
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Bayesian Networks for Matcher
Composition in Automatic Schema

Matching

Nikovski, D.; Esenther, A.; Ye, X.; Shiba, M.; Takayama, S.

TR2012-050 June 2012

Abstract

We propose a method for accurate combining of evidence supplied by multiple individual match-
ers regarding whether two data schema elements match (refer to the same object or concept), or
not, in the field of automatic schema matching. The method uses a Bayesian network to model
correctly the statistical correlations between the similarity values produced by individual match-
ers that use the same or similar information, in order to avoid overconfidence in match probability
estimates and improve the accuracy of matching. Experimental results under several testing pro-
tocols suggest that the matching accuracy of the Bayesian composite matcher can significantly
exceed that of the individual component matchers.

International Conference on Enterprise Informaiton Systems

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2012
201 Broadway, Cambridge, Massachusetts 02139

MERLCoverPageSide2

BAYESIAN NETWORKS FOR MATCHER COMPOSITION IN
AUTOMATIC SCHEMA MATCHING

Daniel Nikovski1, Alan Esenther1, Xiang Ye1, Mitsuteru Shiba2, and Shigenobu Takayama2

1Mitsubishi Electric Research Laboratories, 201 Broadway, Cambridge, MA 02139, USA
2Mitsubishi Electric Corporation, 5-1-1 Ofuna, Kamakura, Kanagawa 247-8501, Japan

{nikovski, esenther, ye}@merl.com, {Shiba.Mitsuteru@ap, Takayama.Shigenobu@db}.MitsubishiElectric.co.jp

Keywords: Data integration; virtual databases; uncertain schema matching

Abstract: We propose a method for accurate combining of evidence supplied by multiple individual matchers regarding

whether two data schema elements match (refer to the same object or concept), or not, in the field of automatic

schema matching. The method uses a Bayesian network to model correctly the statistical correlations between

the similarity values produced by individual matchers that use the same or similar information, in order to

avoid overconfidence in match probability estimates and improve the accuracy of matching. Experimental

results under several testing protocols suggest that the matching accuracy of the Bayesian composite matcher

can significantly exceed that of the individual component matchers.

1 INTRODUCTION

The problem of automatic schema matching (ASM)

between two or more database schemas arises in

many applications, such as data migration, when one

database has to be incorporated into another, virtual

databases, where a single interface is used to access

multiple databases, and data analysis, when multiple

databases are stored in a data warehouse with a single

schema. When two database schemas that describe

the same problem domain are given (e.g. purchase

orders, real-estate listings, books, etc.), the objec-

tive of an automatic schema matching (ASM) method

is to discover which pairs of elements from the two

schemas are likely to match, that is, likely to refer to

the same entity (e.g. shipping address, house price,

book title, etc.), and possibly to also estimate the con-

fidence of such a match.

The ASM problem is usually very difficult,

because when database designers create database

schemas, they rarely provide full and unambiguous

information about what individual schema elements

represent. Even if any such information exists, it is

usually not meant for computer processing. Rather,

database designers usually choose suitable words or

abbreviations for the names of data elements, so as to

facilitate future maintenance of the data schemas by

themselves or other humans. Because of this common

practice, lexical analysis of the names of data ele-

ments could be an effective approach to ASM. For ex-

ample, the names “Street”, “Str”, and “StreetName”

can be recognized to refer to a street, possibly in an

address, and lexical analysis by string matching can

reveal this similarity. A different type of information

that might be useful for ASM is the structure of the

data schemas, if present. In many cases, schemas are

not represented by a flat list of element names, but the

elements are organized in a hierarchy. For example,

the element “CustomerName” might have three sub-

elements, “FirstName”, “MiddleInitial”, and “Fami-

lyName”. Using such structural information is an-

other approach to ASM. Many more approaches exist:

for example, when the actual values of two database

fields come from the same statistical distribution (e.g.,

over names, numbers, etc.), this can serve as evidence

that the corresponding schema elements match. Dic-

tionaries, thesauri, and other auxiliary data sources

have been used for ASM purposes, too (Rahm &

Bernstein, 2001).

