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Abstract— This paper investigates the role that nonlinear
camera response functions (CRFs) have on image deblurring. We
present a comprehensive study to analyze the effects of CRFs on
motion deblurring. In particular, we show how nonlinear CRFs
can cause a spatially invariant blur to behave as a spatially
varying blur. We prove that such nonlinearity can cause large
errors around edges when directly applying deconvolution to
a motion blurred image without CRF correction. These errors
are inevitable even with a known point spread function (PSF)
and with state-of-the-art regularization based deconvolution al-
gorithms. In addition, we show how CRFs can adversely affect
PSF estimation algorithms in the case of blind deconvolution. To
help counter these effects, we introduce two methods to estimate
the CRF directly from one or more blurred images when the PSF
is known or unknown. Our experimental results on synthetic and
real images validate our analysis and demonstrate the robustness
and accuracy of our approaches.

Index Terms— Nonlinear Camera Response Functions (CRFs),
Motion Deblurring, CRF Estimation

I. I NTRODUCTION

Image deblurring is a long standing computer vision problem
for which the goal is to recover a sharp image from a blurred
image. Mathematically, the problem is formulated as:

B = I ⊗K + n, (1)

whereB is the captured blurred image,I is the latent image,K
is the point spread function (PSF),⊗ is the convolution operator,
andn represents image noise.

One common assumption in most previous algorithms that is
often overlooked is that the imageB in Equation (1) responds
in a linear fashion with respect to irradiance,i.e., the final image
intensity is proportional to the amount of light received by the
sensor. This assumption is valid when we capture an image in a
RAW format. However, when capturing an image using a common
consumer level camera or camera on a mobile device, there is a
nonlinear camera response function(CRF) that maps the scene
irradiance to intensity. CRFs vary among different camera man-
ufacturers and models due to design factors such as compressing
the scene’s dynamic range or to simulate conventional irradiance
responses of film [15], [33]. Taking this nonlinear response into
account, the imaging process of Equation (1) can be considered
as:

B = f(I ⊗K + n), (2)

wheref(·) is the CRF. To remove the effect of the nonlinear CRF
from image deblurring, the imageB has to be first linearized
by the inverse CRF,i.e., f−1. After deconvolution, the CRF is

applied again to restore the original intensity which leads to the
following process:

I = f(f−1(B)⊗K
−1), (3)

where K−1 is inverse filter which denotes the deconvolution
process.

Contributions This paper offers two contributions with regards
to CRFs and their role in image deblurring. First, we provide
a systematic analysis of the effect that a CRF has on the
blurring process and show how a nonlinear CRF can make a
spatially invariant blur behave as a spatially varying blur around
edges. We prove that such nonlinearity can cause abrupt ringing
artifacts around edges which are non-uniform. In addition, these
artifacts are difficult to eliminated by regularization. Our analysis
also shows that PSF estimation for various blind deconvolution
algorithms are adversely affected by the nonlinear CRF.

Along with the theoretical analysis, we further introduce two
algorithms to estimate the CRF from one or more images: the
first method is based on a least-square formation when the PSF is
known; the second method is formulated as a rank minimization
problem when the PSF is unknown. Both of these approaches
exploit the relationship between the blur profile about edges in
a linearized image and the PSF. While our estimation methods
cannot compete with well-defined radiometric calibration methods
based on calibration patterns or multiple exposures, they are
useful to produce a sufficiently accurate CRF for improving
deblurring results.

Shorter versions of this work appeared in [22], [7]. This paper
unifies these two concurrent independent works with more in-
depth discussion and analysis of the role of CRF in deblur-
ring, and additional experiments. In addition, a new section
that analyzes the effectiveness of gamma curve correction in
traditional deblurring methods, and the limitations of the proposed
algorithms are presented in Section VII-A.

The remainder of our paper is organized as follow: In Sec-
tion II, we review related works in motion deblurring and CRF
estimation. Our theoretical analysis about the blur inconsistency
introduced by a nonlinear CRF is presented in Section III, fol-
lowed by the analysis on the deconvolution artifacts and PSF es-
timation errors in Section IV. Our two algorithms which estimate
the nonlinear CRF from motion blurred image(s) with known
and unknown PSF are presented in Section V. In Section VI,
we present our experimental results. Section VII-A provides
additional discussion about the effectiveness of gamma curve
correction. Finally, we conclude our work in Section VIII.
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I I. RELATED WORK

Image deblurring is a classic problem with well-studied ap-
proaches including Richardson-Lucy [35], [40] and Wiener de-
convolution [48]. Recently, several different directions were in-
troduced to enhance the performance of deblurring. These include
methods that use image statistics [14], [29], [18], [6], sparsity
or sharp edge prediction [30], [20], [8], [2], [50], [26], [45],
multiple images or hybrid imaging systems [1], [39], [9], [51],
[5], [42], [43], and new blur models that account for camera
motion [44], [46], [47], [19], [17]. The vast majority of these
methods, however, do not consider the nonlinearity in the imaging
process due to CRFs.

The goal of radiometric calibration is to compute a CRF
from a given set of images or a single image. The most accu-
rate radiometric calibration algorithms use multiple images with
different exposures [12], [4], [37], [13], [15], [21], [24], [34],
[28]. Our work is more related to single-image based radiometric
calibration techniques [32], [33], [38], [36], [49]. In [32], the CRF
is computed by observing the color distributions of local edge
regions: the CRF is computed as the mapping that transforms
nonlinear distributions of edge colors into linear distributions.
This idea is further extended to deal with a single gray-scale
image using histograms of edge regions in [33]. In [49], a CRF
is estimated by temporally mixing of a step edge within a single
camera exposure by the linear motion blur of a calibration pattern.
Unlike [49], however, our method deals with uncontrolled blurred
images.

To the best of our knowledge, there are only a handful of
previous works that consider CRFs in the context of image
deblurring. Examples include the work by Ferguset al. [14],
where images are first linearized by an inverse gamma-correction
with γ = 2.2. Real world CRFs, however, are often drastically
different from gamma curves [15], [31]. Another example by Luet
al. [34] involves reconstructing a high dynamic range image from
a set of differently exposed and possibly motion blurred images.
Work by Cho et al. [10] discussed nonlinear CRFs as a cause
for artifacts in deblurring, but provided little insight into why
such artifacts arise. Their work suggested to avoid this by using
a pre-calibrated CRF or the camera’s RAW output. While a pre-
calibrated CRF is undoubtedly the optimal solution, the CRF may
not always be available. Moreover, work by Chakrabartiet al. [3]
suggests that a CRF may be scene dependent when the camera is
in “ auto mode”. Furthermore, work by Kimet al. [23] showed
that the CRF for a given camera may vary for different camera
picture styles (e.g., landscape, portrait, etc).

Our work aims to provide more insight into the effect that
CRFs have on the image deblurring process. In addition, we seek
to provide a method to estimate a CRF from a blurred input image
in the face of a missing or unreliable pre-calibrated CRF.

III. B LUR INCONSISTENCY DUE TO NONLINEARCRF

We first study the role of the CRF in the image blurring process.
We denote byf as the nonlinear CRF,f−1 as the inverse off ,
I as the blur-free intensity image,̃I as the irradiance image of
I, i.e., I = f(Ĩ), B as the observed motion blurred image with
B = f(Ĩ ⊗ K + n). To focus our analysis, we follow previous
work by assuming that the PSF is spatially invariant and the image
noise is negligible (i.e., n ≈ 0).

