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Abstract

A special three-party secure computation problem is studied in which one of three pairwise interacting parties

is required to compute a function of the sequences held by the other two when one of the three parties may

arbitrarily deviate from the computation protocol (active behavioral model). For this problem, information-theoretic

conditions for secure computation are developed within the real versus ideal model simulation paradigm. Conditions

for the passive behavioral model are also provided. A pure one-time-pad based protocol for securely computing the

Hamming distance between binary sequences is developed and is shown, using the information-theoretic security

conditions, to be secure under both the active and passive behavioral models. In contrast, the general techniques

of [1] and [2] require at least four parties when dealing with the active behavioral model. In particular, for the

three-party problem considered herein, the BGW protocol that securely computes the squared ℓ2 distance between

sequences under the passive behavioral model is demonstrated to be insecure under the active behavioral model,

even for binary sequences when the squared ℓ2 distance coincides with the Hamming distance.

Index Terms

Secure Multiparty Computation, Active Adversaries, Ideal/Real Models, Information-Theoretic Privacy, Ham-

ming Distance, Quadratic Distance, BGW Protocol.

I. INTRODUCTION

W
E consider a special secure three-party computation problem under the active behavioral model for adver-

saries. In our problem setup, Alice has a sequence of random variables Xn := X1, . . . , Xn, with Xi ∈ X ,

Bob has a sequence of random variables Y n := Y1, . . . , Yn, with Yi ∈ Y , and Charlie wants to compute a function
f(Xn, Y n). The objective is to construct protocols that securely compute f(Xn, Y n) under the active behavioral
model where one of the parties may arbitrarily deviate from the protocol.

The formulation of security for the active behavioral model requires careful consideration of the notions of

correctness and privacy due to the possibility that a party may arbitrarily deviate from the protocol. Of course, a

party can always corrupt the computation by simply changing its input data. This, however, cannot be considered as

a security-weakness since such an attack can also be mounted against a trusted genie that facilitates the computation

by receiving all inputs, performing all computations, and delivering the results to the designated parties. A deviating

party’s ability to influence the computation should, ideally, not exceed what could be done against a trusted genie.

Therefore, in the active behavioral model a protocol is said to be secure if it adequately simulates the presence of

a trusted genie that facilitates the computation. This is made precise through the real versus ideal model simulation

paradigm for secure multiparty computation [3]. In contrast, in the passive behavioral model, where it is assumed

that all parties will adhere to the protocol, to assess the security of a protocol, one only needs to check that the

protocol correctly computes the function while revealing no more information than what can be inherently inferred

from the result of the computation.

A motivating application for our special three-party computation problem is secure, privacy-preserving authen-

tication amongst three parties. In this application, Alice wishes to authenticate herself to Charlie, and Bob is an

authentication authority holding a registered biometric measurement. Alice should be authenticated if the biometric

that she produces (her sequence Xn which represent features extracted from a sensor measurement) is sufficiently

close (with respect to an appropriate distance measure represented by f(Xn, Y n)) to the registered biometric held

by Bob (his sequence Y n). However, the authentication process should be performed privately, ensuring that no
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information is revealed between Alice and Bob, and that Charlie only learns how close Alice’s biometric is to the

registered one held by Bob. Consideration of the active behavioral model is relevant in this application since an

unauthorized and malicious Alice may attempt to deviate from the protocol in order to increase her chances of

being falsely authenticated by attempting to influence the computation output produced by Charlie or to learn some

information about Bob’s sequence.

We make three contributions in this work:

(i) For our three-party computation problem with one active adversary, in Section II we develop information-

theoretic security conditions that are equivalent to the security definition based on the real versus ideal model

simulation paradigm [3]. This may be viewed as extending the results in [4] from two to three parties. We

also provide information-theoretic security conditions for passive parties.

(ii) In Section III we develop a pure one-time-pad based protocol HamDist for securely computing the Hamming

distance between binary sequences:

X = Y = {0, 1}, f(Xn, Y n) =

n
∑

i=1

(Xi ⊕ Yi),

where ⊕ denotes binary exclusive-or. We show that HamDist is secure under both the active and the passive

behavioral models using the corresponding information-theoretic security conditions from Section II. This is

interesting because under the active behavioral model, even with only up to one corrupt party, not all functions

can be securely computed. Moreover, the general active party techniques of [1] and [2] are not applicable to

our problem because they require at least four parties under the active behavioral model.

(iii) In Section IV we show that the BGW protocol for computing the quadratic distance (squared ℓ2 norm)1

between integer sequences,

X = Y = Zs, f(Xn, Y n) =

n
∑

i=1

(Xi − Yi)
2,

where Zs = {0, 1, . . . , s − 1}, is not secure under the active behavioral model. We leave open the question

whether there exists any three-party protocol for computing the quadratic distance under the active behavioral

model.

II. INFORMATION-THEORETIC CONDITIONS FOR SECURITY AGAINST ONE ACTIVE PARTY

In this section, we will first provide an overview of the real versus ideal model simulation paradigm for secure

computation and then state and prove information-theoretic conditions for our secure computation problem for the

active behavioral model. We also state information-theoretic conditions for secure computation under the passive

behavioral model. For convenience, we will denote the sequences Xn and Y n by X and Y respectively.

