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ABSTRACT

We propose an attribute-based cryptosystem in which decryp-

tion is conditional on the distance between attributes. Alice

constructs a ciphertext that consists of an encrypted message

and a hidden attribute vector. Bob is able to decrypt Alice’s

message if and only if his attribute vector is within a specified

maximum distance from Alice’s attribute vector. We provide

constructions for Euclidean and Hamming distances. The

cryptosystem has advantages for privacy preserving querying.

In particular, all parties can broadcast their respective cipher-

texts or store them on a database server. Then, a client – not

necessarily belonging to the original set of parties – can inde-

pendently and privately query the database server for cipher-

texts whose attributes are within some small distance from its

own attribute. We describe an application of this cryptosys-

tem in which a customer obtains recommendations from other

customers of a movie rental company in a privacy-preserving

manner.

Index Terms— Attribute-based encryption, Bilinear

maps, Privacy preserving querying

1. INTRODUCTION

Consider a movie rental company that wants to provide a ser-

vice using which a customer, Bob, can obtain recommenda-

tions for movies to watch based on ratings he has provided

for movies in the past. A logical solution is to recommend

movies from the viewing profile of a customer whose movie

ratings closely match the ratings assigned by Bob. However,

in the interest of privacy, none of the customers should dis-

cover each other’s movie viewing profile or preferences. Pri-

vacy preserving querying scenarios of this sort are expected

to become increasingly common with the growing prevalence

of cloud computing. Computing the distance between the

movie ratings of two customers without revealing the indi-

vidual ratings falls under the realm of secure multiparty com-

putation [1, 2]. As long as the function to be computed, in this

case the distance between rating vectors, can be expressed as

an algebraic circuit, there exists a protocol to compute it while

satisfying the privacy requirements of all parties. In practice,

however, such a generalized protocol is extremely complex in

terms of computation and communication overhead. There-

fore, depending upon the specific function of interest, many

efficient specialized protocols have been developed.

One line of work that has received increased attention in

recent years is the application of public-key homomorphic

cryptosystems for computing distance functions in the en-

crypted domain. Depending on the encrypted-domain com-

putation that these cryptosystems allow, they can be classi-

fied into additively homomorphic [3, 4], multiplicatively ho-

momorphic [5] and doubly homomorphic [6] cryptosystems.

Such cryptosystems have been applied for privacy preserv-

ing clustering [7, 8], secure distance computation [9] and,

indeed, for private movie recommendations [10]. Many of

these privacy preserving protocols operate in two stages; the

distance or correlation between data entities is computed se-

curely in the first stage, and data retrieval based on the dis-

tance criterion occurs in the second stage. While these pro-

tocols are efficient for a single data retrieval request, they do

not scale for a very large number of users sequentially or si-

multaneously querying a database. For example, if a second

customer, Charlie, wants to retrieve movie recommendations,

the entire protocol must be executed again, using the encryp-

tion/decryption key pair of Charlie. It would be preferable, if

all parties used public encryption parameters to store or up-

date their data securely on a server, after which, any user(s)

can retrieve anonymous recommendations from the server us-

ing user-specific decryption keys calculated from their movie

ratings. Our goal is to construct a cryptosystem that makes

this possible. To do this, we depart from the encrypted-

domain homomorphic computation paradigm. Instead, we

consider cryptosystems which allow decryption conditioned

on some mathematical property of the data, such as a distance

between movie ratings. We achieve this by constructing an

Attribute Based Encryption (ABE) scheme.

In a conventional cryptosystem, when Alice needs to

transmit a message securely to Bob, she must encrypt it either

with a symmetric key known to her and Bob, or with Bob’s

public key. Instead, in an ABE system such as [11, 12, 13],

Alice obtains some public encryption parameters from a Key

Authority and generates a ciphertext that contains two enti-

ties: the encryption of the message m and a so-called attribute

vector x. The encryption can only be reversed by a decryption



key that satisfies a mathematical condition on the attribute x

of Alice, and the attribute y (say) of Bob. In order to perform

decryption, Bob applies to the Key Authority for a decryption

key which is a function of his attribute vector y. In one ex-

ample of ABE, Bob can decrypt m if and only if x⊥y, or

equivalently x
T
y = 0 [12].