We analyze the blur inconsistency introduced by a nonlinear
CRF by measuring:

Γ = B − B̂ (4)

whereB̂ = I⊗K which denotes the conventional intensity based
blurring process. Note thatI is used instead of̃I in B̂. Our goal
in here is to understand where the intensity based convolution
model would introduce errors when CRF correction is excluded.

Claim 1. In uniform intensity regions,Γ = 0 .
Proof: Since pixels within the blur kernel region have uniform
intensity, we havef−1(I) ⊗ K = f−1(I) = f−1(I ⊗ K).
Therefore,

B = f(f−1(I)⊗K) = f(f−1(I ⊗K)) = B̂, (5)

thusΓ = 0.
Claim 1 applies to any CRF (both linear or nonlinear). This

implies that a nonlinear CRF will not affect deblurring quality
for uniform intensity regions.

Claim 2. If the blur kernelK is small and the CRFf is
smooth,Γ ≈ 0 in low frequency regions.
Proof: Let I = I + ∆I be a local patch covered by the blur
kernel K. The termI is the average intensity within the patch
and∆I is the deviation fromI. In low frequency regions,∆I is
small.

Next, we apply the first-order Taylor series expansion to
f−1(I)⊗K as:

f
−1(I +∆I)⊗K ≈ f

−1(I)⊗K + (f ′−1(I) ·∆I)⊗K, (6)

wheref ′−1 is the first order derivative off−1. SinceI is uniform,
we havef−1(I) ⊗ K = f−1(I) and f ′−1(I) is constant in the
local neighborhood. Thus, Equation (6) can be approximated as:

f
−1(I) + f

′−1(I) ·∆I ⊗K. (7)

Similarly, by using the first-order Taylor series expansion, we
have

f
−1(I ⊗K) = f

−1(I ⊗K +∆I ⊗K)

≈ f
−1(I ⊗K) + f

′−1(I ⊗K) · (∆I ⊗K)(8)

= f
−1(I) + f

′−1(I) ·∆I ⊗K. (9)

Therefore,

B = f(f−1(I)⊗K) ≈ f(f−1(I ⊗K)) = B̂, (10)

i.e., Γ ≈ 0.
Claim 2 holds only for small kernels. When the kernel size

is large,e.g.80 × 80, the first-order Taylor series expansion is
not accurate. To illustrate this property, we simulate a 1D smooth
signal in Figure 1(a). A uniform motion blur kernel with different
size (10, 20, 30 and 80 pixels) is applied to the 1D signal. We
computeB and B̂ with f−1 being a gamma curve (γ = 2.2).
The plotting ofΓ along the 1D signal with different sizedKs are
shown in Figure 1(a). Note thatΓ ≈ 0 for the first three kernels.

Claim 3. Γ can be large at high frequency high contrast
regions.
Proof: Let us consider a sharp edge inI represented by a Step
Edge Function,

I(x) =

{
0, if x < 0.5

1, otherwise
(11)
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Fig. 1. Illustration of blur inconsistencyΓ. A gamma curve withγ = 2.2 is used to simulatef−1 across all sub-figures. (a):Γ is computed along a
1D smooth signal with four different uniform motion blur kernels of size 10, 20, 30 and 80 pixels. (b) The first two rows show the latent pattern and the
corresponding irradiance-based motion blurred pattern respectively. The bottom row shows the measuredΓ which varies across different edge strength. (c)
Plotting ofΓ in (b) with different kernel sizes.

0 0.15 0.3 0.45 0.6 0.75 0.9
0

0.15

0.3

0.45

0.6

0.75

0.9

irradiance

in
te
n
si
ty

Fig. 2. The left panel shows 188 CRF curves of real cameras fromDoRF
[15]. Nearly all curves appear concave.

Sincef−1 has boundaryf−1(0) = 0 and f−1(1) = 1 [15], we
havef−1(I) = I. Therefore,

B = f(f−1(I)⊗K) = f(I ⊗K) = f(B̂), (12)

Hence,Γ = f(B̂)− B̂.
In this example,Γ(x) measures howf(x) deviates from the

linear functiony(x) = x. In other words,Γ(x) → 0, iff f(x) → x.
However, practical CRFsf are highly nonlinear [15], [23].

To validate Claim 3, we simulate a 1D signal of sharp edges
with different gradient magnitudes and measure the blur inconsis-
tencyΓ as shown in Figure 1(b). The first row is the original clear
signal. The second row is the blur signalB where the blur kernel
size is 20 pixels. The third row shows theΓ which is non-zero
around edge regions and theΓ increase as the gradient magnitudes
get larger. To further analyze the effect of kernel size on sharp
signals, we plotΓ with four different sized kernels in Figure 1(c).
Notice that the area of non-zeroΓ increase with kernel size since
the blurry edge gets larger. Also, the magnitude ofΓ depends on
edge magnitude but it does not depends on kernel size.

Theorem 1. Let Imin and Imax be the local minimum and
maximum pixel intensities in a local neighborhood covered by
kernelK in imageI. If f−1 is convex, then the Blur Inconsistency
is bounded by0 ≤ Γ ≤ Imax − Imin.
Proof: Considerf−1(I)⊗K as a convex combination of pixels

from f−1(I) sinceK contains only zero or positive values. If
f−1 is convex, we can use the Jensen’s inequality to obtain

f
−1(I)⊗K ≥ f

−1(I ⊗K). (13)

Further, since the CRFf is a monotonically increasing [12], [37],
we have:

B = f(f−1(I)⊗K) ≥ f(f−1(I ⊗K)) = B̂, (14)

i.e., Γ ≥ 0.
Next, we derive the upper bound ofΓ. SinceI⊗K ≤ Imax and

f−1 is monotonically increasing (asf−1 is inverse off andf is
monotonically increasing),f−1(I)⊗K ≤ f−1(Imax). Therefore,
we have,

B = f(f−1(I)⊗K) ≤ f(f−1(Imax)) = Imax. (15)

Likewise, we can also derivêB = I⊗K ≥ Imin. Combining this
with Equation (14) and Equation (15), we have:Imin ≤ B̂ ≤

B ≤ Imax. Therefore,

0 ≤ Γ ≤ Imax − B̂ ≤ Imax − Imin. (16)

Theorem 1 explains the phenomenon in Figure 1: when the
gradient magnitude of an edge is large, the upper-bound ofΓ

will be large. On the other hand, in low contrast regions, the
upper boundImax − Imin is small and so isΓ. Thus,B can be
well approximated bŷB.

It is important to note that Theorem 1 assumes a convex inverse
CRF f−1. This property has been observed in many previous
results. For example, the widely used Gamma curvesf−1(x) =

xγ , γ > 1, are convex. To better illustrate the convexity off−1

(or equally the concavity off), we plot 188 real camera CRF
curves (f) collected in [15] in Figure 2. We compute the discrete
second-order derivatives of the 188 real camera CRF curves. Our
experiment shows that the majority (84.4%) of sample points are
negative and therefore the inverse CRFf−1 is largely convex.