Due to the difficulty of the problem, no single

method has been shown to perform best on all ASM

tasks. This has led to the idea that multiple basic

matchers of the types described above can be used to-

gether in a composite matcher (Do & Rahm, 2002;

Tang & Li, 2006). The purpose of the composite

matcher is to combine the output of the individual

matchers and arrive at a more accurate set of likely

matches. In most cases, the output of an individual

matcher k for a given pair of elements S1.Ei and S2.E j

is a similarity value vk in the interval [0,1], where

vk = 0 means no similarity, and vk = 1 means full con-

fidence that the two elements match. When given a

library of K different individual matchers, the objec-

tive, then, is to find a composite similarity measure v

that is a function of the individual outputs vk, k = 1,K.

Several methods for combining similarity values

have been proposed. The LSD system (Doan et al.,

2003) uses machine learning techniques to estimate

weighting coefficients wk such that the final similarity

measure v is a weighted average of the individual sim-

ilarity measures: v = ∑
K
k=1 wkvk. The COMA system

(Do & Rahm, 2002) extends this approach with the

minimum and maximum operators: vmin = mink wkvk

and vmax = maxk wkvk.

Although experimental results suggest that these

methods for combining similarity values lead to

matching accuracy that is higher than that of the ac-

curacy of the individual matchers, it can be recog-

nized that they are specific approaches to the funda-

mental problem of combining evidence from multi-

ple sources (in this case, multiple individual match-

ers), and make very specific assumptions about the

statistical structure of the evidence. These assump-

tions might or might not be warranted in practice. We

propose a general method for correct modeling of any

kind of statistical structure in the evidence, based on

Bayesian networks and probabilistic reasoning, and a

statistically grounded method for composing matcher

evidence using these Bayesian networks.

2 BAYESIAN NETWORKS FOR

COMBINING OUTPUTS OF

MULTIPLE SCHEMA

MATCHERS

When combining evidence from multiple sources,

one of the major problems and causes for errors is the

improper modeling of correlation and other forms of

statistical dependence between variables in the prob-

lem domain. For example, when two very similar

matchers k and l are applied to an ASM problem,

their outputs vk and vl will be highly correlated —

when vk is high, then vl will be high, too, and vice

versa. For example, a lexical matcher based on edit

(Levenshtein) distance would assign a medium-level

similarity to the pair of element names “Street” and

“State”; similarly, a lexical matcher based on the Jac-

card distance between the sets of letters in the two ele-

ments would assign such similarity to the pair. For an-

other pair of elements, for example “Street” and “Ad-

dress1”, both lexical matchers would compute low

similarity, becasue in this case similarity cannot be

established on the basis of string matching. In either

case, not only is the computed similarity misleading

as regards to the correct match, but both matchers pro-

vide the same kind of evidence (both positive or both

negative), so its (in this case, harmful) influence is re-

inforced. If a weighted sum of the two similarity val-

ues is used, the same evidence will be counted twice,

in practice, which will result in a phenomenon known

as over-confidence. One of the matchers is almost re-

dundant, and including it in the composition process

might actually decrease the accuracy of matching.

This effect has been observed in other fields where

evidence has to be combined, such as medical diag-

nosis, and one possible tool for handling it has been

belief reasoning in Bayesian networks. Our method

for combining matcher output is based on such a net-

work.

2.1 Representation

A Bayesian network (BN) is a probabilistic graphical

model that represents a set of random variables and

their conditional dependencies by means of a directed

acyclic graph (DAG). An edge in the DAG between

two nodes signifies that the variable Y corresponding

to the child node is statistically conditionally depen-

dent on the variable X corresponding to the parent

node. This dependence is expressed in a conditional

probability table (CPT) stored in the child node for

Y . If X ∈ Par(Y), where Par(Y) is the set of par-

ent nodes of Y , this table contains probability entries

Pr(Y = y|Par(Y) = z) for every possible combina-

tion of values x that X can take on and configurations

(sets of values) z that the variables in Par(X) can take

on. Likewise, when there is no direct edge between

two nodes, they are assumed to be conditionally inde-

pendent given their parents. In particular, when two

nodes have a common parent, but no edge between

them, they are assumed to be conditionally indepen-

dent given the value of their parent. The presence (or

absence) of edges in the DAG of a Bayesian network

is a way to express the statistical dependence (corre-

lation) between variables.

A Bayesian network to be used for combining out-

puts of individual matchers in an ASM task is shown

in Figure 1. Its DAG is a tree of depth four, with

some additional edges between some of the nodes.

The meaning of the nodes is as follows:

1. At the first (top) level, the root node corresponds

to a Boolean variable signifying whether two

schema elements match. This is the final hypoth-

esis that has to be evaluated.