In some ABE systems [11], Alice’s attribute x is a pub-

licly readable portion of the ciphertext; thus anybody can

download the ciphertext but can only decrypt the message

if they possess a compliant attribute. In other ABE sys-

tems [12], the attribute x is not publicly readable, i.e., the

ciphertext consists of a hidden or encrypted attribute in con-

junction with the encrypted message. This has the advantage

that an adversary who obtains the ciphertext cannot deter-

mine the criteria to be satisfied by the intended recipient of

the message. This is of practical importance because it may

be necessary in some applications to protect both the attribute

vector and the message being transmitted. In this case, the

decryption function verifies whether the decryptor’s attribute

is compliant without revealing the encryptor’s attribute, and

if compliant, reveals the message m.

The remainder of this paper is organized as follows: Sec-

tion 2 reviews bilinear mappings and their properties, and the

computational hardness assumptions that underpin the pro-

posed work. In Section 3, we construct an attribute based

cryptosystem in which decryption is possible only if the

squared Euclidean distance, i.e., the squared ℓ2 distance be-

tween the attributes of the encryptor and decryptor are be-

low a threshold. Section 4 presents a variant of the pro-

posed scheme in which the decryption is conditional on the

Hamming distance between binary attribute vectors. In Sec-

tion 5, we show an application of this cryptosystem to a

privacy-preserving movie recommendation system and com-

pare and contrast this ABE-based recommender system with

previously proposed recommender systems that exploit ho-

momorphic encryption. Section 6 concludes the paper.

2. THEORETICAL BACKGROUND

2.1. Bilinear Groups of Composite Order

We review the mathematical properties of bilinear groups of

composite order, particularly when the group order N is a

product of three primes [12]. As explained in the later sec-

tions, these properties drive the construction of the proposed

cryptosystem, and are used to prove the correctness of the al-

gorithm.

Let N = pqr, where p, q, r are three distinct prime num-

bers. Let G and GT be cyclic groups of order N . Then,

the mapping e : G × G → GT is a non-degenerate bilinear

map if the following conditions are satisfied: (1) e(xα, yβ) =
e(x, y)αβ for x, y ∈ G and α,β ∈ Z, and (2) If g is a gen-

erator of G, then e(g, g) is a generator of GT . Now, con-

sider the cyclic groups Gp, Gq and Gr with orders p, q and r

respectively and generators gp, gq and gr respectively. Then

G = Gp×Gq×Gr and any element x ∈ G can be represented

as x = gαp g
β
q g

γ
r , where α,β, γ ∈ Z. From the definition of a

bilinear map, if g generates G then gpq is a generator of Gr,

gqr is a generator of Gp, and gpr is a generator of Gq . Below,

we present some well-known properties of the bilinear maps

e(·, ·) that will be useful later in the paper:

e(gαp , g
β
q ) = 1

e(gαp g
β′

q , gβq ) = e(gβ
′

q , gβq )

e(gαp , g
β′

p gβp ) = e(gαp , g
β′

p ) · e(gαp , g
β
p )

e(gαp g
β
q , g

α′

p gβ
′

q ) = e(gαp , g
α′

p ) · e(gβq , g
β′

q )

Proving the above properties is a straightforward application

of the definition of the bilinear mapping given earlier, and

the properties of generators of multiplicative cyclic groups,

which allows us to express gp ≡ gqr, gq ≡ gpr, and gr ≡ gpq .