Combining Claim 1, 2, 3, and theory 1, we see that the blur
inconsistency introduced by nonlinear CRF mainly appears in
high contrast high frequency regions in original signal. These
regions, however, are the regions that mostly cause ringing
artifacts in image deblurring. Next, we will analysis the effects
of CRF and how it affects the quality of image deblurring.
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Fig. 3. This figure shows a simple step edge image that has been blurred by two different PSF kernels: a 1D motion PSF with uniform speed (kernel A)
and a 1D PSF with non-uniform speed (kernel B). These blurred images are transformed with a linear CRF (a)(c), and with a nonlinear CRF (b)(d). The 1D
PSF and the 1D slice of intensity values are also shown. (e)-(h) show non-blind deconvolution results of (a)-(d) using Wiener filter. (i)-(l) show non-blind
deconvolution results of (a)-(d) using an iterative re-weighting method [30] with sparsity regularization.
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Re-mappingedge 1

edge 2

Fig. 4. This figure illustrates the problem when the image intensities are
re-mapped according to different part of the camera response function. Two
identical edge profiles at different intensity ranges are re-mapped to have
different shapes.

IV. EFFECTS OFCRF IN IMAGE DEBLURRING

A. Effects on PSF and image deconvolution

We begin our analysis using synthetic examples shown in
Figure 3. An image with three different intensity levels (Black,
Gray, and White) is blurred with 1D motion PSFs with uniform
speed (kernel A) and non-uniform speed (kernel B) to generate the
observations in Figure 3 (a)(b) and Figure 3 (c)(d) respectively.
A real CRF1 is used to nonlinearly re-map the image intensity
in Figure 3 (b)(d) after convolution.

In this example, we can observe how the blur profiles of an
image becomes spatially varying after the nonlinear re-mapping

1Pre-calibrated CRF of a Cannon G5 camera in standard mode is used.

of image intensities even though the underlying motion PSF is
spatially invariant. With a linear CRF, the blur profile from the
black to gray region (first step edge) is the same as the blur profile
from the gray to white region (second step edge) as shown in
Figure 3 (a)(c). However, with a nonlinear CRF, the two blur
profiles become different as shown in Figure 3 (b)(d). This is
because the slope and the curvature of the CRF are different for
different range of intensities. Figure 4 helps to illustrate this effect.

To examine the effect that these cases have on image de-
blurring, we performed non-blind deconvolution on the synthetic
images as shown in the second and third rows of Figure 3. The
second row shows the results of Wiener filtering [48] while the
third row shows the results of [30] with sparsity regularization.
Without using any regularization, the deblurring results of both
the linear and nonlinear CRF contain ringing artifacts due to the
zero component of the PSF in the frequency domain. However, the
magnitude of these ringing artifacts in the nonlinear CRF result
is significantly larger than the one with the linear CRF. The use
of image regularization [30] helps to reduce the ringing artifacts,
but the regularization is less effective in the case of a nonlinear
CRF even with a very large regularization weight.

In addition, if we assumeI is a step edge andf is a Gamma
function, f(x) = xγ with γ < 1, we can re-writeB = f(B̂)

(Equation (12)) using Taylor series expansion:

B = B̂
γ = B̂ + P, (17)

where P =
∞∑
κ=1

(γ−1)κ

κ! B̂(ln B̂)
κ
. An important property of

functionx(lnx)κ is that it approaches zero forx → 0+ or x → 1.
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Fig. 5. Given an invertible filter, the ringing artifacts of a step edge is caused
by the deconvolution of blur inconsistencyP introduced by nonlinear CRF
in Equation (18).

Fergus et al. [14] Shan et al. [41] Xu and Jia [50] Cho et al. [11]

Fig. 6. This figure shows examples of PSF kernels from several images with
linear CRF (left columns) or nonlinear CRF (right columns). PSF kernels in
the same row are from the same image with different estimated methods:
Ferguset al. [14]; Shanet al. [41]; Xu and Jia [50]; Choet al. [11].

Therefore,P only has non-zero values in the blurred edge regions.
Assuming an invertible filterK which has non-zero entries in
frequency domain, we can represent the deconvolution ofB with
K by B ⊗K−1, and thus

B ⊗K
−1 = B̂ ⊗K

−1 + P ⊗K
−1

, (18)

where B̂ ⊗ K−1 = I (Equation (4)). Thus,P ⊗ K−1 is the
deconvolution artifacts introduced by the Blur InconsistencyΓ.
Notice that even the blur inconsistency appears only within
the edge areas, the deconvolution process can propagate the
blur inconsistency errors from edge regions to smooth regions.
Figure 5 illustrates the effects of decomposition in Equation (18).
Again, the CRF plays a significant role in quality of the image
deblurring.

B. Effects on PSF estimation

We also analyze the effects of a CRF on the PSF estimation
by comparing the estimated PSF between a linear and nonlinear
CRF. We show the estimated PSFs from Ferguset al. [14], Shan
et al. [41], Xu and Jia [50] and Choet al. [11] in Figure 6. The
raw images from [11] were used for our testing purpose.

Ideally, the CRF should only affect the relative intensity of a
PSF, but the shape of a PSF should remain the same since the
shape of the PSF describes the trajectory of motion causing the
motion blur, and the intensity of the PSF describes the relative
speed of the motion. However, as we can observe in Figure 6,
the estimated PSFs are noticeably different, especially for the
results from [14] and [41]. This is because both [14] and [41]
use alternating optimization for their non-blind deconvolution.
As previously discussed, the nonlinear CRF causes errors during
the deconvolution process which in turn propagates the errors

θ

θ

PSF

marginal
probability

edge
pro leCDF

Fig. 7. This figure shows how the edge profile of a step edge in a motion
blurred image is equal to the cumulative distribution function of the marginal
probability of the motion blur kernel along the direction perpendicular to the
edge.

to the estimated PSF in an alternating optimization framework.
The results from [50] and [11] contains less errors because they
separate the process of PSF estimation and image deconvolution.
However, the shape of the estimated PSF are still different. The
method in [50] requires edge selection and sharpening, and the
method in [11] requires edge profiles to be aligned. Since the
nonlinear CRF alters the edge profiles in the blurred image, their
estimated PSF also contains errors inherent from non-uniform
edge profiles. Note that small errors in the PSF estimation can
causes significant artifacts in subsequent deconvolution.

V. CRF ESTIMATION FROM A BLURRED IMAGE

In this section, we describe a method to estimate the CRF
from one or more blurred images. To begin, we examine the
relationship between the PSF and edge profiles in a blurred image
under a linear CRF assumption. We then describe a method to
estimate the CRF based on this relationship using least-squares
fitting assuming a known PSF. This method is then converted to
a robust estimation of an unknown PSF and a CRF using rank
minimization.

A. PSF and edge profiles

We begin with the observation that the shape of a blur profile
with the linear CRF resembles the shape of the cumulative
distribution of the 1D PSF as shown in Figure 3 (a)(c). Our
analysis is similar in fashion to that in [18] which used alpha
mattes of blurred object to estimate the PSF. Our approach,
however, works directly from the image intensities and requires
no matting or object extraction. Instead, we only need to identify
the step edges with homogeneous areas on both sides. For such
edges, the shape of the blur profile is equal to the shape of the
cumulative distribution of the 1D PSF.

Theorem 2. Under a 1D motion blur, if the CRF is linear
and the original edge in clear image is a step edge with uniform
intensity on both sides, the shape of the blur profile is equal to
the shape of the cumulative distribution of the 1D PSF.
Proof: Consider a simple case where the original step edge
has values[0, . . . , 0, 1, . . . , 1] and the values of the PSF is
[α1, α2, . . . , αM ]. If the number of0’s and 1’s are both larger
than M , the blur profile after the motion blur is equal to
[α1, α1 + α2, . . . ,

∑M
i=1 αi], which is the cumulative distribution

of the 1D PSF.
For any edges with intensities[I1, I2], the value of the blur

profile at m ∈ [1, . . . ,M ] after the blur is equal toI1 +∑m
i=1 αi(I2 − I1).
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Theorem 2 is valid under the assumptions that the motion
blurred image does not contain any noise or quantization error.

