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Abstract

Non-negative data arise in a variety of important signal processing domains, such as power spec-
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derived and experiments on speech enhancement were conducted by training sparse non-negative
dynamical systems on speech data and adapting a noise model to the unknown noise condition.
Results show that the model can capture the dynamics of speech in a useful way.
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ABSTRACT

Non-negative data arise in a variety of important signal processing
domains, such as power spectra of signals, pixels in images, and
count data. This paper introduces a novel non-negative dynamical
system (NDS) for sequences of such data, and describes its applica-
tion to modeling speech and audio power spectra. The NDS model
can be interpreted both as an adaptation of linear dynamical systems
(LDS) to non-negative data, and as an extension of non-negative ma-
trix factorization (NMF) to support Markovian dynamics. Learning
and inference algorithms were derived and experiments on speech
enhancement were conducted by training sparse non-negative dy-
namical systems on speech data and adapting a noise model to the
unknown noise condition. Results show that the model can capture
the dynamics of speech in a useful way.

Index Terms— non-negative dynamical system (NDS), linear
dynamical system (LDS), multiplicative innovations, non-negative
matrix factorization (NMF), source separation.

1. INTRODUCTION

Non-negative sequences arise in a variety of important signal pro-
cessing domains, such as power spectra of signals, pixels in images,
and sequences of count data. This paper introduces a novel dynam-
ical system for non-negative data, and describes its application to
speech and audio modeling.

This work bridges two active fields, dynamical systems and non-
negative matrix factorization (NMF). Dynamical systems are a long-
standing area of research with applications in many scientific fields.
A large body of literature is devoted to the case of linear dynamical
systems (LDS), which describes an observed sequence vn ∈ RF ,
indexed by n ∈ [1, ..., N ], via latent variables hn ∈ RK , according
to the equations:

hn = Ahn−1 + ξn, (1)
vn = Whn + εn, (2)

where A and W are matrices of dimensions K × K and F × K,
respectively, and ξn and εn are independent, additive, and typically
Gaussian random variables. (1) describes the dynamics of the state
variable hn and (2) describes the observation model. A, W , ξn and
εn are referred to as state-transition matrix, dictionary, state inno-
vation and data innovation, respectively. The LDS model does not
naturally apply to the case where hn and vn are non-negative. This
paper develops an analogous model for the non-negative domain.

NMF, in contrast, focuses on the case of non-negative data, and
has attracted a lot of attention in signal processing and machine
learning communities since the publication of the seminal paper [1].

∗The research presented in this paper was conducted while C. Févotte was
a visiting scientist at MERL over Summer 2012.

In the general case, NMF is the problem of finding an approxima-
tion of the form V ≈ WH where V and H are non-negative ma-
trices. This approximation is generally obtained by minimizing a
cost functionD(V |WH) that measures the dissimilarity between V
andWH . Some variants of NMF make additional structure assump-
tions on either W or H , in the form of regularization terms added
to the cost function, that favor properties such as sparsity or smooth-
ness. In some settings, the columns of V form a sequence v1 . . . vN ,
and may exhibit evolving dynamics, in the sense of statistical de-
pendencies between elements in the sequence. Standard forms of
NMF, which model each element of the sequence independently, as
vn ≈ Whn, will fail to capture such dynamics. From this perspec-
tive our work brings probabilistic dynamics to NMF, comparable to
that of the traditional linear dynamical system.

The discrete-state Hidden Markov Model (HMM) is another dy-
namical system that has been commonly used to handle dynamics
of speech, for example in automatic speech recognition as well as in
speech separation [2]. In this setting, the speech features are usu-
ally taken to be cepstral coefficients or other log-spectrum-based
features. However, HMMs lead to combinatorial complexity due
to the discrete state space, especially in the co-occurrence of several
speakers. Because of the discreteness of the state-space and the state-
conditional independence of adjacent frames, HMMs also famously
do not easily handle gain adaptation and continuity over time. In
contrast, standard NMF solves both the computational cost (of lin-
ear complexity per iteration) and gain adaptation problems (through
H), but it does not handle continuous dynamics. By bringing contin-
uous dynamics to an NMF-like formulation, we hope to obtain the
best of both worlds.

