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Abstract

Traditional rate-distortion theory is focused on how to best encode a signal using as few
bits as possible and incurring as low a distortion as possible. However, very often, the goal
of transmission is to extract specific information from the signal at the receiving end, and the
distortion should be measured on that extracted information. In this paper we examine the
problem of encoding signals such that sufficient information is preserved about their pairwise
distances. For that goal, we consider randomized embeddings as an encoding mechanism and
provide a framework to analyze their performance. We also propose the recently developed
universal quantized embeddings as a solution to that problem and experimentally demonstrate
that, in image retrieval experiments, universal embedding can achieve up to 25% rate reduction
over the state of the art.

I. INTRODUCTION

Source coding theory and practice has primarily focused on how to best encode a
signal for transmission using the fewest possible bits while incurring the smallest possible
distortion. For example, in image or video compression, the encoder aims to reduce the
bit-rate for a given visual reconstruction quality. This goal is dictated by the end user of
the signal: an image or a video will be viewed by a human being. Quite often, however,
the end user of a signal is not a human being observing the distorted signal per se, but
a server extracting information. In this case, the goal is different: encoding must happen
in a way that does not destroy the information that the server wants to extract, even if
the signal itself cannot be completely recovered. In particular, we examine applications
in which the server is interested in extracting only the information about the distance of
a signal from its nearest neighbors.

This paper examines how to efficiently encode signals for transmission such that the
receiver can approximately determine the distance between signals up to a specified
radius. Our encoding exploits the recently developed theory for efficient universal quan-
tization and universal quantized embeddings [1]. We demonstrate that, using universal
quantized embeddings, we are able to improve compression performance up to 25% over
previous embedding-based approaches [2], [3], including our own earlier work [4]. The
main advantage of universal embeddings is that they preserve distance information only
up to a certain radius, as required to determine the near neighbors, and not any farther.
Thus, rate is not wasted in coding distances larger than necessary.

Our main—but not the only—motivating example is image retrieval, with emphasis on
augmented reality (AR) applications. As we discuss in [4], AR and more general image
retrieval applications can benefit significantly by efficient coding of distances to a signal’s
nearest neighbors. In typical cloud-based image retrieval applications, a client transmits
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Fig. 1. (a) Distance-preserving embeddings approximately preserve a function g(·) of the distance, allowing distances
to be computed in a space that (typically) has fewer dimensions and produce signals that often require lower
transmission rate. (b) For most embeddings, such as JL Embeddings, this function is linear, as shown in blue. For
the universal quantized embeddings discussed in this paper, the function is approximately linear initially and quickly
flattens after a certain distance D0, as shown in red.

to a cloud server a query photograph taken by the user, or features extracted from that
photograph, requesting more information on the objects in the picture. The server extracts
features if necessary, searches the database for tagged pictures with similar features and
returns the requested information about the picture. This search should be quick and
computationally efficient, while the transmission should be bandwidth-efficient.

Recent developments in image retrieval have significantly reduced its computational
complexity. Image descriptors, such as SIFT [5], SURF [6], GIST [7] and related tech-
niques, enable fast searches using global image characteristics or local image details
if communication cost is not an issue. To further address communication complexity,
several training-based methods have been developed [8]–[12], discussed in detail in [4].
However, these methods all require retraining whenever new database entries are added,
causing a change in the signal statistics. In AR applications, re-training is undesirable;
in addition to the complexity of training at the server, it repeatedly necessitates updating
the client with the re-trained parameters. Thus, methods that do not require training are
preferable. These include CHoG [13], in which the descriptors are explicitly designed
to be compressed using vector quantization and compact projection [2], [3] which uses
Locality Sensitive Hashing (LSH) [14] on established descriptors.

The next section contains a brief background on embeddings and universal scalar
quantization. Section III discusses how embeddings can be used to efficiently encode
signal distances and analyzes their performance. Section IV describes an augmented re-
ality scheme that efficiently retrieves image-dependent meta data, by leveraging universal
quantized embeddings. Section V experimentally demonstrates the rate reduction achieved
using our approach to the AR problem, applied to a well-known public database [15].
Section VI discusses our findings and concludes the paper.