In the case of a 2D PSF, Theorem 2 still holds when the edge
is a straight line. In this case, the 1D PSF becomes the marginal
probability of the 2D PSF projected onto the line perpendicular
to the edge direction as illustrated in Figure 7.

B. CRF approximation with a known PSF

Considering that the shape of blurred edge profiles are equal to
the shape of the cumulative distribution of the PSF2 if the CRF
is linear. Given that we know the PSF, we can compute the CRF
as follows:

argmin
g(·)

E1∑

j=1

M∑

m=1

wj

(
g(Ij(m))− lj

wj
−

m∑

i=1

αi

)2

+

E2∑

j=1

M∑

m=1

wj

(
g(Ij(m))− lj

wj
−

M∑

i=m

αi

)2

, (19)

whereg(·) = f−1(·) is the inverse CRF function,E1 andE2 are
the numbers of selected blurred edge profiles from dark to bright
regions and from bright region to dark regions, respectively.

The variableslj andwj are the minimum intensity value and
the intensity range (intensity difference between the maximum
and the minimum intensity values) of the blurred edge profiles
after applying the inverse CRF. Blur profiles that span a wider
intensity range are weighted more because their wider dynamic
range covers a larger portion ofg(·), and therefore provide more
information about the shape ofg(·). We filtered out the edges
with wj < 0.1 since according to our blur inconsistency analysis
in Section III, these low contrast edges does not provide much
information for PSF estimation.

We follow the method in [49] and model the inverse CRF
g(·) using a polynomial of degreed = 5 with coefficientsap,
i.e., g(I) =

∑d
p=0 apI

p. The optimization is subject to boundary
constraintsg(0) = 0 andg(1) = 1, and a monotonicity constraint
that enforces the first derivative ofg(·) to be non-negative. Our
goal is to find the coefficientsap such that the following objective
function is minimized:

argmin
ap

E1∑

j=1

M∑

m=1

wj

(∑d
p=0 apIj(m)p − lj

wj
−

m∑

i=1

αi

)2

+

E2∑

j=1

M∑

m=1

wj

(∑d
p=0 apIj(m)p − lj

wj
−

M∑

i=m

αi

)2

+λ1


a

2
0 +

(
d∑

p=0

ap − 1

)2



+λ2

L∑

r=1

H

(
d∑

p=0

ap

((
r − 1

L

)p
−
(
r

L

)p)
)

, (20)

whereH is the Heviside step function for enforcing the mono-
tonicity constraint,i.e., H = 1 if g(r) < g(r − 1), or H = 0

otherwise andL is the maximum intensity level,e.g.255 for 8-
bit color depth. The weights are fixed toλ1 = 100 and λ2 =

2For simplicity, we assume that the PSF is 1D, and it is well aligned with the
edge orientation. If the PSF is 2D, we can compute the marginal probability
of the PSF.

10, which control the boundary constraint and the monotonic
constraint, respectively. The solution of Equation (20) can be
obtained by a simplex search method of Lagariaset al. [27]3.

C. CRF estimation with unknown PSF

Using the cumulative distribution of the PSF can reliably
estimate the CRF under ideal conditions. However, the PSF is
usually unknown in practice. As we have studied in Section IV-B,
nonlinear CRF affects the accuracy of the PSF estimation, which
in turn will affect our CRF estimation described in Section V-B.
In this section, we introduce a CRF estimation method without
explicitly computing the PSF.

As previously discussed, we want to find an inverse response
function g(·) that makes the blurred edge profiles have the same
shape after applying the inverse CRF. This can be achieved by
minimizing the distance between each blur profile to the average
blur profile:

argmin
g(·)

E1∑

j=1

M∑

m=1

wj

(
g(Ij(m))− lj

wj
− A1(m)

)2

+

E2∑

j=1

M∑

m=1

wj

(
g(Ij(m))− lj

wj
− A2(m)

)2

, (21)

whereA1(m) =
∑E1

k=1
wk

W g(Ik(m)) is the weighted average blur
profile, andW =

∑E1

l=1 wl is a normalization factor.
Using the constraint in Equation (21), we can compute the

CRF, however, this approach is unreliable not only because the
constraint in Equation (21) is weaker than the constraint in
Equation (19), but the nature of least-squares fitting is sensitive
to outliers. To avoid these problems, we generalize our method
to robust estimation via rank minimization.

Recall that the edge profiles should have the same shape after
applying the inverse CRF. This means that if the CRF is linear, the
edge profiles are linearly dependent with each other, and hence
the observation matrix of edge profiles form a rank-1 matrix for
eachgroup of edge profiles:

g(M)=




g(I1(1))− l1 · · · g(I1(M))− l1
...

.. .
...

g(IE1
(1))− lE1

· · · g(IE1
(M))− lE1


 , (22)

whereM is length of edge profiles, andE1 is the number of
observed edge profiles grouped according to the orientation of
edges. Now, we transform the problem into a rank minimization
problem which finds a functiong(·) that minimizes the rank of
the observation matrixM of edge profiles. Since the CRF is the
same for the whole image, we define our objective function for
rank minimization as follow:

argmin
g(·)

K∑

k=1

wkrank(g(Mk)), (23)

whereK is total number of observation matrix (total number of
group of edge profiles),wk is a weight given to each observation
matrix. We assign larger weight to the observation matrix that
contains more edge profiles. Note that Equation (23) is also
applicable to multiple images since the observation matrix is built
individually for each edge orientation and for each input image.

3fminsearch function in Matlab.
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Fig. 8. We test the robustness of our CRF estimation method under different configurations. (a) Blur profiles with different intensity ranges, (b) edges in the
original image contains mixed intensities (edge width is equal to 3 pixels), (c) Gaussian noise (σ = 0.02) is added according to Equation (2), (d) the union
of intensity range of all blur profiles does not cover the whole CRF curve. (e) Blur profiles of (a), (b), (c), (d). The original image (black lines), the blurred
image with linear CRF (red lines), and the blurred image with nonlinear CRF (blue lines) are shown on top of each figure in (a)-(d). (f)-(i) the corresponding
estimated inverse CRF using our methods with (a)-(d). (j) the corresponding estimated inverse CRF with multiple images in (e).

We evaluate the rank of matrixM by measuring the ratio of
its singular values:

argmin
g(·)

K∑

k=1

wk

Ek∑

j=2

σkj

σk1
, (24)

whereσkj are the singular values ofg(M)k. If the observation
matrix is rank-1, only the first singular values is nonzero and
hence minimizes Equation (24). In our experiments, we found
that Equation (24) can be simplified to just measuring the ratio
of the first two singular values:

argmin
g(·)

K∑

k=1

wk
σk2
σk1

. (25)

Combining the monotonic constraint, the boundary constraint
and the polynomial function constraint from Equation (20), we
obtain our final objective function:

argmin
ap

K∑

k=1

wk
σk2
σk1

+ λ1


a

2
0 +

(
d∑

p=0

ap − 1

)2

 (26)

+λ2

L∑

r=1

H

(
d∑

p=0

ap

((
r − 1

L

)p
−
(
r

L

)p)
)

.