The proposed non-negative dynamical system (NDS) model is
given by

hn = Ahn−1 ◦ ξn, (3)
vn = Whn ◦ εn, (4)

where all variables are non-negative with the same dimensions as
above, and ‘◦’ denotes element-wise multiplication. The multi-
plicative innovations ξn and εn are non-negative random variables.
The observation model (4) operates similarly to standard NMF,
whereas the latent dynamics (3) capture statistical dependency be-
tween frames similarly to LDS.

In Section 2, we complete the presentation of the proposed
model (3)-(4) with additional statistical assumptions. In Section 3,
we present a majorization-minimization (MM) algorithm for maxi-
mum a posteriori (MAP) estimation of W,H,A given V . Section 4
discusses how the proposed NDS applies to the modeling of speech
spectra and reports speech enhancement results.



2. MODEL

2.1. Statistical assumptions

We assume the state and data innovations to be independent and
identically distributed (i.i.d), spatially independent and Gamma
distributed, such that p(ξ1, . . . , ξN ) =

∏
k,nG(ξkn|αk, βk) and

p(ε1, . . . , εN ) =
∏
f,nG(εfn|νf , δf ), where αk, βk, νf and δf are

positive scalars and G refers to the Gamma distribution, with prob-
ability density function (pdf) G(x|α, β) = βα/Γ(α) xα−1e−βx.
It follows that vn and hn are conditionally Gamma distributed,
such that p(hn|Ahn−1) =

∏
kG(hkn|αk, βk/

∑
j akjhj(n−1))

and p(vn|Whn) =
∏
f G(vfn|νf , δf/

∑
k wfkhkn). The former

holds for n > 1 only and we assume independent scale-invariant
Jeffreys prior for n = 1, i.e., p(hk1) ∝ 1/hk1. The expectation of
the state variables and data under the model are

E (hkn|Ahn−1) =
αk
βk

∑
j

akjhj(n−1), (5)

E (vfn|Whn) =
νf
δf

∑
k

wfkhkn. (6)

For simplicity, we will assume νf = δf = δ, so that E (V ) =
WH , which is a natural assumption underlying most NMF settings
(see for example [3]). Under this assumption, the negative log-
likelihood − log p(V |WH) is essentially the Itakura-Saito (IS) di-
vergence from V to WH , as explained in [4]. The expression of
p(hn|Ahn−1) reveals a scale ambiguity between βk and {akj}j ,
which we fix by setting βk = αk, implying that E (hn|Ahn−1) =
Ahn−1.

The multiplicative and non-negative state and data innovations
preserve the non-negativity in the generative model. Additive real-
valued Gaussian innovations, as used in LDS, would fail to do so.
Additive non-negative innovations would ensure non-negativity, but
would only allow monotonically increasing values. In contrast, for
multiplicative innovations that can take values both lower and greater
than one, the coefficients of vn and hn are allowed to increase and
decrease.

2.2. Related work

To the best of our knowledge there is no prior work about the NDS
(3)-(4) proposed in this paper. There is some literature on non-
negative dynamical systems, where the state-space matrices, state
and observation vectors are assumed non-negative. However, to the
best of our knowledge, only non-negative additive perturbations have
been considered, see, e.g., [5, 6]. Furthermore most of the literature
we found on the topic is devoted to the theoretical properties of these
systems (stability, observability) rather than inference in or applica-
tion of these models. The closest to our model is perhaps [7], which
studies the conditions for existence, uniqueness and stability of the
system defined by Eq. (3) alone, but does not provide algorithms nor
procedures for inference.