2.2. Security Assumptions

In this paper, we describe in detail the construction of a

distance-attribute-based cryptosystem and provide a sketch of

the proof of security. The detailed security proof is deferred to

a later work. At this stage, we note that breaking the proposed

cryptosystem reduces to solving two problems (described be-

low) that are regarded as computationally intractable. Con-

sider an integer N = pqr for large prime numbers p, q, r and

a cyclic group G = Gp ×Gq ×Gr. Then, the security of our

cryptosystem is based on the following problems.

1. Subgroup Decision Problem: It is computationally

hard to distinguish elements of the subgroup Gp × Gq

from an element of the group G. In other words, it is

computationally hard to determine whether an element

is drawn from a uniform distribution on G, or from a

uniform distribution on the subgroup Gp ×Gq .

2. Pairing Diffie-Hellman Problem: Consider a bilinear

map e : G × G → GT . Choose ḡ as one element from

the set {gp, gq, gr}. Suppose that e(ḡ, ḡ)v is given and

an integer u is chosen at random. Then, it is computa-

tionally hard to distinguish e(ḡ, ḡ)uv ∈ GT from a ran-

domly chosen element of GT . Another way of stating

this is that, given e(ḡ, ḡ)v , it is computationally hard to

obtain v.

Both these assumptions are related to the computational

intractability of finding non-trivial prime factors of N . For

a detailed discussion of proving security of an ABE system

using the above hardness assumptions, please refer to [12].

3. ABE CONDITIONED ON ℓ2 DISTANCE

An ABE system involves the interplay of three kinds of

entities: (1) one or more encryptors (2) one or more decryp-

tors (3) a Key Authority. In our treatment, we employ an



Ciphertext, ξ(m,x): (A0, {Ai}
n
i=1, Ā, B,C) =

(

(gqc)
γ , {(gqc)

−γxisi}
n
i=1, (gqc)

−γ
n∑

i=1

x2
i

s0, g
δ
p,m · e(gp, a)

δ

)

(1)

Pre-decryption Key: (K0, {K
(1)
t ,K

(2)
t }τt=0) =



gαp g
β
q , {a

−1g
α−ρt−2

n∑

i=1

αi+2α
n∑

i=1

zi

p , gρt

p gβσt

q }τt=0



 (2)

Pre-decryption Key: (K0, {K
(1)
t ,K

(2)
t }τt=0) =



gαp g
β
q , {a

−1g
nα−ρt−2

n∑

i=1

αi+2αw(z)

p , gρt

p gβσt

q }τt=0



 (3)

Decryption Function: Dℓ2 = C · e(B,K
(1)
t ) · e(A0,K

(3)
t ) · e(A0B,K

(2)
t ) ·

(

e(ĀB,K0)
)−1

·

(

n
∏

i=1

e(AiB,Ki)

)2

(4)

Decryption Function: DH = C · e(B,K
(1)
t ) · e(A0,K

(3)
t ) · e(A0B,K

(2)
t ) ·

(

n
∏

i=1

e(AiB,K0)

)−1

·

(

n
∏

i=1

e(AiB,Ki)

)2

(5)

encryptor, Alice, and a decryptor, Bob. Decryption is allowed

on the condition that the squared ℓ2 distance between the

attributes x of Alice and y of Bob is less than a threshold τ .

Setup: The Key Authority generates large prime numbers

p, q, r and two cyclic groups G and GT of order N = pqr. As

above, there are cyclic groups Gp, Gq and Gr with orders p, q

and r respectively and generators gp, gq and gr respectively.

Let e : G × G → GT be a non-degenerate bilinear map1.

The Key Authority randomly chooses a ∈ Gp and c ∈ Gr,

and outputs public parameters (N, gp, gr, gqc, e(gp, a)),
and retains a private master key (p, q, r, gq, a, c). The Key

Authority and Bob publicly agree on a distance threshold τ .