Equation (26) can be solved effectively using nonlinear least-
squares fitting4.

D. Implementation issues for 2D PSF

Our two proposed methods for CRF estimation are based on the
1D blur profile analysis. Since, in practice, PSFs are 2D in nature,
we need to group image edges with similar orientation and select
valid edge samples for building the observation matrix. We use
the method in [11] to select the blurred edges. The work in [11]
filtered edge candidates by keeping only high contrast straight-line
edges. A user parameter controls the minimum length of straight-
line edges which depends on the size of the PSF. We refer to [11]

4lsqnonlin function in Matlab.

Fig. 9. Our selected edges for CRF estimation. Edges are grouped according
to the edge orientation (color coded). The estimated CRF and the deblurred
images are shown in Figure 12.

for details of selecting high contrast straight-line edges in blurry
images.

After selecting valid edge profiles, they are grouped according
to edge orientations. Figure 9 shows examples of the selected
edges and the grouping results. The selected edges were grouped
by selecting partitioning thresholds such that the orientation
variation within each group is less than 2 degree. To increase the
number of candidate edges within each group, edges in opposite
direction were grouped together. When building the observation
matrix in Equation (22), we reverse the CDF of the opposite
edges by computing{1− [g(Ij(1))− lj ] · · · 1− [g(Ij(M))− lj ]}.
To make the selected edge profiles more robust against noise and
outliers, we apply a 1D directional filter in a direction orthogonal
to the edge orientation to get the local average of edge profiles.
We found that this directional filtering improved the robustness
of our edge selection algorithm even when the candidate edges
were slightly curved.

After edge selection and grouping, edge profiles are aligned to
build the observation matrix. In [11], edge profiles were aligned
according to the center of mass. In our case, however, due to the
nonlinear CRF effects, alignment based on the center of mass is
not reliable. We instead align the two end points of the edges.
In cases where the projected 1D PSF contains discontinuities, the
starting and end points of the discontinuities are also considered
in the alignment. Since the amount of blur in different directions
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Fig. 10. CRF estimation on real images. The top row shows the sharp/blurred pairs. The bottom row shows our recovered the CRF (in blue) and the ground
truth CRF (in red) obtained by acquiring the MacBeth’s chart (in green).

varies according to the shape of the PSF, we give a larger weight
to the directions with longer edge profiles as they provide more
information about the CRF than sharp edges. When dealing with
multiple images, the same weighting scheme applies where a
larger weight is given to a more blurry edge profile.

Our rank minimization using nonlinear least-squares fitting is
sensitive to the initial estimation of the CRF. In our implemen-
tation, we use the average CRF profile from the database of
response functions (DoRF) created by Grossberg and Nayar [16]
as our initial guess. The DoRF database contains 201 measured
functions which allows us to obtain a good local minima in
practice.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our CRF
estimation method using both synthetic and real examples. In
the synthetic examples, we test our algorithm under different
conditions in order to better understand the behaviors and the
limitations of our method. In the real examples, we evaluate our
method by comparing the amount of ringing artifacts with and
without CRF intensity correction to demonstrate the effectiveness
of our algorithm and the importance of CRF in the context of
image deblurring.

A. Synthetic examples

Figure 8 shows the performance of our CRF estimation under
different conditions. We first test the effects of the intensity range
of the blur profiles in Figure 8 (a). In a real application, it is
uncommon that all edges will have a similar intensity range. These

intensity range variations can potentially affect the estimated CRF
as low dynamic range edges usually contain larger quantization
errors. As shown in Figure 8 (f), our method is reasonably robust
to these intensity range variations.

Our method assumes that the original edges are step edges.
In practice, there may be color mixing effect even for an edge
that is considered as a sharp edge. In our experiments, we find
that the performance of our approach degrades quickly if the step
edge assumption is violated. However, as shown in Figure 8 (g),
our approach is still effective if the color mixing effects is less
than 3 pixel wide given a PSF with size 15. The robustness of
our method when edge color mixing is present depends on the
size of the PSF with our approach being more effective for larger
PSFs.

Noise is inevitable even when the ISO of a camera is high.
We test the robustness of our method against image noise in
Figure 8 (c). We add Gaussian noise to Equation (2) where
the noise is added after the convolution process but before the
CRF mapping. As can be observed in Figure 8 (h), the noise
affects the accuracy of our method. In fact, using the model in
Equation (2), we can observe that the noise has also captured
some characteristics of the CRF. The magnitude of noise in the
darker region is larger than the magnitude of noise in the brighter
region. Such information may even be useful and combined into
our framework to improve the performance of our algorithm as
discussed in [36].

We test the sensitivity of our algorithm when the union of blur
profiles does not cover the whole range of CRF. As can be seen
in Figure 8 (i), our method still gives reasonable estimations. This
is because the polynomial and monotonicity constraint assist in
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[ Levin et al. Siggraph 2007 ]

[ Xu and Jia ECCV 2010 ]

Ground Truth

Input

Fig. 11. Qualitative comparison on non-blind deconvolutionresults with linear CRF, gamma curve, and our estimated CRF correction. We show the results
for three different state-of-the-art regularization based deconvolution method: Krishnan and Fergus [25], Levinet al. [30], and Xu and Jia [50]. The estimated
CRF is shown in Figure 10. Among all of the compared results, our estimated CRF correction consistently performs better than gamma curve correction.

maintaining the shape of CRF. Note that having limited range
of intensities will degrade the performance of all radiometric
calibration methods.

Finally, we show a result where we use all input images to
estimate the CRF. As expected, more input images give a more
accurate CRF estimation.

The synthetic experiments show that the performance of our
method depends on not only the quantity of the observed blur
profiles but also the quality of the profiles. For instance, a blur
profile with a large motion covering a wide intensity range is
better than the combination of blur profiles that cover only a
portion of intensity range. When combining the observations from
multiple images, our estimated CRF is more accurate as the
mutual information from different images increases the robustness
of our algorithm. The rank minimization also makes our algorithm
less sensitive to outliers.

B. Real examples

1) With Known PSF:To test our algorithm with a known PSF
in real world examples, we implemented the method from [51]
which uses a pair of blurry/sharp image to estimate a reliable
motion PSF. Although we can use previous single image methods,
e.g. [14], [41], [50], [11], to get the PSF, we found that the PSF

from [51] is more reliable especially when the CRF is nonlinear
(Section IV-B). We validated our approach on three different
camera models: Canon 60D, 400D, and Nikon D3100.

Figure 10(a),(b) and (c) show the captured sharp/blurry image
pairs. The ISO value and the relative exposure setting for each
captured image pair were also shown. The sharp images were
captured with a tripod whereas the blurry images were captured by
holding the camera by hands with long exposure period. To obtain
the ground truth CRF for comparisons, we used the Macbeth color
checkerboard and applied the PCA-based method [15] to estimate
f−1 via curve fitting [38]. Figure 10 (d),(e) and( f) plot our
estimated CRFs against the ground truth CRFs. The green dots are
the sampled chart values from the Macbeth color checkerboard.