A. Real versus Ideal Model Simulation Paradigm for Secure Three-Party Computation

A protocol Π for three-party computation is a triple of algorithms (A,B,C) that are intended to be executed

by Alice, Bob, and Charlie respectively. Each algorithm is a set of instructions that are intended to be executed

by its respective party. This includes instructions for processing inputs (X for Alice and Y for Bob), generating

local randomness, performing intermediate local computations, sending messages to and receiving and processing

messages from other parties, and producing local outputs. The outputs produced by Alice, Bob, and Charlie will

be denoted by U, V , and W respectively. A protocol Π is regarded as the “real model” for three-party computation

and is illustrated in Figure 1(a).

In the “ideal model” for three-party computation, in addition to the three parties, there is a fourth party: a

trusted genie that facilitates the computation. An ideal model protocol ΠI for three-party computation is a triple of

algorithms (AI , BI , CI) that have a very specific structure. Alice’s algorithm AI consists solely of an independent

random functionality that takes as an input only X and outputs UI and XI , and can be modeled as a conditional

distribution PUI ,XI |X
. Likewise, Bob’s algorithm BI is an independent random functionality that takes as an input

1The Hamming distance coincides with the quadratic distance for binary sequences.
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(a) Real Model (b) Ideal Model

Fig. 1. A protocol is secure if any attack against it in the real model (a) can be equivalently mounted against the trusted genie in the ideal

model (b).

only Y and outputs VI and Y I , and can be modeled as a conditional distribution PVI ,Y I |Y
. The random variables

XI and Y I represent the inputs that Alice and Bob give to the trusted genie, and UI and VI respectively represent

Alice and Bob’s outputs. The trusted genie receives (XI , Y I) from Alice and Bob, computes f(XI , Y I) and sends
this to Charlie. If either Alice or Bob refuse to send their input to the trusted genie or send an invalid input, e.g.,

inputs not belonging to the proper alphabets X or Y , then the genie will assume a default input. Charlie’s algorithm
CI is a random functionality that takes f(XI , Y I) as input and produces WI as output, and can be modeled as a

conditional distribution PWI |f(XI ,Y I)
. The ideal model for three-party computation and is illustrated in Figure 1(b).

Definition 1 (Honest Ideal Model Protocol): The ideal model protocol ΠI = (AI , BI , CI) is called “honest” if

Alice’s and Bob’s outputs are null, the inputs to the trusted genie are Alice’s and Bob’s inputs, and Charlie’s output

is the input that he receives from the trusted genie. Specifically,

UI = VI = ∅, XI = X,Y I = Y,WI = f(XI , Y I) = f(X,Y ).

In our problem, at most one party may actively deviate from the protocol, and no collusions form between any

parties. This motivates the following definition that captures the active behavioral model of interest.

Definition 2 (Admissible Deviation): A protocol Π = (A,B,C) is an admissible deviation of Π = (A,B,C) if
at most one of (A,B,C) differs from (A,B,C).

In the real versus ideal model simulation paradigm, a real model protocol is considered to be secure if it can

adequately simulate the presence of the trusted genie in the ideal model. Specifically, a real model protocol is secure

if it can be shown that for every attack against the protocol – captured through the above notion of an admissible

deviation of a protocol – a statistically equivalent attack can be mounted against the honest ideal model protocol in

the ideal model. The following definition makes precise this notion of security under the active behavioral model.

Definition 3 (Security Against Active Behavior): A three-party protocol Π = (A,B,C) securely computes f(X,Y )
under the active behavioral model if, for every real model protocol Π = (A,B,C) that is an admissible deviation of
Π and for any distribution PX,Y on inputs (X,Y ) ∼ PX,Y , there exists an ideal model protocol ΠI = (AI , BI , CI)
that is an admissible deviation of the honest ideal model protocol ΠI = (AI , BI , CI), where the same players are
honest, such that

PU,V,W |X,Y = PUI ,VI ,WI |X,Y , (1)
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where (U, V,W ) are the outputs of the protocol Π in the real model with inputs (X,Y ) and (UI , VI ,WI) are the
outputs of the protocol ΠI in the ideal model with inputs (X,Y ).

Contained within the above definition of security is the requirement that a secure protocol must ensure that Charlie

will correctly compute the function if none of the parties deviate from the protocol. This correctness condition is

captured since no deviation is an admissible deviation and corresponds to the honest ideal model protocol, which

results in the correct computation of the function. Privacy requirements against a deviating party are also contained

within this security definition, since the deviating party may include arbitrary additional information in its output.

The above security definition prevents this additional output information from containing any information that could

not be obtained by the party deviating in the ideal model.

B. Active Behavior Security Characterization via Information-Theoretic Conditions

In the following theorem we establish information-theoretic conditions that are equivalent to the security con-

ditions for the active behavioral model given by Definition 3. These conditions provide a way to test whether a

given protocol is secure under the active behavioral model directly in the real model without explicit reference to

an ideal model or a trusted genie. In contrast, Definition 3 needs to refer to an ideal model to establish security

against active adversarial behavior.