Encryption: Alice has a message m to be encrypted and

an integer attribute vector x = (x1, x2, ..., xn) to be hidden

in the ciphertext. She randomly chooses δ, γ ∈ Z and

si ∈ Gr, i = 0, 1, 2, ..., n and computes the ciphertext as

shown in (1). Note that the parameters si, δ and γ are

chosen at random for each encryption and, as we shall see,

they are not needed by the decrypting party. These param-

eters ensure that the encryption of the same message m is

different every time, i.e., the ciphertext is semantically secure.

Decryption Key Generation: Bob has an integer attribute

vector, y = (y1, y2, ..., yn). To hide y from the Key Author-

ity, he randomly chooses an integer vector z = (z1, z2, ..., zn)
and sends z+ y and

∑n

i=1 zi to the Key Authority. The Key

Authority randomly chooses integers α,β,αi, i = 1, 2, ..., n
and σt, ρt, t = 0, 1, ..., τ , and generates a “pre-decryption

1There exist algorithms based on elliptic curves to generate groups of

composite order and bilinear mappings using these groups. Examples include

the Weil pairing and Tate pairing [14].

key”. This is given by (2) and the following relations:

K ′
i = gαi

p gβ(yi+zi)
q for i = 1, 2, ..., n

K
′(3)
t = gαp g

β(
n∑

i=1

(yi+zi)
2−t−σt)

q for t = 0, 1, ..., τ

Then, using the pre-decryption key and his knowledge of y

and z, Bob obtains the decryption key, which is given by (2)

and the following relations:

Ki = K ′
iK

−zi
0 for i = 1, 2, ..., n (6)

K
(3)
t = K

′(3)
t K

−
n∑

i=1

(z2
i
+2ziyi)

0 for t = 0, 1, ..., τ (7)

Decryption: Given the attribute y, Bob evaluates the expres-

sion (4) repeatedly for t = 0, 1, ...τ and stops if he recovers

the message m. The message m is designed in a special

way to ensure that Bob can verify that he has succeeded in

recovering it. Details of this are explained below.

Proof of Correctness: We now evaluate the right hand side

of (4) to show that the algorithm is correct. Throughout, we

will use the properties of bilinear maps from Section 2. Let

us evaluate some terms in expression (4) separately. First note

that, for t = 0, 1, ..., τ , we have

e(A0,K
(3)
t ) = e



(gqc)
γ , g

α−
n∑

i=1

(z2
i
+2ziyi)

p g
β(

∑
n

i=1
y2
i
−t−σt)

q





= e(gq, gq)
γβ(

∑
n

i=1
y2
i
−t−σt) (8)

e(A0B,K
(2)
t ) = e

(

(gqc)
γgδp, g

ρt

p gβσt

q

)

= e(gδp, g
ρt

p ) · e(gq, gq)
γβσt (9)

(

e(ĀB,K0)
)−1

= e(gδp, g
−α
p ) · e(gq, gq)

γβ
n∑

i=1

x2
i

(10)



Further, for each i = 1, 2, ..., n,

e(AiB,Ki) = e
(

gδp(gqc)
−γxisi, g

αi−αzi
p gβyi

q

)

= e(gδp, g
αi−αzi
p ) · e(g−γxi

q , gβyi

q )

= e(gδp, g
αi−αzi
p ) · e(gq, gq)

−γβxiyi ,

so the product term in the decryption expression becomes

(

n
∏

i=1

e(AiB,Ki)

)2

= e(gδp,

n
∏

i=1

g2(αi−αzi)
p ) · e(gq, gq)

−2γβxT
y

= e



gδp, g
2

n∑

i=1

(αi−αzi)

p



 · e(gq, gq)
−2γβxT

y (11)

Upon evaluating the product of the right-hand sides of

(8),(9),(10) and (11) using the properties of bilinear maps, we

obtain

V := e



gδp, g
ρt−α+2

n∑

i=1

(αi−αzi)

p



 · e(gq, gq)
γβ(‖x−y‖2

2−t))