2. The nodes at the second level of the trees repre-

sent independent ways in which the two element

����������	
�

��

����
��

��	
�

�	��
	����

��	
���
�������

��	
���

���	��
�

��	
�

��� ��� ��

�� � � � �
� � � � �

Figure 1: A Bayesian network for combining the output of
multiple individual matchers.

names can match (lexical, structural, instance-

based, etc.). It is expected that these variables

are largely uncorrelated, because they use dif-

ferent information to test for possible matches.

They also each correspond to clusters of individ-

ual matchers whose output is correlated. In Fig-

ure 1, one cluster represents the hypothesis that

the two elements match lexically, and the other

cluster represents the hypothesis that the instances

(values) of the two elements in their respective

databases match.

3. The nodes at the third level of the tree are also

Boolean and represent the individual hypothesis

that the two elements match, according to a single

matcher. In Figure 1, these include two lexical

matchers LM1 and LM2, one structural matcher,

one synonym matcher, and two instance matchers

IM1 and IM2.

4. The leaves of the tree, at the fourth level, represent

the similarity values Vk, k = 1,K of the individ-

ual matchers whose outputs have to be combined

(in this case, for the sake of illustration, K = 6).

These variables are continuous, and their possible

values are the real numbers vk.

The overall structure of the BN expresses the

understanding that when two elements match (or

don’t), the outputs of the structural matcher, syn-

onym matcher, the lexical match variable, and the

instance match variable will be statistically indepen-

dent. This is what is to be expected on a matching

task, because these matchers all use different infor-

mation from the two data schemas in order to com-

pute an estimate about whether the elements match.

However, the outputs of the two lexical matchers LM1

and LM2 would be correlated, as expected if they

use the same information (the names of the two el-

ements). That is why there exists an edge between

nodes LM1 and LM2. Similarly, the output of the

two instance matchers would be correlated, too, be-

cause they would both use the same information to

base their estimates on (namely, the contents of the

two corresponding database fields). Accordingly, an

edge between nodes IM1 and IM2 reflects this depen-

dency. This structure of the BN, then, corresponds to

our understanding of which matchers produce highly

correlated outputs, and which ones are statistically in-

dependent.

2.2 Parameter Estimation

In addition to the graph of the BN, if the network is

to be used for inference, the parameters in its CPTs

have to be specified, too. This can be done by means

of labeled cases, where pairs el = (S1.Ei,S2E j) of el-

ements S1.Ei and S2.E j, l = 1, . . . ,N have been run

through all K matchers, to produce the corresponding

similarity values vl,k, l = 1, . . . ,N, k = 1, . . . ,K, and

the correct labeling for some or all of the remaining

Boolean variables has been supplied, too.

If labels for all Boolean variables have been sup-

plied, then the estimation of the probabilities in

the CPTs of the Boolean nodes could be reduced

to frequency counting. That is, the entry Pr(Y =
y|Par(Y) = z) is equal to the ratio of the number of

cases when Y had a specific value y (either True or

False) and the parents Par(Y) of Y were in configura-

tion z, and the number of times the parents of Y were

in configuration z (regardless of the value of Y). For

the continuous nodes Vk, a suitable parametric model

for the similarity values must be chosen. One possible

model is a normal (Gaussian) distribution with mean

µand variance σ2. Then, two separate normal distri-

butions N(µk,+,σ
2
k,+) and N(µk,−,σ

2
k,−) are estimated

for positive (matching) and negative (non-matching)

cases (pairs of elements), respectively. The mean µk,+

is the average of the similarity values vk,i of all data

cases where the parent node Xk of Vk has been labeled

with value True. The parameter σk,+ is the sampled

standard deviation of these cases. Analogously, the

parameters µk,− and σk,− are the sample mean and

standard deviation of vk,i over all cases when the par-

ent node Xk has been labeled with the value False.

It is also possible to estimate the parameters in the

CPTs when only some of the nodes have been labeled.

A typical situation arises when a human designer has

provided feedback about whether the two elements

match (that is, has assigned a Boolean value to the

root node of the BN), but has not explained why they

match (that is, whether the match is lexical, instance-

based, structural, based on a dictionary, etc.) This sit-

uation is more challenging, but as long as the graph

of the network is known and fixed, it is still possible

to estimate the most likely values of the parameters in

its CPT. This problem is known as parameter learn-

ing with partially observed data in Bayesian networks,

and can be solved by means of gradient ascent in the

likelihood function or the Expectation Maximization

algorithm, among other methods (Heckerman, 2001;

Thiesson, 1995).