Theorem 1: A real-model three-party protocol Π = (A,B,C) securely computes f(X,Y ) under the active

behavioral model if, and only if, for every real model protocol Π = (A,B,C) that is an admissible deviation of

Π and for any distribution PX,Y on inputs (X,Y ) ∼ PX,Y , the algorithms (A,B,C) respectively produce outputs

(U, V,W ), such that the following conditions are satisfied:

• (Correctness) If none of the players deviate from the protocol, that is Π = Π, then Charlie’s output W satisfies

Pr[(U, V,W ) = (∅, ∅, f(X,Y ))] = 1.

• (Security against Alice) If Bob and Charlie follow the protocol, that is (B,C) = (B,C), then there exists

random variable X such that

I(U,X;Y |X) = 0, (2)

Pr[(V,W ) = (∅, f(X,Y ))] = 1. (3)

• (Security against Bob) If Alice and Charlie follow the protocol, that is (A,C) = (A,C), then there exists

random variable Y such that

I(V, Y ;X|Y ) = 0, (4)

Pr[(U,W ) = (∅, f(X,Y ))] = 1. (5)

• (Security against Charlie) If Alice and Bob follow the protocol, that is (A,B) = (A,B), then

I(W ;X,Y |f(X,Y )) = 0, (6)

Pr[(U, V ) = (∅, ∅)] = 1. (7)

Proof: In order to prove the equivalence of the information-theoretic conditions with respect to the ideal vs

real model definition, we must show that the conditions are both necessary and sufficient.

(Necessity) First, we show that the conditions are necessary, that is, if the protocol Π securely computes f(X,Y )
then the information-theoretic conditions must hold. Consider any real model protocol Π = (A,B,C) that is an
admissible deviation of Π. Since the protocol is secure, there must exist an ideal model protocol ΠI = (AI , BI , CI)
that is an admissible deviation of the honest ideal model protocol ΠI = (AI , BI , CI), where the same players are
honest, such that

PU,V,W |X,Y = PUI ,VI ,WI |X,Y ,

where (U, V,W ) are the outputs of the protocol Π in the real model with inputs (X,Y ) and (UI , VI ,WI) are the
outputs of the protocol ΠI in the ideal model with inputs (X,Y ).
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In the case that all of the players are honest, that is Π = Π, then the corresponding ideal model protocol ΠI

is the same as ΠI , and thus the ideal model outputs UI and VI are null and WI = f(X,Y ) with probability one.

Since PU,V,W |X,Y = PUI ,VI ,WI |X,Y , we have that

Pr[(U, V,W ) = (∅, ∅, f(X,Y ))] = 1.

Now we consider the case that Alice is dishonest and Bob and Charlie are honest. In the ideal model, we have

that

I(UI , XI ;Y |X) = 0,

since UI and XI are generated only from X , and also by the structure of the ideal model and the honesty of Bob

and Charlie,

Pr[WI = f(XI , Y )] = 1,

while VI is null. Since PU,V,W |X,Y = PUI ,VI ,WI |X,Y , we have that V is identically distributed as VI and hence is

also null, and we can define random variable X that is distributed according to

PX|X,Y,U,V,W := PXI |X,Y,UI ,VI ,WI

,

such that

I(U,X;Y |X) = 0,

and

Pr[W = f(X,Y )] = 1.

The argument for the case that Bob is dishonest is symmetric to the case of a dishonest Alice. This leaves the

case for the when Charlie is dishonest. In the ideal model, Charlie’s output satisfies

I(WI ;X,Y |f(X,Y )) = 0,

since WI is only generated from f(XI , YI), and that (XI , YI) = (X,Y ), since Alice and Bob are honest. Also,

since Alice and Bob are honest, their outputs UI and VI are null. Since PU,V,W |X,Y = PUI ,VI ,WI |X,Y , we must also

have that

I(W ;X,Y |f(X,Y )) = 0,

Pr[(U, V ) = (∅, ∅)] = 1.

(Sufficiency) Now, we must show that the conditions are sufficient, that is, if the information-theoretic conditions

hold then the protocol is secure. Consider any real model protocol Π = (A,B,C) that is an admissible deviation

of Π and assume that the information theoretic conditions hold. We must now construct an ideal model protocol

ΠI = (AI , BI , CI) that is an admissible deviation of the honest ideal model protocol ΠI = (AI , BI , CI), where
the same players are honest, such that

PU,V,W |X,Y = PUI ,VI ,WI |X,Y ,

where (U, V,W ) are the outputs of the protocol Π in the real model with inputs (X,Y ) and (UI , VI ,WI) are the
outputs of the protocol ΠI in the ideal model with inputs (X,Y ).
In the case that all of the players are honest, the information theoretic conditions state that U and V are null

and that W = f(X,Y ) with probability one. The honest ideal model protocol also produces null outputs for Alice
and Bob, that is UI and VI are null, and Charlie’s output WI = f(X,Y ). Thus, we have that

PU,V,W |X,Y = PUI ,VI ,WI |X,Y .