II. BACKGROUND

A. Randomized Embeddings
An embedding is a transformation of a set of signals in a high-dimensional space

to a (typically) lower-dimensional one such that some aspects of the geometry of the
set are preserved, as depicted in Fig. 1(a). Since the set geometry is preserved, dis-
tance computations can be performed directly using the low-dimensional—and often low
bitrate—embeddings, rather than the underlying signals.

The best known embeddings are the Johnson-Lindenstrauss embeddings [16]—functions
f : S → RK from a finite set of signals S ⊂ RN to a K-dimensional vector space such



that, given two signals x and y in S, their images satisfy:

(1− ε)‖x− y‖2
2 ≤ ‖f(x)− f(y)‖2

2 ≤ (1 + ε)‖x− y‖2
2.

In other words, these embeddings preserve `2 distances, i.e., Euclidean distances, of point
clouds within a small factor, measured by ε.

Johnson and Lindenstrauss demonstrated that an embedding preserving the distances as
described above exists in a space of dimension K = O( 1

ε2
logL), where L is the number of

signals in S (its cardinality) and ε the desired tolerance in the embedding. Remarkably, K
is independent of N , the dimensionality of the signal set S. Subsequent work showed that
it is straightforward to compute such embeddings using a linear mapping. In particular,
the function f(x) = Ax, where A is a K×N matrix whose entries are drawn randomly
from specific distributions, is a J-L embedding with overwhelming probability. Commonly
used distributions are i.i.d. Gaussian, i.i.d. Rademacher, or i.i.d. uniform.

A J-L embedding typically results in a significant dimensionality reduction. However,
dimensionality reduction does not immediately produce rate reduction; the embeddings
must be quantized for transmission and, if the quantization is not well designed, perfor-
mance suffers [4]. In particular, J-L embeddings with scalar quantization satisfy

(1− ε)‖x− y‖ − τ ≤ ‖f(x)− f(y)‖ ≤ (1 + ε)‖x− y‖+ τ,

where τ ∝ 2−B is the quantizer step size, decreasing exponentially with the number of
bits used per dimension, B. On the other hand, ε is a function of K, the projection’s
dimensionality, and scales approximately as 1/

√
K. In the extreme case of 1-bit scalar

quantization the embedding does not preserve signal amplitudes and, therefore, their `2

distances. Still, it does preserve their angle, i.e., their correlation coefficient [17], [18].
When designing a quantized embedding, the total rate is determined by the dimen-

sionality of the projection and the number of bits used per dimension: R = KB. At a
fixed rate R, as the dimensionality K increases, the accuracy of the embedding before
quantization, as reflected in ε, is increased. But to keep the rate fixed the number of bits
per dimension should also decrease, which decreases the accuracy due to quantization,
reflected in τ . This non-trivial trade-off is explored in detail in [4]; at a constant rate a
multibit quantizer outperforms the 1-bit quantizers examined in earlier literature [2], [3].

B. Universal Quantization and Embeddings
Universal scalar quantization, first introduced in [1], fundamentally revisits scalar quan-

tization and redesigns the quantizer to have non-contiguous quantization regions. This
approach also relies on a Johnson-Lindenstrauss style projection, followed by scaling,
dithering and scalar quantization:

f(x) = Q(∆−1(Ax + w)), (1)

where A is a random matrix with N (0, σ2)-distributed, i.i.d. elements, ∆−1—abusing
notation—an element-wise scaling factor, w a dither vector with i.i.d. elements, uniformly
distributed in [0,∆], and Q(·) a scalar quantizer operating element-wise on its input.

The breakthrough feature in this method is the modified 1-bit scalar quantizer, designed
to have non-contiguous quantization intervals as shown in Fig. 2(a). The quantizer can
be thought of as a regular uniform quantizer, computing a multi-bit representation of a
signal and preserving only the least significant bit (LSB) of the representation. Thus,



scalar values in [2l, 2l + 1) quantize to 1 and scalar values in [2l + 1, 2(l + 1)), for any
integer l, quantize to 0. Since Q(·) is a 1-bit quantizer, this method encodes using as
many bits as the rows of A, i.e., K bits, and does not require subsequent entropy coding.