Assuming there is a data set Σ of N independent

training cases, the log-likelihood scoring function is

log L(Θ|Σ) =
1

N

M

∑
i=1

N

∑
l=1

log P(Xil |Pa(Xi), θi),

where Σ denotes the training data set, Pa(Xi) denotes

the parents of the node Xi, i = 1, . . . , M, and Θ is the

parameter vector Θ = {θ1, . . . , θM}.

However, we only have partial observations,

which means that there are several hidden nodes with

no labels. For each training case, one pair of ele-

ments S1.Ei and S2.E j is run through all K individual

matchers to produce the corresponding similarity val-

ues vi, j,k, and a true label of two elements matching or

not for the root node OverallMatch is provided by the

human designer. With known structure and partial ob-

servation, we can use the EM (expectation maximiza-

tion) algorithm to find a locally optimal maximum-

likelihood estimate of the parameters (Murphy, 2003).

After learning parameters from a training data set,

each discrete node has a conditional probability ta-

ble (CPT) specifying the probability of each state of

the node given each possible combination of parents’

states.

2.3 Inference

Given the individual similarity values Vk = vk, k =
1,K that have been reported by all individual match-

ers, and a full Bayesian network with CPTs estimated

from data, we can evaluate the probability that the two

elements match on the basis of all evidence, by means

of a standard computational process known as belief

updating. One possible method to perform belief up-

dating is to construct the join tree of the Bayesian net-

work, and use if for inference. This can be done by

means of a number of commercial or freely available

reasoning engines. The continuous variables Vk, un-

der the chosen Gaussian parametrization, can be in-

corporated into the process of belief updating in the

form of virtual (uncertain) evidence (Pan et al., 2006).

To supply virtual evidence to a belief updating engine,

all that is needed is the likelihood ratio of the observed

values vk for the similarity value variables Vk:

L(Vk = vk|Xk)
.
=

Pr(Vk = vk|Xk = T)

Pr(Vk = vk|Xk = F)
=

N(vk|µk,+,σ
2
k,+)

N(vk|µk,−,σ
2
k,−)

,

where N(v|µ,σ2) is the probability that measure-

ment v comes from normal distribution with mean µ

and variance σ2, and Xk is the parent node of Vk in the

BN.

After the process of belief updating concludes, all

Boolean nodes in the network will be assigned proba-

bility values according to the observed evidence (val-

ues) vk for the similarity value variables Vk. The prob-

ability of the root node is the final estimate that the

two elements match, given the combined evidence of

the individual matchers.