In the case that Alice is dishonest, we must construct an ideal model protocol, with an honest Bob and Charlie,

that produce statistically equivalent outputs. Let Alice’s ideal model algorithm AI be defined by the conditional

distribution

PUI ,XI |X
:= PU,X|X ,
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which governs how Alice generates UI and XI based on only X . Since Bob and Charlie are honest, that is BI = BI

and CI = CI , with probability one their outputs are given by

VI = ∅ and WI = f(XI , Y ).

Considering the conditional distribution of UI and WI given X and Y , we have that

PUI ,WI |X,Y =
∑

x

PUI ,WI ,XI |X,Y

=
∑

x

PUI ,XI |X,Y PWI |X,Y,UI ,XI

=
∑

x

PUI ,XI |X
PWI |Y,XI

,

since UI and XI are only generated from X and WI = f(XI , Y ), and hence

PWI |Y,XI

(w|y, x) = 1{f(x,y)}(w) =

{

1, if w = f(x, y),

0, otherwise.
(8)

Likewise, we can manipulate the conditional distribution of U and W given X and Y , using the conditions given

by (2) and (3),

PU,W |X,Y =
∑

x

PU,W,X|X,Y

=
∑

x

PU,X|X,Y PW |X,Y,U,X

=
∑

x

PU,X|XPW |Y,X .

Since PUI ,XI |X
= PU,X|X by design and PW |Y,X = PWI |Y,XI

due to (3) and (8), we have that PU,W |X,Y =
PUI ,WI |X,Y . Since both VI and V are null, we have that PU,V,W |X,Y = PUI ,VI ,WI |X,Y .

The argument for the case that Bob is dishonest is symmetric to the case of a dishonest Alice. This leaves

the case for the when Charlie is dishonest. Let Charlie’s ideal model algorithm CI be defined by the following

conditional distribution that governs how Charlie generates WI based on only f(XI , Y I)

PWI |f(XI ,Y I)
:= PW |f(X,Y ) = PW |f(X,Y ),X,Y ,

due to the (7). Note that since Alice and Bob are honest, (XI , Y I) = (X,Y ), and UI and VI are null. Considering

the conditional distribution of WI given X,Y ,

PWI |X,Y =
∑

f

PWI ,f(XI ,Y I)|X,Y

=
∑

f

PWI |f(XI ,Y I),X,Y Pf(XI ,Y I)|X,Y

=
∑

f

PWI |f(XI ,Y I)
Pf(X,Y )|X,Y

=
∑

f

PW |f(X,Y ),X,Y Pf(X,Y )|X,Y

=
∑

f

PW,f(X,Y )|X,Y = PW |X,Y .

Thus since PW |X,Y = PWI |X,Y and both (U, V ) and (UI , VI) are null, we have that PU,V,W |X,Y = PUI ,VI ,WI |X,Y .
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C. Passive Behavioral Model

When all parties correctly follow a protocol, they are said to be behaving passively. When parties are passive,

they may still attempt to learn as much new information as they can from the messages that they receive from other

parties during the execution of the protocol. Hence, the passive behavioral model is also referred to as the “honest-

but-curious” model. A protocol is secure against passive behavior if it produces correct computation results and

reveals no more information to any party than what any party can infer from its own inputs and its own computation

results. Thus, security against passive behavior is a statement about the correctness and the information leakage

properties of a protocol. In contrast to the security definition for the active behavioral model, security under the

passive behavioral model can be directly stated in terms of information-theoretic conditions as follows.

Definition 4 (Security Against Passive Behavior): A three-party protocol Π = (A,B,C) securely computes f(X,Y )
under the passive behavioral model (with no collusions) if after Alice, Bob, and Charlie execute the protocol, the

following conditions are satisfied:

• (Correctness) Charlie correctly computes the function and Alice and Bob output nothing, that is,

Pr[(U, V,W ) = (∅, ∅, f(X,Y ))] = 1.

• (Privacy against Alice) The view of Alice, denoted by M1 and consisting of all of the local randomness

generated, local computation performed, and messages sent and received by Alice, does not reveal any more

information about Bob’s input Y and Charlie’s output f(X,Y ) other than what can be inferred from her input

X , that is,

I(M1;Y, f(X,Y )|X) = 0.

• (Privacy against Bob) The view of Bob, denoted byM2 and consisting of all of the local randomness generated,

local computation performed, and messages sent and received by Bob, does not reveal any more information

about Alice’s input X and Charlie’s output f(X,Y ) other than what can be inferred from his input Y , that is,

I(M2;X, f(X,Y )|Y ) = 0.

• (Privacy against Charlie) The view of Charlie, denoted by M3 and consisting of all of the local randomness

generated, local computation performed, and messages sent and received by Charlie, does not reveal any more

information about Alice and Bob’s inputs (X,Y ) other than what can be inferred from his output f(X,Y ),
that is,

I(M3;X,Y |f(X,Y )) = 0.