As discussed in [1], the modified quantizer enables efficient universal encoding of
signals. Furthermore, this quantization method is also an embedding [19], satisfying with
overwhelming probability on the measure of A and w:

g (‖x− y‖2)− τ ≤ dH (f(x), f(y)) ≤ g (‖x− y‖2) + τ, (2)

where dH(·, ·) is the Hamming distance of the embedded signals and g(d) is the map

g(d) =
1

2
−

+∞∑

i=0

e
−
(
π(2i+1)σd√

2∆

)2

(π(i+ 1/2))2 , (3)
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2
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2
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)2
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2
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π2
e
−
(
πσd√
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)2

, g(d) ≤
√

2

π

σd

∆
, (4)

as shown in Fig. 2(b). The map is approximately linear for small d and becomes a
constant equal to 1/2 exponentially fast for large d, greater than a distance threshold
D0. The slope of the linear section and the distance threshold D0 are determined by
the embedding parameters, ∆ and A. In other words, the embedding ensures that the
Hamming distance of the embedded signals is approximately proportional to the signals’
`2 distance, as long as that `2 distance is smaller than D0. Note that a piecewise linear
function with slope

√
2
π
σ
∆

until d = D0 and slope equal to zero after that is a very good
approximation to (3), in addition to being an upper bound.

The additive ambiguity τ in (2) scales as τ ∝ 1/
√
K, similar to the constant ε in the

multiplicative (1±ε) factor in J-L embeddings. It should be noted, however, that universal
embeddings use 1 bit per projection dimension, for a total rate of R = K. The trade-off
between B and K under constant R exhibited by quantized J-L embeddings does not exist
under the 1-bit universal embeddings. Still, there is a performance trade-off, controlled
by the choice of ∆ in (1), which we discuss in the next section.

Figure 2(c) demonstrates experimentally and provides intuition on how the embedding
behaves for smaller (red) and larger (blue) ∆ and for higher (left) and lower (right)
bitrates. The figure plots the embedding (Hamming) distance as a function of the signal
distance for randomly generated pairs of signals. The thickness of the curve is quantified
by τ , whereas the slope of the upward sloping part is quantified by ∆.

Although not immediately relevant to this work, an information-theoretic argument
guarantees that our embeddings can preserve the query’s privacy [19].

III. ERROR ANALYSIS OF DISTANCE EMBEDDINGS

A. General Error Analysis
To understand the ambiguities introduced by embeddings, we consider a general form

of the distance guarantees provided by most embeddings. Specifically, consider an em-
bedding f : S → W and distance metrics dS(·, ·) and dW(·, ·) in the signal space and the
embedding space, respectively. This is a (g, ε, τ) embedding if, for all s ∈ S, it satisfies

(1− ε)g (dS(x,y))− τ ≤ dW (f(x), f(y)) ≤ (1 + ε)g (dS(x,y)) + τ, (5)
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Fig. 2. (a) This non-monotonic quantization function Q(·) allows for universal rate-efficient scalar quantization. This
function is equivalent to using a classical multibit scalar quantizer, and preserving only the least significant bit while
discarding all other bits. (b) The embedding map g(d) and its bounds produced by the quantization function (a). (c)
Experimental verification of the embedding for small and large ∆ in high (left) and low (right) bitrates.

where g : R→ R is an invertible function mapping distances in S to distances in W and
ε and τ quantify, respectively, the multiplicative and the additive ambiguity of the map.

To understand the performance of an embedding in distance computation we want to
understand how well the embedding captures the distance. The main question is: given a
distance dW between two embedded signals in the embedding spaceW , how confident are
we about the corresponding distance between the original signals in the signal space S?
The function g(·) captures how distance is mapped and can be inverted to approximately
determine the distance dS in the signal space. On the other hand, the constants ε and
τ capture the ambiguity in the opposite direction, i.e., the ambiguity in the embedding
space given the distance in the signal space. Pictorially, taking Fig. 2(c) as an example,
(5) characterizes the thickness of the curves taking a vertical slice of the plots, while we
are now interested in the thickness revealed by taking a horizontal slice instead.