3 EXPERIMENTAL RESULTS

In order to evaluate the match accuracy of any

matcher described below, we used five XML schemas

for purchase orders, CIDX, Excel, Noris, Paragon and

Apertum, kindly provided to us by the University of

Leipzig. The figure of merit for evaluation of the ac-

curacy of matching was the popular f-measure, de-

fined as the harmonic mean of precision and recall,

as used in the information retrieval community. If

the number of true matches identified by the match-

ing system as such (hits) is A, the number of true

matches not identified as such (misses) is B, and the

number of cases when two elements do not match,

but the matcher incorrectly declares a match (false

positives) is C, the f-measure F can be computed as

F = 2A/(2A+B+C).
We developed 13 basic schema matchers and eval-

uated the ability of the proposed Bayesian method to

combine their outputs so as to improve the accuracy of

matching. Of these, 11 were lexical matchers: Cosi-

neSimilarity, HammingDistance, JaroMeasure, Lev-

enshteinString, BigramDistance, TrigramDistance,

QuadgramDistance, PrefixName, SuffixName, Affix-

Name, SubstringDistance. One matcher, PathName,

was structural, comparing the entire paths of the two

elements in their respective XML schemas. The last

basic matcher was neither lexical nor structural: the

Synonym matcher declared a match if and only if the

two tested elements were found in a list of synonyms

relevant to the domain of purchase orders. Based on

their method of operation, the similarity values com-

puted by the 11 lexical matchers can be expected to

be highly correlated and statistically dependent; in

contrast, the synonym matcher could be expected to

produce output that is largely independent of the lexi-

cal matchers. Experimental evaluation of their pair-

wise dependence confirms this intuition: Figure 2

shows the pairwise correlation between all 13 pairs of

matchers, evaluated from all pairs of elements in all

ten pairs of schemas. Clearly, all 11 lexical matchers

Figure 2: Pair-wise correlations between all pairs of basic
matchers, numbered as follows: 1: Edit Distance; 2: Sub-
string Distance; 3: Bi-Gram Distance; 4: Tri-Gram Dis-
tance; 5: Quad-Gram Distance; 6: Cosine Similarity; 7:
Hamming Distance; 8: Jaro Measure; 9: Affix Name; 10:
Prefix Name; 11: Suffix Name; 12: Path Name; 13: Syn-
onym.

Figure 3: Scatter plot of similarity values computed by the
Edit Distance (LevenshteinString) and SubstringDistance
matchers. Their output is clearly correlated, resulting in a
correlation coefficient of 0.9892.

are highly correlated, whereas their correlation with

the Synonym matcher is minimal. Somewhat surpris-

ingly, the structural matcher, PathName, is the least

correlated with any other matcher.

The kind of major correlation that exists between

lexical matchers is illustrated in Figure 3 that shows

a scatter plot of the similarity values computed by

the LevenshteinString (edit distance) matcher and the

SubstringDistance matcher. Their high correlation

(0.9892) makes one of them almost redundant, if the

other one is present.

Regarding the experimental evaluation of match-

ing accuracy, as with any machine learning method,

care should be given to the training and testing eval-

uation protocol, that is, which data are used for train-

ing and which data are used for testing. We used three

evaluation protocols, as described below.

3.1 Testing on Training Data set

This is the simplest evaluation protocol, where we

use the same data set for testing and training. Its

purpose is to evaluate how well we can fit the train-

ing data. Under this protocol, we define ten match-

ing tasks that correspond to all possible pairs of the

five XML schemas. For each matching task (pair of

schemas), we build a dedicated Bayesian composite

matcher that is specific for this task. The same data

set, then, is used as evidence to predict the belief for

every pair of elements. This is the most lenient eval-

uation protocol, since the learning algorithm has seen

during training the data that will be used for testing.

After a similarity matrix is computed for all pairs

of elements of two database schemas, an additional

global matching step called Max1/Delta is performed

to produce the final match decisions, based on the

understanding that most often (but not always) map-

pings between database elements are one-to-one (Do

& Rahm, 2002). Since this procedure is sensitive to

the exact value of the Delta parameter, we present

below results as a function of that paramater. After

global match decisions have been obtained, they are

compared with the ground truth, and the f-measure for

this pair of schemas is computed. These f-measures

are averaged over all pairs of tasks in the testing data

set (in this case, ten pairs of tasks), in order to arrive

at the final overall f-measure.

Figure 4 shows a comparison between all 13 ba-

sic matchers and the Bayesian Composite Matcher

(BCM). The accuracy of the BCM reaches 0.819 and

is significantly higher than that of any other matcher.

It is also practically constant for a wide range of the

parameter Delta. The performance of Path Name

matcher is better than other individual matchers, be-

cause it is a hybrid matcher combining two basic

match techniques.

3.2 Leave-One-Out Cross Validation

(LOOCV)

A more realistic testing protocol is under the leave-

one-out cross validation (LOOCV) method, where

training and testing data are clearly separated. Each

of the ten pairs of schemas is used for testing, using

a BCM that was learned using the other nine pairs of

schemas. The results are averaged over the ten pairs,

as follows:

1. Build training and testing data sets for 10 test

tasks. For instance, if the similarity matrix of

Figure 4: Comparison of average f-measure between the
Bayesian Composite Matcher and all other matchers.

Excel ↔ Noris is used as testing set, the training

data set for this test task is a collection of similar-

ity matrices of the remaining 9 schema pairs.

2. Learn one Bayesian composite matcher for each

task based on its training data.

3. Implement Max1/Delta selection approach on

the composite similarity matrix generated by each

Bayesian Composite Matcher.

3.3 Exclusive Leave-One-Out Cross

Validation (ExclLOOCV)

The second protocol described above still allowed

the training algorithm to see data from the pair of

schemas that would be used for testing, but not the

ground truth for their direct match. To eliminate any

exposure of the training algorithm to data that would

be used for testing, we modified the LOOCV pro-

cedure as follows. For each task, if the test pair is

A ↔ B, the training examples only come from the

three remaining schemas not involving either A nor B.