In general, security of a protocol under the active behavioral model does not necessarily imply security of a

protocol under the passive behavioral model [5]. This may seem counterintuitive at first since possible attacks by

active parties are surely expected to subsume the possible “passive attacks”. This can be resolved by observing that

the definition of security under the active behavioral model compares admissible deviations (active attacks) in the

real model to possible active attacks in the ideal model. This comparison to a benchmark involving active attacks

in the ideal model potentially results in more permissive privacy conditions than the information leakage conditions

required in the passive behavioral model. To illustrate this difference, consider the following two-party example

(from [5]): Alice and Bob each have a bit and Bob wishes to compute the Boolean AND of the bits, while Alice

computes nothing. A protocol where Alice simply gives Bob her bit and he computes his desired function is clearly

insecure under the passive behavioral model since Alice directly reveals her bit, whereas the AND function should

only reveal her bit if Bob’s bit is one. However, this protocol would be secure in the active behavioral model since

a deviating Bob, in the ideal model, could change his input to one to always reveal the value of Alice’s bit from

the trusted genie in the ideal model.

III. A SECURE PROTOCOL FOR HAMMING DISTANCE

In this section, we present and analyze a pure one-time-pad based protocol HamDist that securely computes

the Hamming distance for binary sequences under both the passive and the active behavioral models. The security

of this protocol will be proved using the information-theoretic conditions for security under the active behavioral
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model from Theorem 1 and the information theoretic conditions for security under the passive behavioral model in

Definition 4.

Protocol HamDist:

1) Alice randomly generates the binary string R1, . . . , Rn ∼ iid Bernoulli(1/2) and independently of (Xn, Y n).
Alice also randomly chooses π, a permutation of {1, . . . , n}, uniformly and independently of (Xn, Y n, Rn).

2) Alice sends Rn and π to Bob.

3) Alice sends π(Xn ⊕ Rn) to Charlie, where Xn ⊕ Rn denotes the bitwise exclusive-or of the binary strings

Xn and Rn and π(·) denotes the application of the permutation π.
4) Bob computes and sends π(Y n ⊕Rn) to Charlie.

5) Charlie combines the messages from Alice and Bob to obtain

π(Xn ⊕ Y n) = π(Xn ⊕Rn)⊕ π(Y n ⊕Rn),

and outputs the Hamming weight of the vector π(Xn ⊕ Y n).
6) Alice and Bob do not produce outputs.

During the execution of the protocol, if any party fails to send a message or sends a malformed message to another

party, a default message is assumed by the receiving party. Also, any extraneous messages are simply ignored. For

example, in second step, Bob expects to receive an n-bit binary string and a permutation of {1, . . . , n} from Alice.

If Alice does not send a message or sends a malformed binary string, then Bob interprets it as if Alice sent the

all-zero binary string. If Alice does not send a message or sends an invalid permutation, then Bob interprets it as

if Alice sent the identity permutation (1, . . . , n). Likewise, in other parts of the protocol, a malformed or missing

binary string is interpreted as the all-zero binary string. The specific default message assumed in the case of invalid

or unsent messages is unimportant and could be replaced with any other fixed message.

Before we prove that the HamDist protocol is secure in the active behavioral model, we first establish two

lemmas that will be used in the proof.

Lemma 1: For random variables A,B,X, Y , the Markov chain A−B− (X,Y ) holds if and only if the Markov

chains A−B −X and A− (B,X)− Y (or by symmetry A−B − Y and A− (B, Y )−X) both hold.

Proof: The lemma follows from following identity

I(A;X,Y |B) = I(A;X|B) + I(A;Y |B,X),

since the conditional mutual information on the left hand side is equal to zero if and only if the Markov chain

A − B − (X,Y ) holds, and the conditional mutual informations on the right hand side are equal to zero if and

only if the Markov chains A−B −X and A− (B,X)− Y both hold.

Lemma 2: If the random variables A,B,X, Y satisfy the Markov chains A−B−X and A− (B,X)− Y , then
A−B − Y also forms a Markov chain.

Proof: The given Markov chains imply, by Lemma 1, that A−B− (X,Y ) forms a Markov chain, which also

implies, by symmetry, that A−B − Y forms a Markov chain.

Theorem 2: Protocol HamDist is secure under the active behavioral model for any distribution PXn,Y n .

Proof: (Correctness) The protocol is correct since the Hamming weight of any permutation of the vector

Xn ⊕ Y n is the Hamming distance between Xn and Y n. Hence,

Pr[W = f(Xn, Y n)] = 1.

Also, Alice and Bob produce null outputs as specified by the protocol.

Since any unsent or invalid messages are interpreted by the receiver as some default message as described earlier,

we can assume, without loss of generality, that the arbitrarily modified algorithms send well-formed messages

belonging to the appropriate message alphabet.
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(Security against Alice) Let BA ∈ {0, 1}n denote the n-bit string (corresponding to Rn) and π ∈ P({1, . . . , n})
denote the permutation of {1, . . . , n} that Alice sends to Bob. Let CA ∈ {0, 1}n denote the n-bit string that Alice

sends to Charlie. Let X
n
= BA ⊕ π−1(CA), where π−1(·) denotes the inverse application of the permutation π.