Substituting the value of V in expression (4), we have

Dℓ2 = C · e(B,K
(1)
t ) · V

= m · e(gp, a)
δ · e



gδp, a
−1g

α−ρt−2
n∑

i=1

(αi−αzi)

p



 · V

= m · e(gq, gq)
γβ(‖x−y‖2

2−t)) (12)

Thus, the message m is unmasked by the decrypting party if

and only if ‖x−y‖22 = t. Otherwise, the result Dℓ2 is just an

element of GT . A practical issue here is to embed a publicly

known pattern in the message m such that a decryptor can

actually verify that he has decrypted m. One way to accom-

plish this is to left-shift the digits of m, and append a publicly

known pattern of digits. For example, if the true message is

“7984”, then Alice actually encrypts m =798429742, where

the last 5 digits are used to verify correct decryption. The

underlying assumption is that, because the ciphertext field

is so large, it is extremely unlikely that Bob’s calculation of

Dℓ2 will return a value with the chosen 5-digit pattern for

‖x − y‖22 (= t. Note that the above calculation of V and

Dℓ2 must be performed for all integers t ∈ [0, τ ]. If Bob

discovers the pattern in the last 5 digits of Dℓ2 , he declares

that decryption was successful for some t ≤ τ , removes the

5-digit pattern, and recovers the message “7984”. If he does

not discover the 5-digit pattern in Dℓ2 for any t ∈ [0, τ ], then

decryption is deemed unsuccessful based on the ℓ2 distance

condition on the attributes.

Proof of Security (Sketch): We briefly sketch the proof of

security, which we shall detail in a later work. In particular,

we consider “selective” security, wherein the adversary

first generates example attributes, and a simulator chooses

encryption parameters in response to this action. Now,

consider the following two-person game, which challenges

the adversary to distinguish between ciphertexts based on

two attributes that he has generated. This proof strategy is

similar to that used in [12] :

1. The adversary chooses three attribute vectors x, y and

v such that ‖x − v‖22 = ‖y − v‖22, and sends x and y

to the simulator.

2. Given public encryption parameters, the simulator

chooses random variables s
(x)
i , s

(y)
i ∈ Gr for all

i = 0, 1, 2, ..., n, and generates ciphertexts ξ(m,x) and

ξ(m,y) respectively, i.e., it encrypts the same message

m using two different attribute vectors.

3. The simulator express the two ciphertexts in the form

ξ(m,λ) parameterized by a Bernoulli-0.5 random vari-

able λ such that

ξ(m,λ) =

{

ξ(m,x), if λ = 0
ξ(m,y), if λ = 1.

The simulator tosses a fair coin, records the result λ,

and sends ξ(m,λ) to the adversary. Now, whether

the adversary can successfully decrypt the ciphertext

or not, he has no strategy better than random guessing

to distinguish whether the attribute used to construct

ξ(m,λ) was x or y.

4. ABE CONDITIONED ON HAMMING DISTANCE

In this section, we describe a variant in which the attributes

x and y are binary and decryption is allowed provided the

Hamming distance H(x,y) between the attributes is less

than a threshold τ .

Setup: This step is identical to that in Section 3.

Encryption: Alice has a message m to be encrypted and

a binary attribute vector x = (x1, x2, ..., xn) to be hidden

in the ciphertext. She randomly chooses δ, γ ∈ Z and

si ∈ Gr, i = 1, 2, ..., n and computes the ciphertext as

(A0, {Ai}
n
i=1, B, C), where A0, {Ai}

n
i=1, B and C are

exactly as given in (1). Note that this ciphertext does not

contain the Ā term from (1).

Decryption Key Generation: Bob also has a binary attribute

vector, y = (y1, y2, ..., yn). To hide y from the Key Author-

ity, he randomly chooses a binary vector z = (z1, z2, ..., zn)
and sends z ⊕ y and w(z) =

∑n

i=1 zi to the Key Authority.