For example, if one test set is Excel ↔ Noris, it will

be tested with the Bayesian composite matcher that

has used only the following three pairs of schemas for

training: CIDX ↔ Apertum, CIDX ↔ Paragon, and

Apertum ↔ Paragon. This is the maximally realistic

testing protocol.

Figure 5 shows a comparison between the two

variants of the LOOCV evaluation protocol for the

Bayesian Composite Matcher. It can be seen that the

accuracy drops to 0.76 under usual LOOCV and 0.73

under exclusive LOOCV.

4 RELATED WORK

As mentioned in the first section, many methods

for creating composite matchers have been tried, and

this section explains the difference between them and

Figure 5: Comparison of Bayesian composite matcher per-
formance under LOOCV and exclusive LOOCV testing
protocols.

the proposed approach. One major distinction be-

tween these methods is whether they rely on manual

tuning of the composition structure and parameters, or

such parameters are estimated from a training set and

verified on an independent test set. The composition

methods developed in the COMA (Do & Rahm, 2002;

Do & Rahm, 2007) and GLUE (Doan et al., 2003)

systems are based on manual tuning of the composi-

tion parameters, so comparison with learning meth-

ods for tuning parameters is not entirely correct; a

composite matcher that is manually tuned with a spe-

cific set of schemas in mind can certainly be expected

to be more accurate than a learning matcher that is

tested under a cross-validation protocol.

Among the learning methods for composing

matchers, our approach is most similar to the one pro-

posed by Marie and Gal (Marie & Gal, 2007), who

have approached the problem from a Bayesian net-

work perspective, too, arguing that a disciplined ap-

proach to handling match uncertainty has to be ap-

plied. However, their approach is based on Naive

Bayes networks, that is, two-level Bayesian networks

with one root node that corresponds to the matching

event, and many leaf nodes that are directly children

to the root node. It can be shown that such a Naive

Bayes network has the same classification properties

as a logistic regression model, and the decision sur-

face is linear, similar to the one used in the LSD and

GLUE systems (Doan et al., 2003; Doan et al., 2003).

In contrast, a full (non-naive) Bayesian network like

the one proposed in this paper can model arbitrary

correlations and decision surfaces.

Furthermore, the Bayesian network proposed in

this paper is also different from the Bayesian net-

work classifiers used in the YAM system (Duchateau

et al., 2009) in that our network includes unobservable

nodes corresponding to types of matchers; in con-

trast, YAM employs the BayesNet classifier from the

WEKA library that can learn the structure of a fully

observable network by adding and removing edges,

but cannot add unobservable nodes (Witten & Frank,

2005). Unobservable nodes corresponding to a type

of matcher (e.g. lexical, dictionary-based, structural,

etc.) present a natural way of representing the condi-

tional dependency between multiple matchers of the

same type, because they restrict the edges of the graph

only to the nodes of the same type. In contrast, a

fully-connected BN without hidden nodes would re-

quire an exponential number of CPT parameters to be

estimated, which would make it practically impossi-

ble to collect the data necessary for estimating them.

This problem is further compounded by the continu-

ous values of the similarity values produced by basic

matchers — in fact, it is not immediately clear how

YAM would have been able to learn a fully connected

BN with 13 continuous nodes representing the simi-

larity values of each basic matcher, from the few thou-

sand examples available from the PO dataset under

the two LOOCV protocols.

On the other hand, non-linear classifiers such as

decision trees (Duchateau et al., 2008) can indeed

represent non-linear decision surfaces from a lim-

ited number of training examples, but are not inher-

ently probabilistic, and the binary decisions output

by them are not easy to use in the global assign-

ment process that determines the entire mapping be-

tween two schemas from the pair-wise matches be-

tween their individual elements. Other probabilistic

approaches to the automatic schema matching prob-

lem include the use of an attribute dictionary in the

AUTOMATCH system, where training examples of

matching schemas are used to compile the dictionary,

and candidate elements from new schemas are com-

pared probabilistically to the dictionary. Although

this approach does result in probabilistic estimates of

matches, the compilation of the dictionary requires

many training examples, and is best suited to do-

mains where many pairs of entire schemas have to be

matched repeatedly.