Since Alice does not receive any messages, BA, CA, π, and U can only be generated from Xn and since X
n
is

a function of BA, CA and π, we have that Y n −Xn − (BA, CA, π, U)− (X
n
, U) forms a Markov chain, hence

I(U,X
n
;Y n|Xn) = 0.

Since Bob and Charlie are following the protocol, the messages from Alice and Bob’s input Y n are ultimately

combined by Charlie to form the vector

π(Y n ⊕BA)⊕ CA = π(Y n ⊕BA)⊕ π(X
n
⊕BA) = π(Y n ⊕X

n
),

from which he computes the Hamming weight to produce his output W = f(X
n
, Y n). Bob, following the protocol,

does not produce an output, hence V is null.

(Security against Bob) Bob receives the random binary string Rn and random permutation π from Alice. Let

CB ∈ {0, 1}n denote the n-bit string that Bob sends to Charlie. Let Y
n
= π−1(CB)⊕Rn.

The message CB can only be generated from Rn, π, and Y n, thus CB − (Rn, π, Y n) − Xn forms a Markov

chain. Since (Rn, π) is independent of (Xn, Y n), we have that (Rn, π) − Y n − Xn trivially forms a Markov

chain. These two Markov chains imply that (CB, R
n, π) − Y n − Xn forms a Markov chain by Lemma 1. Since

Y
n
is a function of (CB, R

n, π) and V can only be generated from Y n, Rn, π, CB , and Y
n
, we have that

(V, Y
n
)− (CB, R

n, π, Y n)− Y n −Xn forms a Markov chain, hence

I(V, Y
n
;Xn|Y n) = 0.

Since Alice and Charlie are following the protocol, the message from Bob and Alice’s input Xn are ultimately

combined by Charlie to form the vector

π(Xn ⊕Rn)⊕ CB = π(Xn ⊕Rn)⊕ π(Y
n
⊕Rn) = π(Xn ⊕ Y

n
),

from which he computes the Hamming weight to produce his outputW = f(Xn, Y
n
). Alice, following the protocol,

does not produce an output, hence U is null.

(Security against Charlie) Charlie receives π(Xn⊕Rn) from Alice and π(Y n⊕Rn) from Bob. Charlie’s output

W can only be generated from π(Xn ⊕Rn) and π(Y n ⊕Rn) thus W − (π(Xn ⊕Rn), π(Y n ⊕Rn))− (Xn, Y n)
forms a Markov chain. Since π(Xn⊕Y n) and f(Xn, Y n) are functions of π(Xn⊕Rn) and π(Y n⊕Rn), we have
that

(Xn, Y n)− (π(Xn ⊕Rn), π(Y n ⊕Rn), π(Xn ⊕ Y n), f(Xn, Y n))−W (9)

also forms a Markov chain. The Markov chain

(Xn, Y n)− f(Xn, Y n)− (π(Xn ⊕Rn), π(Y n ⊕Rn), π(Xn ⊕ Y n)) (10)

holds due to the following

I(π(Xn ⊕Rn), π(Y n ⊕Rn), π(Xn ⊕ Y n);Xn, Y n|f(Xn, Y n))

(a)
= I(π(Xn ⊕ Y n), π(Y n ⊕Rn);Xn, Y n|f(Xn, Y n)) (11)

(b)
= H(Xn, Y n|f(Xn, Y n)) (12)

−H(Xn, Y n|π(Xn ⊕ Y n), π(Y n ⊕Rn), f(Xn, Y n))

(c)
= H(Xn, Y n|f(Xn, Y n)) (13)

−H(Xn, Y n|π(Xn ⊕ Y n), f(Xn, Y n))

(d)
= H(Xn, Y n|f(Xn, Y n))−H(Xn, Y n|f(Xn, Y n)) = 0,

where (a) holds since π(Xn ⊕ Rn) is a function of π(Xn ⊕ Y n) and π(Y n ⊕ Rn), (b) is by the definition of

conditional mutual information, (c) is due to the independence of Rn, and (d) holds since the random permutation
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of the XOR of the sequences does not reveal any more information about the sequences than the Hamming distance.

Thus, by Lemma 2 and the Markov chains in (9) and (10), we have that (Xn, Y n) − f(Xn, Y n) − W forms a

Markov chain, and hence

I(W ;Xn, Y n|f(Xn, Y n)) = 0.

Also, since Alice and Bob follow the protocol, their outputs, U and V , are null.

As previously discussed, security of a protocol under the active behavioral model does not necessarily imply

security of a protocol under the passive behavioral model [5]. Thus, we must also show the the HamDist protocol

is secure in the passive behavioral model.

Theorem 3: Protocol HamDist is secure under the passive behavioral model for any distribution PXn,Y n .

Proof: (Correctness) The protocol is correct according to the same argument as for the active behavioral model.