A special case of the NDS (3)-(4) has been addressed in the
NMF literature. In [4, 8], algorithms were derived for the special
case A = IK , where IK denotes the identity matrix of dimension
K, and δ = 1 (multiplicative exponentially-distributed observation
innovation). In these papers, the state innovation was arbitrarily as-
sumed either Gamma or inverse-Gamma with mode obtained at 1,
i.e., the mode of p(hkn|hk(n−1)) is obtained at hkn = hk(n−1).
The resulting method, coined smooth Itakura-Saito NMF, allows to
regularize the individual rows of H temporally, assuming mutual
independence of the rows. The proposed model goes an important

step forward by lifting the mutual independence assumption, which
is generally not a realistic one. Indeed, the activation of a pattern at
frame n is also likely to correlate (or anti-correlate) with the activa-
tion of other patterns at frame n−1. This is what the proposed model
achieves through the introduction of the state-transition matrix A in
Eq. (3).

A preliminary attempt at introducing dynamics into NMF has
been made by Smaragdis et al., for speech denoising [9] and sound
classification [10]. They compute standard NMF decompositions
from spectral training data describing each sound class (e.g., in the
denoising setting, speech and noise) and compute the average tempo-
ral dynamics of the returned matrices H for each class a posteriori.
Test sounds are then decomposed onto the learned spectral patterns,
using a regularization step that employs the precomputed temporal
statistics of each class. In particular [10] employs an ad-hoc forward-
backward smoothing of the activations. The work presented in this
paper pursues a more formal approach, and proposes a well-posed
statistical model for non-negative data along with principled algo-
rithms for inference.

3. MAXIMUM A POSTERIORI ESTIMATION

We have derived a majorization-minimization (MM) algorithm for
MAP estimation of the parameters W,A,H given user-defined val-
ues of the remaining parameters δ and α. In the following, we
only present the main steps of the procedure to meet the space
limitations constraints. The MAP objective function is defined by
C(W,H,A) = − log p(V |WH) − log p(H|A). Our MM algo-
rithm is a block-coordinate descent algorithm that updates W , H
and A individually and conditionally upon the current values of the
other parameters. The algorithm alternates between forming an up-
per bound of the objective function at the current parameter settings,
and optimizing parameters to minimize this bound.

Let W̃ , H̃ and Ã denote the parameter values at the current iter-
ation and consider for example the update ofW . Denote for example
F (W ) = C(W, H̃, Ã) the function to be minimized w.r.t W . The
first step of the MM algorithm consists in building an upper bound
G(W, W̃ ) of F (W ) which is tight for W = W̃ , i.e., F (W ) ≤
G(W, W̃ ) for all W and G(W̃ , W̃ ) = F (W̃ ). The second step
consists in minimizing the bound w.r.t W , producing a valid descent
algorithm. Indeed, at iteration i + 1, it holds by construction that
F (W (i+1)) ≤ G(W (i+1),W (i)) ≤ G(W (i),W (i)) = F (W (i)).
The same principle applies to the updates of H and A.

The upper bounds can be derived using standard inequalities,
namely Jensen’s inequality for the convex parts of the objective func-
tions and the tangent inequality for the concave parts. Using this
strategy, the updates of W and A are multiplicative and given by

wfk = w̃fk

√√√√∑N
n=1 hknvfn/ṽ

2
fn∑N

n=1 hkn/ṽfn + λ
(7)

akj = ãkj

√
βi
∑N
n=2 hj(n−1)hkn/g̃2kn

αi
∑N
n=2 hj(n−1)/g̃kn

(8)

where ṽfn =
∑
k w̃fkhkn, g̃kn =

∑
j ãkjhj(n−1) and λ is a

constant that prevents degenerate solutions such that ‖W‖ → ∞
and ‖H‖ → 0. Owing to the Markovian structure of H , adjacent
columns are coupled in the optimization. We have employed a left-
to-right block-coordinate descent approach that updates hn at itera-
tion i conditionally on h(i)

n−1 and h(i−1)
n+1 , for 1 < n < N . With this



approach, updates of hkn are available in closed form and merely
involve rooting a polynomial of order 2, such that

hkn =

√
b2kn − 4aknckn − bkn

2akn
, (9)

where akn = δ
∑
f

wfk

ṽfn
+
∑
j αj

ajk
g̃j(n+1)

+ βk
gkn

, bkn = 1 − αk,

ckn = −h̃2
kn

(
δ
∑
f wfk

vfn

ṽ2
fn

+
∑
j βj

ajkhj(n+1)

g̃2
j(n+1)

)
, and ṽfn =∑

k wfkh̃kn, g̃k(n+1) =
∑
j akj h̃jn, gkn =

∑
j akjhj(n−1).