Finally, we tested the effectiveness of different regularization-
based deconvolution algorithms in Figure 11. In particular, we
compare the method from Krishnan and Fergus [25], Levinet
al. [30], and Xu and Jia [50]. The work from Krishnan and Fergus
uses hyper-laplacian prior to regularize the deconvolved image,
Levin et al.use the sparsity regularization while Xu and Jia use
the L1-norm regularization. Among all the deconvolution results,
the gamma correction consistently shows better results than the
results using linear CRF correction. However, with our estimated
CRF correction, the deconvolution results for all three methods
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Fig. 12. Our result with real examples: (a) input images; (b) estimated CRFs; (c) deblurred images with gamma correction; (d) deblurred images with CRF
correction.

can be further improved.
2) With Unknown PSF:When the PSF is not available, we

estimate the inverse CRF using the method in Section V-C. Note
that since the CRF estimation step is separated from the PSF
estimation step, the accuracy of our estimated CRF for the real
examples does not depend on the PSF estimation algorithm. In
our implementation, we choose the method in [50] to estimate
the PSF from a single image and the method in [30] with the
sparsity regularization for deconvolution.

Figure 12 shows the results from the input image in (a) that
is captured by a Canon EOS 400D (first row) and a Nikon D90
DSLR (second and third rows) camera with a nonlinear CRF. The
results in (b) are the estimated CRF using single and multiple
images. The ground truth CRFs were computed by using method
in [28] with a calibration pattern. For the reference, we have also
show the inverse gamma-correction curve withγ equal to2.2.
This is a common method suggested by the previous deblurring
algorithm [14] when the CRF is unknown. Note the shape of the
inverse gamma-correction curve is very different from the shape

of ground truth and our estimated CRF. We compare the results
with gamma correction (γ = 2.2) and with our estimated CRF
corrections in (c) and (d) respectively. As expected, our results
with CRF corrections are better – not only do the deblurring
results contain less artifacts, but the estimated PSFs are also more
accurate after the CRF correction.

VII. D ISCUSSION

A. Effectiveness of Gamma Correction

When the ground truth CRF is unknown, a common method in
previous deblurring algorithms [14], [50] is to use gamma curve
correction withγ = 2.2. In this section, we provide additional
analysis to the effectiveness of this approach. Let the blurred
irradiance beB̃ = Ĩ⊗K, and the observed intensity beB = f(B̃).
When gamma curve is used, we have:

fg
−1(f(B̃)) = f(B̃)2.2, (27)



11

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) (b)
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Fig. 14. We tested the effectiveness of gamma correction on synthetic exam-
ple. (a) Input synthetic signal. Deconvolution with gamma curve correction
using (b) wiener filter, and (c) sparsity regularization [30]. As discussed in
Section IV, the ringing artifacts are mainly caused by the blur inconsistency.
The gamma curve correction cannot fully eliminate blur inconsistency espe-
cially for edges with high contrast.

wherefg(x) = x1/2.2 denotes the gamma curve CRF. Thus, the
absolute error introduced by the curve can be measured by:

τ (B̃) = |f(B̃)2.2 − B̃|. (28)

As discussed previously in Section III and Section IV, errors in
the CRF estimation will be directly transferred to the deblurred
image leading to large ringing artifacts that cannot fully be
suppressed by regularization.

In order to show the magnitude of the approximation errors,
we measure the differences between the gamma curve and the
188 real CRF database [15] presented in Figure 2. Figure 13(a)
shows the approximation errors of the gamma curve. The central
dark curve shown in the figure represents the mean of the error
τ (B̃) for all the 188 real CRF curves. Note that most part of the
error curves have errors larger than 0.1 which is10% of intensity
range. Some curves even have errors as large as0.6. For the
reference, we also show the approximation errors if a linear CRF
is used in Figure 13(b). Although the gamma curve has smaller
errors compared to the linear CRF, gamma curve is insufficient
to represent the real-world CRFs as noted in previous work [15],
[31], [23].

Next, we use the synthetic examples in Figure 3 to analyze
the effectiveness of gamma curve correction in the non-blind
deconvolution. Figure 14 shows the result. The gamma curve
correction can reduce errors compared to the results using the lin-

(a) Blurred image

(c) deblurred result with 

gamma correction

(e) error map of (c)

(b) inverse CRFs

(f ) error map of (d)
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our estimated CRF correction

Fig. 15. (a) Input blurred Image. (b) The inverse CRFs. Note the gamma
curve with γ = 2.2 is closed to the inverse of mean CRFs. (c) Deblurred
image with gamma curve correction. (d) Deblurred image with our estimated
inverse CRF correction. (e) Error maps using gamma correction. (f) Error
maps using our estimated CRF correction.

ear correction, and the ringing artifacts are further reduced when
a regularization-based deconvolution is used. Yet, as illustrated
in Figure 14, it cannot completely remove the ringing artifacts
caused by the blur inconsistency from nonlinear CRF.

Finally, we show an example in Figure 15, where the gamma
curve correction is “successful”. We use the mean CRF of the 188
real CRF database [15] as the ground truth CRF. As illustrated
in Figure 15(b), the gamma curve withγ = 2.2 is closed to
the inverse of mean CRFs. We use the method in Section V-B to
estimate the CRF with known PSF. This example is considered as
successful in deblurring since the deconvolution artifacts are small
and unnoticeable after a regularization is used. However, if we
compare the error maps between the gamma curve correction and
our estimated CRF correction, our approach can further reduce
errors with the same deconvolution algorithm [25].

B. Assumptions and Limitations

Our proposed algorithms algorithms work under several as-
sumptions. In the following, we analyze each of the assumptions
and discuss the limitations of our approach in practise.

1) Robustness against image noise:Theorem 2 for our CRF
estimation algorithms assumes noise-free conditions. To analyze
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Fig. 16. The estimated CRF under different noise level. (a) Canon400D.
(b) Nikon D3100. (c) Plot of RMSE of the estimated CRF against different
amount of noise.
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Fig. 17. Failure case. Our algorithm fails to estimate accurate CRF when
the intensity range of input image is narrow. Yet, the deblurred result is still
better than the gamma curve with less ringing artifacts.

the robustness of our algorithms against image noise, we generate
a set of synthetic blurry and noisy images with different amount of
Gaussian noise. The ground truth image in Figure 15 and the CRF
curves of Canon400D and Nikon D3100 were used to produce
the synthetic inputs. Figure 16 shows the plot of RMSE of the
estimated CRF (with unknown PSF) against different amount of
noise. Our CRF estimation algorithm is robust to image noise
thanks to the usage of rank minimization optimization and the
directional filtering in the edge selection step.

2) Spatially varying blur: Our CRF estimation algorithms
assume spatially invariant motion blur. When facing spatially
varying motion blur or defocus blur with different depth layers,
the blind CRF estimation algorithm with unknown PSF will break
down since the observation matrix is no longer a rank-1 matrix.
In such scenario, only the CRF estimation algorithm with known
PSF can be used providing that the local PSF can be obtained
accurately. The blur inconsistency analysis, however, should still
hold which claims that the irradiance of the blurry image should
be linearized before deblurring in order to avoid ringing artifacts
caused by non-linear CRF.

3) Failure Cases:We finally provide a failure case in Figure 17
where the CRF estimation fails due to the narrow intensity
range of the input image. The estimated CRF deviates from the
ground truth CRF especially for the area that is not covered by
the intensity range of input image. However, when comparing
deblurring results using a gamma curve, our result is still better
with less ringing artifacts. As discussed earlier, the goal of
this paper is to provide a method to handle nonlinear CRF in
deblurring problem when the ground truth CRF is not accessible.
In some cases, even an incorrectly estimated CRF may produce

better deblurring results than not performing linearization at all.
The blur inconsistency analysis in Section III assumes a convex

CRF. In practice, there are camera models where the CRF is
non-convex in shape especially for the blue channel. We tested
our algorithms for non-convex CRF using synthetic examples.
However, we found that our estimated CRFs for unknown PSF are
not as accurate as the convex cases. One possible explanation is
that the non-convex CRFs deviate enough from the mean CRF to
cause the nonlinear least-squares fitting in the rank minimization
to converge to an incorrect local minima.