To capture the desired ambiguity, we can reformulate the embedding guarantees as

g−1

(
dW (f(x), f(y))− τ

(1 + ε)

)
≤ dS(x,y) ≤ g−1

(
dW (f(x), f(y)) + τ

(1− ε)

)
, (6)

which for small ε and τ can be approximated using the Taylor expansion of 1/(1± ε):

g−1 ((dW (f(x), f(y))− τ) (1− ε)) . dS(x,y) . g−1 ((dW (f(x), f(y)) + τ) (1 + ε)) ,
(7)

Assuming that g(·) is differentiable, we can approximate the inequality using the Taylor
expansion of g−1(·) around dW (f(x), f(y)) and the fact that (g−1)′(x) = 1/g′(g−1(x)).
Ignoring the second order term involving τ · ε, and defining the signal distance estimate



d̃S = g−1 (dW (f(x), f(y))) we obtain

d̃S −
τ + εdW (f(x), f(y))

g′
(
d̃S

) . dS(x,y) . d̃S +
τ + εdW (f(x), f(y))

g′
(
d̃S

) . (8)

In other words, given the distance dS between two signals in the signal space and using
d̃S to denote the estimate of this distance, the ambiguity is less than

∣∣∣dS(x,y)− d̃S
∣∣∣ . (τ + εdW (f(x), f(y))

g′
(
d̃S

) . (9)

Thus, ambiguity decreases by decreasing ε or τ , or by increasing the slope of the mapping.

B. Quantized J-L Embeddings
In quantized J-L embeddings, g(d) = d, which has constant slope equal to 1. Thus, the

denominator in (9) is constant. To reduce the ambiguity a system designer should reduce
the numerator as much as possible. To do so, as discussed in [4], the designer confronts
the trade-off between the size of ε and τ . The former is controlled by the dimensionality
of the projection, K, while the latter by the bit-rate per dimension, B. The greater K is,
the smaller ε is. Similarly, the greater B is, the smaller τ is.

As we mention above, the total bit-rate of the embedding is equal to R = KB. In
order to best use a given rate, the system designer should explore the trade-off between
fewer projection dimensions at more bits per dimension and more projection dimensions
at fewer bits per dimension. This trade-off is explored in detail in [4], where it is shown
that, in the image retrieval application considered, the best performance is achieved using
B = 3 or 4 bits per dimension and K = R/3 or R/4 dimensions, respectively. The
performance of the two choices is virtually indistinguishable and significantly better than
previous 1-bit approaches, using B = 1, R = K [2], [3].

C. Universal Embeddings
In contrast to quantized J-L embeddings, universal embeddings use 1 bit per embedding

dimension. Thus, the rate R also determines the dimensionality of the projection, K = R,
as well as the constant τ in the embedding guarantees (2). Furthermore, there is no
multiplicative term in the guarantees, i.e., ε = 0. Thus, in the ambiguity analysis (9), the
numerator is fully determined; the system designer can only control the denominator.

This does not mean that there are no design choices and trade-offs: the trade-off in
these embedding is in the choice of the parameter ∆ in (1). As discussed in the previous
section and shown in Fig. 2(b), g(·) exhibits an approximately linear region, followed by
a rapid flattening and an approximately flat region. The choice of ∆ controls the slope
of the linear region and, therefore, how soon the function reaches the flat region.

As mentioned earlier, the linear bound in (4) is a very good approximation of the
upwards sloping linear region of g(·), which has slope g′(d) ≈

√
2/π/∆. By decreasing

∆, we can make that slope arbitrarily high, with a corresponding decrease of the ambiguity
τ/g′(d̃S). However, this linear region does not extend for all d, but only until it reaches
the point d = D0 where g(D0) ≈ 1/2 and the flat region of g(d) begins. As ∆ becomes



smaller and the slope of the linear region increases, it reaches the flat region much faster,
approximately when D0

√
2/π/∆ = 1/2, i.e., when D0 ≈ ∆

√
π/8 ≈ 0.6∆.

Unfortunately, beyond that linear region, the slope g′(d) becomes 0 exponentially fast.
This implies that the ambiguity in (9) approaches infinity. Thus, if the embedding distance
dW is within 0.5 ± τ , then it is impossible to know anything about dS by inverting the
mapping, other than dS & D0. This makes the trade-off in designing ∆ clear. A smaller
∆ reduces the ambiguity in the range of distances it preserves, but also reduces the range
of distances it preserves. The system designer should design ∆ such that the distances
required in the application of the embedding are sufficiently preserved.