(Privacy against Alice) The protocol is private against Alice since she does not even receive any messages and

hence no information from other parties. Formally,

I(M1;Y
n, f(Xn, Y n)|Xn)

= I(π,Rn, π(Xn ⊕Rn);Y n, f(Xn, Y n)|Xn)

= I(π,Rn;Y n, f(Xn, Y n)|Xn) = 0,

since π(Xn ⊕Rn) is a function of (π,Rn, Xn), and (π,Rn) are independent of Xn and Y n.

(Privacy against Bob) The protocol is private against Bob since the only message from Alice that he receives

are independent of Xn, Y n,W . Formally,

I(M2;X
n, f(Xn, Y n)|Y n)

= I(π,Rn, π(Y n)⊕Rn;Xn, f(Xn, Y n)|Y n)

= I(π,Rn;Xn, f(Xn, Y n)|Y n) = 0,

since π,Rn are independent of Xn and Y n.

(Privacy against Charlie) The protocol is private against Charlie since the messages that he receives from Alice

and Bob are only sufficient to reveal a permutation of the bitwise exclusive-or of Xn and Y n, π(Xn⊕Y n), which
reveals no more information about Xn and Y n than the Hamming distance. Formally,

I(M3;X
n, Y n|f(Xn, Y n))

= I(π(Xn ⊕Rn), π(Y n ⊕Rn);Xn, Y n|f(Xn, Y n))

= I(π(Xn ⊕ Y n), π(Y n ⊕Rn);Xn, Y n|f(Xn, Y n)) = 0,

for the same reasons as in (11).

IV. INADEQUACY OF BGW FOR QUADRATIC DISTANCE

Under the passive behavioral model (with no collusions), any function can be securely computed amongst three

parties. The general passive party techniques of [1] provide a method to construct secure protocols. In this section,

we will briefly present and analyze the BGW protocol [1] that securely computes the quadratic distance under the

passive behavioral model. Since quadratic distance coincides with Hamming distance for binary sequences, the same

protocol can also be used to compute the Hamming distance for binary sequences. The passive-party techniques of

[1] exploit the homomorphic properties of the polynomial secret-sharing scheme of [6]. The resulting protocol is

secure for passive parties but is not guaranteed to be secure for active parties.

We will show that the BGW protocol is insecure under the active behavioral model for three-party quadratic

(and Hamming) distance computation. This will provide further insight into the notion of security under the active
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behavioral model. Since we are dealing with three parties, the active-party techniques of [1] are not applicable

since they require at least four parties to be involved in the computation.

In the following protocol, the non-negative integers Zs = {0, 1, . . . , s − 1} are assumed to be embedded in a

finite field ZN of prime order N > n(s − 1)2 with field arithmetic defined as modular arithmetic with respect to

N . This ensures that ZN is large enough to simulate the necessary integer arithmetic for computing the quadratic

distance between length-n sequences while avoiding overflow (modulo) effects.

Protocol BGW for computing the quadratic distance between two length-n strings in Z
n
s comprises the following

steps:

1) Alice randomly chooses α1, . . . , αn ∼ iid Unif(ZN ) independently of (Xn, Y n). For each i ∈ {1, . . . , n},
Alice creates the polynomial pi : ZN → ZN , via

pi(j) = αij +Xi.

Alice sends to Bob (player j = 2) the values {p1(2), . . . , pn(2)}, and sends to Charlie (player j = 3) the
values {p1(3), . . . , pn(3)}, while keeping the values {p1(1), . . . , pn(1)} for herself.

2) Bob performs an analogous step. First, he randomly chooses β1, . . . , βn ∼ iid Unif(ZN ) independently of

(Xn, Y n). For each i ∈ {1, . . . , n}, Bob creates the polynomial qi : ZN → ZN , via

qi(j) = βij + Yi.

Bob sends to Alice (player j = 1) the values {q1(1), . . . , qn(1)}, and sends to Charlie (player j = 3) the
values {q1(3), . . . , qn(3)}, while keeping the values {q1(2), . . . , qn(2)} for himself.

3) Alice, Bob, and Charlie now each individually compute samples of the polynomial r : ZN → ZN defined by

r(j) =

n
∑

i=1

[

p2i (j) + q2i (j)− 2pi(j)qi(j)
]

.

Alice computes r(1) via the above equation from the values available to her, {pi(1), qi(1)}
n
i=1. Likewise, Bob

and Charlie compute r(2) and r(3), respectively.
4) Alice and Bob transmit r(1) and r(2), respectively, to Charlie.

5) Charlie reconstructs the degree-two polynomial r via interpolation from the three points r(1), r(2), and r(3).
Charlie evaluates r(0) in order to get

r(0) =

n
∑

i=1

[

p2i (0) + q2i (0)− 2pi(0)qi(0)
]

=

n
∑

i=1

[

X2
i + Y 2

i − 2XiYi
]

= f(Xn, Y n).

The BGW protocol securely computes the quadratic distance under the passive behavioral model [1]. However,

it is not secure under the active behavioral model – neither for quadratic distance nor for Hamming distance

computation. In the following discussion, this insecurity is illustrated by demonstrating a simple attack that is able

to influence the computation beyond what can be done against a trusted genie.