4. APPLICATION TO SPEECH

4.1. Spectral modeling of speech with NDS

When δ = 1, such that ξkn is exponentially distributed, Eq. (4) can
be related to a generative model of the power spectrogram in the
following Gaussian composite model (GCM). Let xfn denote the
complex-valued short-time Fourier transform (STFT) of some time
domain audio signal, where f is a frequency bin index and n in-
dexes time frames. The GCM is defined by xfn =

∑
k cfkn and

cfkn ∼ Nc(0, wfkhkn), where Nc(0, λ) refers to the circular com-
plex Gaussian distribution with zero mean. The latent components
{cfkn} can trivially be marginalized from the generative model,
yielding xfn ∼ Nc(0,

∑
k wfkhkn). It follows that the power spec-

trogram vfn = |xfn|2 of xfn is exponentially distributed with mean∑
k wfkhkn, and can thus be written as Eq. (4) with δ = 1. Note

that, when necessary, minimum mean squares estimate (MMSE) of
the latent components can be obtained by Wiener filtering and given
by

ĉfkn =
wfkhkn∑
j wfjhjn

xfn. (10)

The GCM has found successful applications in audio source sep-
aration and music transcription [4, 11, 12, 13, 14], and generalizes
earlier two-component models used in spectral-based audio denois-
ing, e.g., [15]. In contrast with Gaussian mixture models (GMMs)
or HMMs, which are prevalent in speech log-spectral modeling and
where each data frame is assumed to be in one among many possible
states each characterized by a given covariance, the GCM assumes
that each data frame is a sum of zero-mean Gaussian-distributed
components. In this paper the GCM is used as an observation pro-
cess for the NDS model.

4.2. Speech enhancement with NDS

We consider a speech enhancement scenario where the time-domain
data xt is a clean speech signal st corrupted by additive noise bt,
such that

xt = st + bt, (11)

and we wish to produce a speech estimate ŝt of st. Given a trained
NDS model of speech (W train, Atrain), representative of the unseen
source s, and given the corrupted data x, we estimate the non-
negative decomposition

V ≈W trainH +W noiseHnoise (12)

of the power spectrogram V of the noisy observation x,
where W trainH represents the speech spectrogram estimate and
W noiseHnoise the noise spectrogram estimate. We then reconstruct
the time-domain source estimate ŝ by MMSE estimation, which
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Fig. 1. Example of learnedW on female speech (frame length: 512),
sorted greedily by similarity.

amounts to Wiener filtering in our model. That is, we take the in-
verse STFT of

Ŝ =
W trainH

W trainH +W noiseHnoise ◦X, (13)

where the fraction bar is here elementwise.
In our approach, we assume the source and noise STFTs to fol-

low a GCM, such that sfn ∼ Nc(0,
∑
k w

train
fk hkn) and bfn ∼

Nc(0,
∑
k w

noise
fk hnoise

kn ). H follows the dynamics of Eq. (3) with
transition matrix Atrain. We recall that W train, Atrain are fixed vari-
ables, learned in a training phase. The matricesW noise andHnoise are
here assumed unknown and with no particular structure, and learned
from the data. With these assumptions, the decomposition (12)
shall be obtained by minimizing the divergence DIS(V |W trainH +
W noiseHnoise) penalized by the dynamical term − log p(H|Atrain),
w.r.t H , W noise and Hnoise. This can be achieved with an MM al-
gorithm using minor modifications of the derivations presented in
Section 3. Besides the use of the IS divergence and the dynamical
penalty term, the proposed procedure resembles the semi-supervised
NMF setting described in [16].