As an example, consider our motivating application: retrieval of nearest-neighbors
from a database. When a query is executed, its embedding distance is computed with
respect to all the entries in the database, embedded using the same parameters. For the
query to be successful, there should be at least a few entries in the database will small
embedding distance from the query. These entries are selected and returned. For the query
to produce meaningful results, the embedding distance of those entries should represent
quite accurately the signal distance between the query signal and the signals from the
entries in the database. Furthermore, if the signals are all very distant from the query,
the embedding distance should accurately reflect that fact, so that no signal is selected;
in this case the embedding does not need to represent how distant each entry is.

In other words, the embedding only needs to represent distances up to a radius D,
determined by the system designer, and to only identify distances further than D, without
necessarily representing those distances. Thus, ∆ should be designed to be as small as
possible so the ambiguity in representing distances in the linear region is small, but not
smaller than necessary to ensure that all distances of interest stay in the linear region of
the embedding and not in the flat region with high ambiguity.

IV. IMAGE RETRIEVAL USING UNIVERSAL EMBEDDINGS

A user wants to retrieve information about a query object by capturing its photograph
and transmitting information extracted from the photograph to a database server. The
server locates the object in the database that most closely matches the query image
according to a predetermined distance criterion, and transmits the meta-data of that object
back to the user. As we describe below, these tasks can be effectively accomplished by
computing embeddings of features extracted from the query and database images.

A. Database Preparation
The server generates the embedding parameters—such as A, w, and ∆ in the case of

universal embeddings—according to the embedding specifications. To build the database,
it acquires a set of images I1, . . . , IT of S objects, where S ≤ T . For each object, the
server obtains or generates application-specific metadata, Ds, s ∈ {1, ..., S}. Then, it runs
a scale-invariant feature extraction algorithm on each image It to generate several feature
vectors from each image. The number of features obtained from each image depends on
parameters such as the scene content, the illumination and the resolution of the sensor
capturing the picture. Let L denote the number of feature vectors extracted from all
images of all objects and yl, l = 1, . . . , L denote each feature vector; typically, L� S.
Using these L feature vectors, the server computes the database {f(y1), . . . , f(yL)},
where each f(yi) is an R-bit quantized embedding of yi. As a final book-keeping step,
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Fig. 3. Performance of universal embeddings (UE) in metadata retrieval. (a) Probability of correct retrieval as a
function of the bitrate for a variety of ∆ values. (b) Probability of correct retrieval as a function of ∆ for a variety
of bitrates. (c) Comparison of universal embeddings using ∆ = 1.25

√
2/π and 1.5

√
2.π with quantized J-L methods

(QJL). Universal embeddings significantly outperform the alternatives.

the server generates a lookup table λ(l) ⊂ {1, ..., S}, l = 1, . . . , L where each λ(l)
indexes the object from which the vector f(yl) (or equivalently yl) was extracted.

B. Client Query
The client obtains the embedding parameters from the server, as a one-time software

update or included as part of the client software installation. Once the client acquires the
query image it executes the scale-invariant feature extraction algorithm to derive a set of
features {x1, . . . ,xM}, where xm is a descriptor corresponding to the mth key (salient)
point in the image. Using these M features and the embedding parameters, the client
computes and transmits to the server the corresponding embeddings {f(x1), . . . , f(xM)}.

C. Approximate Nearest Neighbor Search and Meta-Data Retrieval
The server receives {f(x1), . . . , f(xM)} from the client. For each of the f(xm) it

computes the nearest neighbor among its database, i.e., among {f(y1), . . . , f(yL)}. The
result is M nearest neighbor pairs, one pair for each embedding f(xm). Out of these M
pairs, the server chooses the J pairs {f(x(j)), f(y(j))}, j = 1, 2, ..., J that are closest in
embedding distance (in our experiments, J = 20). For each of the J pairs, the server
uses the lookup table Λ to read off the index of the object from which feature vector y(j)

was derived, storing it in αj ∈ {1, ..., s}. The object s0 most common among αj , i.e.,
the one with the largest number of nearest neighbor matches among the J best matching
features, is the response to the query; its metadata are returned to the client.

V. EXPERIMENTAL RESULTS

To validate our approach, we conducted metadata retrieval experiments using the
ZuBuD database [15]. This public database contains 1005 images of 201 buildings in
the city of Zurich. There are 5 images of each building taken from different viewpoints,
all of size 640 × 480 pixels and compressed in PNG format. Our experimental setup is
identical to [4]: One out of the 5 viewpoints of each building was randomly selected as



a query image, forming a test set of s = 201 images. The server’s database comprises of
the remaining 4 images of each building, for a total of t = 804 images. The query aims
to identify which of the 201 possible buildings is depicted in each query image.