5 CONCLUSIONS AND FUTURE

WORK

We have proposed a novel method for creating

composite matchers for the purpose of automatic

schema matching. Its main advantage is the ex-

plicit modeling of the conditional statistical depen-

dence between the similarity values computed by in-

dividual basic matchers. Experiments suggest that

it combines successfully the outputs of such match-

ers, and achieves matching accuracy significantly ex-

ceeding that of the individual matchers. Furthermore,

its outputs are estimates of the genuine probabilities

of match, which allows the application of decision-

theoretic methods for optimal judgment whether ele-

ments match, or not. Further work will focus on lever-

aging the clear semantics of the computed probabili-

ties for improving the accuracy of the global matching

algorithm, as well as on improving the computational

properties of the proposed Bayesian method.

REFERENCES

E. Rahm, P. A. Bernstein, A Survey of Approaches

to Automatic Schema Matching, VLDB Journal,

10:4 2001.

H.H. Do, E. Rahm, COMA - A System for Flexible

Combination of Schema Matching Approaches,

in Proceedings of the 28th International Confer-

ence on Very Large Data Bases (VLDB), 2002.

W. Li, C. Clifton, A Tool for Identifying Attribute

Correspondences in Heterogeneous Databases

Using Neural Network, Journal of Data and

Knowledge Engineering 33: 1, 49-84, 2000.

A. Doan, P. Domingos, and A. Halevy., Learning to

Match the Schemas of Databases: A Multistrat-

egy Approach, Machine Learning Journal, no.

50, pp. 279–301, 2003.

S. Bergamaschi, S. Castano, M. Vincini, D. Beneven-

tano, Semantic Integration of Heterogeneous In-

formation Sources, Journal of Data and Knowl-

edge Engineering 36: 3, 215-249, 2001.

H. H. Do, E. Rahm, Matching Large Schemas: Ap-

proaches and Evaluation, Journal of Information

Systems, Vol. 32, Issue 6, Sep. 2007.

A.H. Doan, P. Domingos, A. Halevy, Reconciling

Schemas of Disparate Data Sources: A Machine

Learning Approach, SIGMOD 2001.

D.W. Embley, Multifaceted Exploitation of Metadata

for Attribute Match Discovery in Information In-

tegration. WIIW 2001.

D. Heckerman, A Tutorial on Learning Bayesian Net-

works, Journal of Learning in Graphical Models,

pp. 301-354, 2001.

K. Murphy, An Introduction to Machine Learning and

Graphical Models, the Intel Workshop on Ma-

chine Learning, Sep. 2003.

J. Tang, J. Z. Li, Using Bayesian Decision for Ontol-

ogy Mapping, Journal of Web Semantics, Vol. 4,

Issue 4, Dec. 2006.

Thiesson, B., Accelerated Quantification of Bayesian

Networks with Incomplete Data, Proceedings

of the Conference on Knowledge Discovery in

Data, 1995, pp. 306-311.

Rong Pan, Yun Peng, Zhongli Ding, Belief Update in

Bayesian Networks Using Uncertain Evidence,

18th IEEE International Conference on Tools

with Artificial Intelligence (ICTAI’06), 2006,

pp.441-444.

A. Marie and A. Gal. Managing Uncertainty in

Schema Matcher Ensembles. Proceedings of the

1st International Conference on Scalable Uncer-

tainty Management. Washington, DC, October

2007, pp. 60-73.

A.H. Doan, J. Madhavan, R. Dhamankar, P. Domin-

gos, A. Halevy, Learning to Match Ontologies

on the Semantic Web, The VLDB Journal 12 (4),

2003, pp. 303-319.

F. Duchateau, Z. Bellahsene and R. Coletta, A Flex-

ible Approach for Planning Schema Matching

Algorithms, OTM Conferences (CooPIS), 2008,

pp. 249-264.

F. Duchateau, R. Coletta, Z. Bellahsene, R. J.

Miller, Not Yet Another Matcher, Proceedings of

CIKM’09, Hong-Kong, China, November 2009,

pp. 2079-2080.

Ian H. Witten, Eibe Frank, Data Mining: Practical

Machine Learning Tools and Techniques, Sec-

ond Edition, Morgan Kaufmann, 2005.

Berlin, J., A. Motro: Database Schema Matching Us-

ing Machine Learning with Feature Selection.

CAiSE 2002, pp.452-466.

	Title Page
	Title Page
	page 2

	Bayesian Networks for Matcher Composition in Automatic Schema Matching
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8