Here ⊕ denotes addition modulo 2 and w(z) is the Hamming

weight of z. The Key Authority randomly chooses integers

α,β,αi, i = 1, 2, ..., n and σt, ρt, t = 0, 1, ..., τ , and gen-

erates a “pre-decryption key”. This is given by (3) and the



following relations:

K ′
i = gαi

p gβ(yi+zi)
q for i = 1, 2, ..., n.

K
′(3)
t = gαp g

β(w(y⊕z)−t−σt)
q for t = 0, 1, ..., τ.

Then, using the pre-decryption key and his knowledge of y

and z, Bob obtains the decryption key, which is given by (3)

and the following relations:

Ki = K ′
iK

−zi
0 for i = 1, 2, ..., n.

K
(3)
t = K

′(3)
t K

−w(z)+2zT
y

0 for t = 0, 1, ..., τ.

Decryption: Given the binary attribute y, Bob evaluates

the expression (5) repeatedly for t = 0, 1, ...τ and stops

if he recovers the message m. Again, the message m is

designed as in Section 3 to ensure that Bob knows when he

has recovered m rather than a random element of GT .

Proof of Correctness: We now evaluate the right hand side

of (5) to show that the algorithm is correct. Using the prop-

erties of bilinear maps from Section 2 and proceeding as in

Section 3, we can similarly show that

DH = m · e(gq, gq)
γβ(H(x,y)−t)) (13)

Thus, the message m is unmasked and discovered by the de-

crypting party if and only if H(x,y) = t. Otherwise, the

result DH is just an element of GT . The sketch of the secu-

rity proof is similar to that given in Section 3.

5. PRIVATE MOVIE RECOMMENDER SYSTEM

We apply the proposed attribute-based cryptosystem to a pri-

vacy preserving movie recommender system. The partici-

pants include a Key Authority that generates public encryp-

tion parameters and pre-decryption keys, a set of users who

consent to store their movie ratings and recommendations in

encrypted form on a database server, and a user who seeks to

obtain recommendations based on his previous viewing pref-

erences. The parties are assumed to be “honest-but-curious”,

i.e., they will follow the rules of the protocol, but will attempt

to glean as much information as possible about data owned

by the other parties during each step of the protocol.

5.1. Notation and Problem Statement

As shown in Fig. 1, let KA be the Key Authority, S be the

database server, Ui, i = 1, 2, ...,M be the M users who pro-

vide encrypted movie ratings and recommendations to a cus-

tomer, Bob. Let the x
(i) be the n-length movie ratings vector

of the ith user, and y be the n-length movie ratings vector of

Bob. Since movie raters typically assign a 1-to-5 star rating,

let x
(i)
j , yj ∈ {1, 2, 3, 4, 5} for j = 1, 2, ..., n. For simplicity

of exposition, assume that all the participants have watched

Fig. 1. Setup of a privacy-preserving movie recommender

system using the proposed ABE system, showing the direc-

tions of data-flow among the various participants.

all n movies indexed by j = 1, 2, ..., n, i.e., they have a valid

rating for each movie. Let mi be the movie recommended by

user i. We assume that each user recommends a single movie,

but this is not a binding requirement; the system easily ex-

tends to the case of a vector of movie recommendations. The

goal is for Bob to obtain recommendations from users who

satisfy the ℓ2 distance condition on the attributes, i.e., that

‖x(i) − y‖22 ≤ τ . For users that do not satisfy this condition,

Bob should obtain neither the rating vectors nor the recom-

mendations. We utilize the ABE cryptosystem of Section 3.

5.2. A Movie Recommendation Protocol

Setup: The Key Authority selects large prime numbers and

cyclic groups of composite order as explained earlier. It

generates the public parameters and a private master key.