Quadratic Distance: Consider the computation of quadratic distance (where s > 2), that is, Alice and Bob have

integer sequences Xn, Y n ∈ {0, . . . , s− 1}n and Charlie wishes to compute

f(Xn, Y n) =

n
∑

i=1

(Xi − Yi)
2.

The range of this function R(f) is a proper subset of Zn(s−1)2 since each function value is a sum of n numbers

from the set {x2 : x ∈ Zs}. The finite field ZN used by this protocol must have prime size N > n(s − 1)2 in

order to simulate integer arithmetic as finite-field arithmetic. Hence, R(f) must be a proper subset of ZN and the

rest of ZN would be invalid outputs for the function computation. In the ideal model, for any attack by Alice (or

symmetrically by Bob), the output of Charlie would still remain in range R(f), since Alice can only affect it by
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changing her input, and an invalid output by Charlie is impossible. However, in the real model, Alice can launch a

simple attack, where she simply randomly chooses the final message r(1) that she sends to Charlie independently

and uniformly over ZN . This would cause Charlie’s output to uniformly take values over the entire finite-field

ZN , including invalid values, due to the polynomial interpolation used to recover the function computation result.

For fixed values of r(2) and r(3), each (possibly modified) value for r(1) corresponds to a unique polynomial

interpolation result, since three samples uniquely determine a degree-two (parabolic) polynomial. Thus, due to this

one-to-one relationship, a uniform distribution on r(1) induces a uniform distribution on the function computation

result. Thus, the protocol is insecure since there exists an attack in the real model (against the protocol) that cannot

be equivalently mounted in the ideal model. In addition to the possibility that an attack against the protocol could

create invalid output, the distribution of the valid outputs also becomes uniform, which cannot, in general, happen

in an attack against a trusted genie. The next example illustrates this issue further.

Hamming Distance: Consider the computation of Hamming distance when Alice and Bob’s binary sequences are

independent sequences of iid Bernoulli(1/2) bits. In the ideal model, for any attack by Alice (or symmetrically

by Bob), the exclusive-or of her string and Bob’s will be an iid Bernoulli(1/2) sequence since his string is iid

Bernoulli(1/2) and independent of Alice’s modified input. This means that for any attack by Alice against a trusted
genie, Charlie’s output would always be distributed over {0, 1, . . . , n} as a binomial distribution with parameters

n and p = 1/2. For the protocol in the real model, if N = n + 1 is prime, then ZN can be used and does not

contain any invalid outputs. In the real model, Alice can launch a simple attack (as in Example 1), where she

simply randomly chooses the final message r(1) that she sends to Charlie independently and uniformly over ZN ,

causing Charlie’s output to be uniformly distributed over ZN . Thus, the protocol is insecure since there exists an

attack in the real model (against the protocol) that influences the computation output in a manner that cannot be

replicated by an attack against a trusted genie.

Even though this simple attack does not enable Alice to choose Charlie’s output with certainty, her ability to

affect the distribution of that output can have a profound impact in certain applications. Consider the application

of secure authentication described earlier. The model of Alice and Bob’s sequences as independent binary strings

reflects when an illegitimate Alice is attempting to falsely authenticate herself. Imagine that the system was designed

allow authentication of Alice if her string was ninety percent similar to Bob’s, i.e., the Hamming distance is within

n/10. Against the trusted genie of the ideal model, any attack from Alice still results in a binomial distribution

in the output computed by Charlie, which has an exponentially decaying tail probability for large n and hence a

negligible chance for Alice to falsely authenticate herself. However, against the protocol in the real model, if Alice

uses this simple attack to cause the output of Charlie to be uniformly distributed, then she has ten percent chance

of being falsely authenticated.

V. CONCLUDING REMARKS AND FUTURE WORK

In this paper, we studied a special three-party secure computation problem and provided information-theoretic

conditions for security under the active behavioral model. These conditions are equivalent to the formulation of

security based on the notion of simulating a trusted genie. We used these conditions to prove the security of the

HamDist protocol which securely computes the Hamming distance between binary sequences. We also use these

conditions to analyze the security of the BGW protocol, which securely computes the quadratic distance under the

passive behavioral model, but is insecure for the active behavioral model. Information-theoretic conditions similar

to those in Theorem 1 can be developed for the general three-party computation problem in which each party has

an input and each party is required to compute a potentially different function of the inputs held by all the parties.

Another direction for extending this work is to relax the requirement for exactly matching the statistical properties

of the ideal model. For instance, requiring that the distributions in equation (1) be only ǫ-close with respect to some
measure of distributional closeness as in [7]. An open question is whether there exist protocols that can securely

compute (under the active behavioral model) the Hamming distance for non-binary sequences and the quadratic

distance.
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[2] D. Chaum, C. Crépeau, and I. Damgård, “Multi-party unconditionally secure protocols,” in Proceedings of the ACM Symposium on

Theory of Computing, Chicago, IL, 1988, pp. 11–19.

[3] O. Goldreich, Foundations of Cryptography. Cambridge University Press, 2004, vol. II: Basic Applications.
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[6] A. Shamir, “How to share a secret,” Communications of the ACM, vol. 22, no. 11, pp. 637–647, 1985.
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