Our goal is to examine the performance of embeddings in preserving distances, not the
performance of various feature selection methods. Thus, we extracted the widely adopted
SIFT features [5] from each image and embedded them using quantized J-L embeddings
or universal embeddings. Using the protocols described in Sec. IV we measured how
many of the 201 query images produced the correct result, i.e., correctly identified the
building depicted. We conducted our experiments in bitrates ranging from 0 to 80 bits
per descriptor. Our results are averaged over 100 experiments with different realizations
of A and w, although the variability among individual runs was very small.

The first experiment tested the effect of ∆ in the design of the embedding. We examined
the range ∆ = 0.5

√
2/π, 0.75

√
2/π, . . . , 3

√
2/π. The results are shown in Figs. 3(a) and

(b). In Fig. 3(a) each curve plots the probability of correct metadata retrieval as a function
of the bitrate used per descriptor, given a fixed ∆. The higher the probability of success,
the better. Figure 3(b) presents another view on the same data: each curve plots the
probability of correct retrieval given a fixed bitrate per descriptor as ∆ varies.

The plots in Fig. 3(a) and (b) verify our expectations. As the bitrate increases, the
performance improves. With respect to ∆, the behavior is more nuanced. For small ∆,
the slope of g(d) is high and the ambiguity in the linear region of g(d) is low, as discussed
in Sec. III-C. Thus, the embedding represents some distances very well. However, D0

is small, i.e. it can only represent accurately a very small range of distances. Thus, for
a large number of queries for which the closest matches are farther than D0 the results
returned are not meaningful. This type of error dominates the results when ∆ is low. As ∆
increases, more and more queries produce meaningful results and the error performance
improves, even though the accuracy of the linear region of the embedding decreases.
For larger ∆ the reduced accuracy of the embedding starts dominating the error and
the performance decreases again. The best performance is obtained for ∆ = 1.25

√
2/π,

which corresponds to corresponding D0 = .625.
We also compared the performance of our approach with existing methods based on

quantized J-L embeddings. Figure 3(c) compares the performance of the two approaches
The figure plots the probability of correct retrieval as a function of the bitrate per descrip-
tor for each of the methods examined. As expected [4], multibit quantized J-L embeddings
outperform 1-bit quantized J-L embeddings—known as “compact projections” (CP) [2],
[3] and motivated by LSH approaches [14] in earlier literature. More important, universal
embeddings—plotted in black circles and black diamonds, for ∆ = 1.25

√
2/π and

1.5
√

2.π respectively—significantly outperform the other approaches. For example, to
achieve a probability of correct retrieval of 80%, universal embeddings require approxi-
mately 8 fewer bits per descriptor, a 20% rate reduction. For 90% probability of correct
retrieval, universal embeddings require 15 fewer bits per descriptor, a 25% rate reduction.
Similarly, using only 40 bits per descriptor, universal embeddings achieve almost 90%
success rate, versus almost 80% for the best alternative. The results are robust to ∆: for
∆ ∈ [

√
2/π, 2

√
2/π], universal embeddings outperform all quantized J-L embeddings.

VI. DISCUSSION AND CONCLUSIONS

In summary, we have demonstrated that quantized embeddings are a powerful tool
in encoding signals such that their pairwise distances are preserved. Our development



provides the tools necessary to understand the performance of such embeddings in this
task, and to design them and use them according to the needs of the application at hand.

In the specific problem of identifying the nearest neighbors, only small distances need
to be preserved by the encoding. In this case universal quantized embeddings outperform
quantized Johnson-Lindenstrauss embeddings thanks to unequal preservation of distances.
In particular, universal embeddings preserve distances very accurately up to a certain
distance but not beyond that; quantized J-L embeddings preserve all distances equally,
but not as accurately. In applications in which a larger range of distances should be
preserved, we expect this advantage to diminish or disappear.

Of course, we have only scratched the surface of this very interesting topic. It is still an
open question whether more efficient methods exist to encode distances between signals,
as well as what the fundamental rate-distortion bounds are for this task.
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