We have also tested our algorithms for highly textured im-
ages where straight-line edges are very limited. Both algorithms
failed since the edge detection algorithm fail to detect straight-
line edges. We consider this is a fundamental limitation to our
algorithms.

VIII. C ONCLUSION

This paper offers two contributions targeting image deblurring
in the face of nonlinear CRFs. First, we have presented an analysis
on the role that nonlinear CRFs play in image deblurring. We
prove that the blur inconsistency introduced by nonlinear CRF
can caused notable ringing artifacts in the deconvolution process
which cannot be completely ameliorated by image regularization.
Such blur inconsistency is spatially varying and it depends on
edge sharpness, edge intensity range, and image brightness. We
have also demonstrated how the nonlinear CRF adversely affects
PSF estimation for several state-of-the-art techniques.

In Section V, we prove how the shape of edge projections
resemble the cumulative distribution function of 1D PSFs for
linear CRFs. This theorem was used to formulate two CRF
estimation strategies for when the motion blur PSF kernel is
known or not known. In the latter case, we show how rank
minimization can be used to provide a robust estimation. We
do note that our approach is sensitive to the quality of the
selected blur profiles. The requirement of straight line sharp edges
also places a limitation to our current solution. To this end, we
have also provided a multiple image solution in case a motion
blurred image does not contains sufficient edge profiles for CRF
estimation.

Experimental results in real examples demonstrated the impor-
tance of intensity linearization in the context of image deblurring.
In addition, we have analyzed the effectiveness of gamma curve
correction which is commonly used in previous deblurring algo-
rithms [14], [50]. The shape of gamma curve withγ = 2.2 is close
to the inverse of mean CRFs. Therefore, in most cases, gamma
curve correction is more effective than linear CRFs. However,
when compared to the results with our estimated CRF corrections,
gamma curve correction is still insufficient especially when the
CRF is largely deviate from the mean CRFs.

IX. A CKNOWLEDGEMENT

This work was funded in part by the National Research
Foundation (NRF) of Korea (2012-0003359), Microsoft Research
Asia under the KAIST-Microsoft Research Collaboration Center
(KMCC), Natural Science Foundation (China) (Nos:61273258,
61105001), the Committee of Science and Technology, Shanghai
(No. 11530700200), National Science Foundation (US) under
grants IIS-CAREER-0845268 and IIS-RI-1016395, the Air Force
Office of Science Research under the YIP Award, and the Singa-
pore A*STAR PSF grant (Proj No. 1121202020).



13

REFERENCES

[1] M. Ben-Ezra and S. Nayar. Motion-based Motion Deblurring.IEEE
Trans. PAMI, 26(6):689–698, Jun 2004.

[2] J. Cai, H. Ji, C. Liu, and Z. Shen. Blind motion deblurring from a single
image using sparse approximation. InCVPR, 2009.

[3] A. Chakrabarti, D. Scharstein, and T. Zickler. ”an empirical camera
model for internet color vision”. InBMCV, 2009.

[4] Y. Chang and J. Reid. Rgb calibration for color image-analysis in
machine vision.IEEE Trans. Image Processing, 5(10):14141422, 1996.

[5] J. Chen and C. K. Tang. Robust dual motion deblurring. InCVPR,
2008.

[6] X. Chen, X. He, J. Yang, and Q. Wu. An effective document image
deblurring algorithm. InCVPR, 2011.

[7] X. Chen, F. Li, J. Yang, and J. Yu. A theoretical analysis of camera
response functions in image deblurring. InECCV, 2012.

[8] S. Cho and S. Lee. Fast motion deblurring. InACM SIGGRAPH ASIA,
2009.

[9] S. Cho, Y. Matsushita, and S. Lee. Removing non-uniform motion blur
from images. InICCV, 2007.

[10] S. Cho, J. Wang, and S. Lee. Handling Outliers in Non-blind Image
Deconvolution. InICCV, 2011.

[11] T.-S. Cho, S. Paris, B. Freeman, and B. Horn. Blur kernel estimation
using the radon transform. InCVPR, 2011.

[12] P. Debevec and J. Malik. Recovering high dynamic range radiance maps
from photographs. InACM SIGGRAPH, 1997.

[13] H. Farid. Blind inverse gamma correction.IEEE Trans. Image
Processing, 10(10):14281433, 2001.

[14] R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman.
Removing camera shake from a single photograph.ACM Trans. Graph.,
25(3), 2006.

[15] M. Grossberg and S. Nayar. Modeling the space of camera response
functions. IEEE Trans. PAMI, 26(10), 2004.

[16] M. D. Grossberg and S. K. Nayar. What is the space of camera response
functions? InCVPR, 2003.

[17] M. Hirsch, C. Schuler, S. Harmeling, and B. Schölkopf. Fast removal
of non-uniform camera shake. InICCV, 2011.

[18] J. Jia. Single image motion deblurring using transparency. InCVPR,
2007.

[19] N. Joshi, S. Kang, L. Zitnick, and R. Szeliski. Image deblurring with
inertial measurement sensors.ACM Trans. Graph., 29(3), 2010.

[20] N. Joshi, R. Szeliski, and D. Kriegman. Psf estimation using sharp edge
prediction. InCVPR, 2008.

[21] S. Kim, J. Frahm, and M. Pollefeys. Radiometric calibration with
illumination change for outdoor scene analysis. InCVPR, 2008.

[22] S. Kim, Y.-W. Tai, S. Kim, M. S. Brown, and Y. Matsushita. Nonlinear
camera response functions and image deblurring. InCVPR, 2012.

[23] S. J. Kim, H. T. Lin, Z. Lu, S. Susstrunk, S. Lin, and M. S. Brown. A new
in-camera imaging model for color computer vision and its application.
In IEEE Trans. PAMI, 2012.

[24] S. J. Kim and M. Pollefeys. Robust radiometric calibration and
vignetting correction.IEEE Trans. PAMI, 30(4), 2008.

[25] D. Krishnan and R. Fergus. Fast image deconvolution using hyper-
laplacian priors. InNIPS, 2009.

[26] D. Krishnan, T. Tay, and R. Fergus. Blind deconvolution using a
normalized sparsity measure. InCVPR, 2011.

[27] J. Lagarias, J. Reeds, M. Wright, and P. Wright. Convergence properties
of the nelder-mead simplex method in low dimensions.SIAM Journal
of Optimization, 9(1):112–147, 1998.

[28] J.-Y. Lee, B. Shi, Y. Matsushita, I. Kweon, and K. Ikeuchi. Radiometric
calibration by transform invariant low-rank structure. InCVPR, 2011.

[29] A. Levin. Blind motion deblurring using image statistics. InNIPS, 2006.
[30] A. Levin, R. Fergus, F. Durand, and W. T. Freeman. Image and depth

from a conventional camera with a coded aperture.ACM Trans. Graph.,
26(3), 2007.