Encryption of Ratings & Recommendations: Each user, Ui

performs the function of Alice, i.e., it generates a ciphertext

of the form of (1) using its message m = mi and attribute

vector x = x
(i). The ciphertexts are stored on the server

without identifying the users. This is accomplished, for

example, by the server randomly permuting the user indices.

Decryption Key Generation for Bob: Using his movie

rating (attribute) vector y and a randomly chosen masking

vector z, Bob interacts with the Key Authority to obtain

decryption keys given by (2), (6) and (7).

Decryption: Bob downloads the ciphertext of the users

Ui. Then, for every i ∈ {1, 2, ...,M} and for every



t ∈ {0, 1, ..., τ}, Bob attempts to decrypt mi. According

to the proof of correctness in Section 3, he succeeds only

if the ℓ2 distance criterion on the rating vectors is satisfied,

i.e., he obtains a movie recommendation only from those

users whose ratings for the n previously watched movies are

τ -close to his own ratings.

Salient features: A noteworthy difference between the

proposed protocol and those employing homomorphic

functions, e.g., [10], is that encryption does not have to

be repeated for a new user. Any user can just download

the ciphertexts from the server and try to decrypt them,

accessing the recommendations only from users whose

ratings are τ -close to his own. In other words, every user Ui

can broadcast his ciphertext, assured of the fact that (a) his

exact movie preferences, given by the rating vector will not

be revealed to others, not even to those users Uj for which

‖x(i) − x
(j)‖22 ≤ τ , and (b) his recommendations will be

anonymously revealed to the users with similar preferences.

Another attractive feature is that the protocol does not require

multiple rounds of communication; there is one setup phase,

one encryption phase and a download-and-decrypt phase. By

design, Bob does not reveal his movie preferences to the Key

Authority or to any of the recommenders. Furthermore, if one

more movie is appended to the rating vector, say xn+1, a user

can easily modify his ciphertext in (1) by uploading to the

server (gqc)
−γxn+1sn+1 to update An+1 and (gqc)

−γx2
n+1s0

to update Ā.

Limitations: The main limitation of this protocol is that, Bob

must carry out O(τ) decryptions per user, one decryption for

each t = 0, 1, ..., τ . This is a direct consequence of the way

the ciphertext is designed, i.e., the way in which the message

m in (1) is unmasked if the ℓ2 distance equals t for some

t ∈ {0, 1, ..., τ}. This reveals the distance between the at-

tributes and places a limitation on the value of τ or more gen-

erally on the range of distances that can be tested. It would be

preferable if the threshold condition, ‖x(i) − y‖22 ≶ τ , could

be tested over all t ∈ [0, τ ] using only one decryption. For the

Hamming distance metric, this is achievable but with a vastly

larger ciphertext [15]. In our protocol, decryption complexity

of Bob can be reduced by evaluating (10) and (11) only once,

as the expressions do not depend on t. However, incorporat-

ing a more efficient way to test the threshold condition on the

attributes is an interesting avenue for future research.

6. CONCLUSIONS

We presented an attribute-based cryptosystem in which de-

cryption is possible if and only if the decryptor’s attribute

vector is within a specified ℓ2 distance from the encryptor’s

attribute vector. We presented a variant of the system for bi-

nary attributes satisfying a Hamming distance criterion. The

decryption algorithm recovers the encrypted message using

properties of bilinear maps on cyclic groups of composite or-

der. Using this cryptosystem, a privacy-preserving movie rec-

ommender system was constructed using which a customer

exploits the ℓ2 distance condition to recover movie recom-

mendations from other customers who have similar viewing

preferences. Different from previous attribute-based cryp-

tosystems, the customer can use additive masking to obtain

a decryption key without revealing his attribute to the key

authority. The proposed cryptosystem affords an implemen-

tation of privacy preserving querying with a “encrypt once,

decrypt many times” feature. This is an advantage over

two-party secure querying based on homomorphic cryptosys-

tems, where encryption must necessarily be repeated using

the unique public key of a particular querying client.
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