4.3. Enhancement results

The sampling rate was 16 kHz. Time-frequency analysis was per-
formed using frame lengths of 512, 640, 800 and 960 samples, us-
ing for each length a 50% overlap and a sine window for analy-
sis and re-synthesis. For each window length, NDS models were
trained separately for male and female speech, each on 1000 utter-
ances (about 50 minutes) from the TIMIT training set. The number
of bases was set to K = 1000 and the Gamma distribution parame-
ter to α = 0.01. This low setting of α strongly encourages sparsity
inH , thus encouraging a holistic representation of the spectrum, and
a sparse transition matrix. However, sparsity can lead to jitter in the
estimated signals, a potential trade-off that will need to be investi-
gated in future work. We show in Figs. 1 and 2 examples of W and
A trained on female speech with a frame length of 512.

We evaluated the enhancement algorithm described above on
mixtures of 10 speech files by different speakers (5 male and 5 fe-
male) from the TIMIT test set with 15 environmental texture sounds
from [17] at 3 different input signal-to-noise ratios (SNR), for a to-
tal of 450 mixtures. The training and test sets had disjoint sets of
speakers. The texture sounds include a wide variety of environmen-
tal sounds such as fire, bees, water stream, helicopter, applause, bab-
ble noise, shaking paper, etc. The speech test files were 1.8 s to 4.5 s
long, and were added in the middle of the 7 s long environmental
sounds. The number of noise bases was set to Knoise = 2. For each
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Fig. 3. Mixture of female speech and helicopter sound (10 dB SNR).
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Fig. 4. Result of applying OMLSA on the mixture shown in Fig. 3.
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mixture, we assumed the gender known and used the NDS speech
model for that gender.

For comparison, we also show results for the state-of-the-art
algorithm combining Optimally-Modified Log Spectral Amplitude
Estimator and Improved Minima Controlled Recursive Averaging
[18, 19], denoted as OMLSA. To illustrate the behavior of the algo-
rithms, we show in Fig. 3 the spectrogram of a mixture of speech by
a female speaker and a helicopter sound at 10 dB SNR, and in Figs. 4
and 5 the output of OMLSA and NDS on that mixture. NDS is
able to suppress the non-stationary helicopter noise, while OMLSA
fails to do so. The outputs of the algorithms were also quantitatively
evaluated using the bss eval toolbox [20], treating our denoising
problem as a source separation problem where s is the target source
and b is the interfering source, and the perception of speech quality
(PESQ) measure [21].

The bss eval results are given in terms of signal-to-distortion
ratio (SDR) and shown in Fig. 6. The proposed NDS algorithm
with 60 ms windows significantly outperforms OMLSA for all in-
put SNRs. The results for other frame lengths were similar in terms
of SDR. When measured by PESQ, in contrast, the scores generally
increased with window size, but yielded no significant improvement
compared to OMLSA for the window sizes investigated. In informal
listening tests, the NDS model was very good at removing a wide
range of non-stationary noises, but suffered from a tendency to leave
behind residual speech-like sounds. In particular, due to the fact
that training data contained lip smacks, breath sounds, etc, noises
ressembling these were often passed unsuppressed into the speech
estimate. We are currently investigating whether these artifacts can
be controlled by alternative parameterizations of the model.

5. CONCLUSIONS

We presented a novel non-negative dynamical system called NDS
to model sequences of non-negative data, explained its relationships
with previous work, derived an efficient MAP estimation algorithm,
and explained how it can be applied to speech and audio modeling.
In preliminary experiments on a speech enhancement task with real
environmental sounds, the proposed NDS algorithm reached sim-
ilar performance in terms of PESQ scores compared to the state-
of-the-art algorithm, and significantly outperformed the state of the
art in terms of SDR. Future works include testing more thoroughly
the potential of the proposed model on non-negative data of differ-
ent modalities, developing extensions enabling the sharing of bases
across states, and investigating usage of NDS as a noise model.
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