[31] H. Lin, S. J. Kim, S. Susstrunk, and M. S. Brown. Revisiting radiometric
calibration for color computer vision. InICCV, 2011.

[32] S. Lin, J. Gu, S. Yamazaki, and H.-Y. Shum. Radiometric calibration
from a single image. InCVPR, 2004.

[33] S. Lin and L. Zhang. Determining the radiometric response function
from a single grayscale image. InCVPR, 2005.

[34] P.-Y. Lu, T.-H. Huang, M.-S. Wu, Y.-T. Cheng, and Y.-Y. Chuang. High
dynamic range image reconstruction from hand-held cameras. InCVPR,
2009.

[35] L. Lucy. An iterative technique for the rectification of observed
distributions. Astron. J., 79, 1974.

[36] Y. Matsushita and S. Lin. Radiometric calibration from noise distribu-
tions. In CVPR, 2007.

[37] T. Mitsunaga and S. Nayer. Radiometric self calibration. InCVPR,
1999.

[38] T.-T. Ng, S.-F. Chang, and M.-P. Tsui. Using geometry invariants for
camera response function estimation. InCVPR, 2007.

[39] A. Rav-Acha and S. Peleg. Two motion blurred images are better than
one. PRL, 26:311–317, 2005.

[40] W. Richardson. Bayesian-based iterative method of image restoration.
J. Opt. Soc. Am., 62(1), 1972.

[41] Q. Shan, J. Jia, and A. Agarwala. High-quality motion deblurring from
a single image.ACM Trans. Graph., 2008.

[42] Y.-W. Tai, H. Du, M. Brown, and S. Lin. Image/video deblurring using
a hybrid camera. InCVPR, 2008.

[43] Y.-W. Tai, H. Du, M. S. Brown, and S. Lin. Correction of spatially
varying image and video motion blur using a hybrid camera.IEEE
Trans. PAMI, 32(6):1012–1028, 2010.

[44] Y.-W. Tai, N. Kong, S. Lin, and S. Shin. Coded exposure imaging for
projective motion deblurring. InCVPR, 2010.

[45] Y.-W. Tai and S. Lin. Motion-aware noise filtering for deblurring of
noisy and blurry images. InCVPR, 2012.

[46] Y.-W. Tai, P. Tan, and M. Brown. Richardson-lucy deblurring for scenes
under projective motion path.IEEE Trans. PAMI, 33(8):1603–1618,
2011.

[47] O. Whyte, J. Sivic, A. Zisserman, and J. Ponce. Non-uniform deblurring
for shaken images. InCVPR, 2010.

[48] N. Wiener. Extrapolation, interpolation, and smoothing of stationary
time series.New York: Wiley, 1949.

[49] B. Wilburn, H. Xu, and Y. Matsushita. Radiometric calibration using
temporal irradiance mixtures. InCVPR, 2008.

[50] L. Xu and J. Jia. Two-phase kernel estimation for robust motion
deblurring. InECCV, 2010.

[51] L. Yuan, J. Sun, L. Quan, and H. Shum. Image deblurring with
blurred/noisy image pairs.ACM Trans. Graph., 26(3), 2007.

Yu-Wing Tai received the BEng (first class hon-
ors) and MS degrees in compute science from the
Hong Kong University of Science and Technology
(HKUST) in 2003 and 2005 respectively, and the
PhD degree from the National University of Sin-
gapore (NUS) in June 2009. He joined the Ko-
rea Advanced Institute of Science and Technology
(KAIST) as an assistant professor in Fall 2009. He
regularly serves on the program committees for the
major Computer Vision conferences (ICCV, CVPR,
and ECCV). His research interests include computer

vision and image/video processing. He is a member of the IEEE.

Xiaogang Chenis currently a PhD student in the In-
stitute of Image Processing and Pattern Recognition,
Shanghai Jiao Tong University. His research interests
include image and video processing, and computer
vision. He is a student member of the IEEE.

Sunyeong Kim received the BS and MS degrees in
Computer Science from Korea Advanced Institute
of Science and Technology (KAIST) in 2010 and
2012 respectively. She is currently pursuing the PhD
degree in KAIST. Her research interests include
computer vision and image/video processing, espe-
cially in computational photography. She is a student
member of the IEEE.



14

Seon Joo Kimreceived the BS and MS degrees from
Yonsei University, Seoul, Korea, in 1997 and 2001.
He received the PhD degree in computer science
from the University of North Carolina at Chapel
Hill in 2008. He is an assistant professor at the
Department of Computer Science, Yonsei University
since March 2013. His research interests include
computer vision, computer graphics/computational
photography, and HCI/visualization. He is a member
of the IEEE.

Feng Li received his BE from the Department
of Electrical Engineering, Fuzhou University, in
2003, MS from the Institute of Pattern Recogni-
tion, Shanghai Jiaotong University, in 2006, and
his PhD from the Department of Computer and
Information Sciences, University of Delaware, in
2011. He joined Mitsubishi Electric Research Labs
as a visiting research scientist in November 2011.
His research interests include multi-camera system
design and applications, fluid surface reconstruction
and medical imaging. He is a member of the IEEE.

Jie Yang received his PhD in computer science from
the University of Hamburg, Germany. He is now
a professor and director of the Institute of Image
Processing and Pattern Recognition, Shanghai Jiao
Tong University. He has led more than 30 national
and ministry scientific research projects in image
processing, pattern recognition, data amalgamation,
data mining, and artificial intelligence.

Jingyi Yu is an Associate Professor in the Depart-
ment of Computer& Information Sciences and the
Department of Electrical& Computer Engineering
at the University of Delaware. He received his B.S.
from Caltech in 2000 and Ph.D. from MIT in 2005.
His research interests span a range of topics in com-
puter vision and computer graphics, especially on
computational cameras and displays. He has served
as a Program Chair of OMNIVIS 11, a General
Chair of Projector-Camera Systems 08, and an Area
and Session Chair of ICCV 11. He is a recipient of

both the NSF CAREER Award and the AFOSR YIP Award.

Yasuyuki Matsushita received his B.S., M.S. and
Ph.D. degrees in EECS from the University of Tokyo
in 1998, 2000, and 2003, respectively. He joined
Microsoft Research Asia in April 2003. He is a Lead
Researcher in Visual Computing Group. His areas
of research are photometric methods in computer
vision. He is on the editorial board member of IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence (TPAMI), International Journal of Computer
Vision (IJCV), IPSJ Journal of Computer Vision and
Applications (CVA), The Visual Computer Journal,

and Encyclopedia of Computer Vision. He served/is serving as a Program Co-
Chair of PSIVT 2010, 3DIMPVT 2011, and ACCV 2012. He is appointed
as a Guest Associate Professor at Osaka University (April 2010-), Visiting
Associate Professor at National Institute of Informatics (April 2011-) and
Tohoku University (April 2012-), Japan. He is a senior member of IEEE.

Michael S. Brown obtained his BS and PhD in
Computer Science from the University of Kentucky
in 1995 and 2001 respectively. He is currently an
Associate Professor and Assistant Dean (External
Relations) in the School of Computing at the Na-
tional University of Singapore. Dr. Browns research
interests include computer vision, image processing
and computer graphics. He has served as an area
chair for CVPR, ICCV, ECCV, and ACCV and is
currently an associate editor for the IEEE Transac-
tions on Pattern Analysis and Machine Intelligence

(TPAMI).


	Title Page
	page 2

	/projects/www/html/publications/docs/TR2013-008.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14


