automatica, vol. 34, no. 4,

pp. 451–461, 1998.
[52] S. Di Cairano, W. Liang, I. Kolmanovsky, M. Kuang, and A.Phillips, “Engine power smoothing energy management strategy for a

series hybrid electric vehicle,” inProc. of the American Control Conference, San Francisco, CA, 2011, pp. 2101–2106.

	Title Page
	Title Page
	page 2

	Projection-free Parallel Quadratic Programming for Linear Model Predictive Control
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24

