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Abstract

This paper proposes a hybrid decoupled power flow method for balanced power distribution sys-
tems with distributed generation sources. The method formulates the power flow equations in
active power and reactive power decoupled form with polar coordinates. Second-order terms are
included in the active power mismatch iteration, and constant Jacobian and Hessian matrices are
used. A hybrid direct and indirect solution technique is used to achieve efficiency and robust-
ness of the algorithm. Active power correction is solved by means of a sparse lower triangular
and upper triangular (LU) decomposition algorithm with partial pivoting, and the reactive power
correction is solved by means of restarted generalized minimal residual algorithm with an incom-
plete LU pre-conditioner. Typical distribution generation models and distribution load models
are included. The impact of zero-impedance branches is explicitly modeled through reconfig-
uring of the adjacent branches with impedances. Numerical examples on a sample distribution
system with widespread photovoltaic installations are given to demonstrate the effectiveness of
the proposed method.
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Abstract⎯This paper proposes a hybrid decoupled 

power flow method for balanced power distribution 
systems with distributed generation sources. The 
method formulates the power flow equations in active 
power and reactive power decoupled form with polar 
coordinates. Second-order terms are included in the 
active power mismatch iteration, and constant Jacobian 
and Hessian matrices are used. A hybrid direct and 
indirect solution technique is used to achieve efficiency 
and robustness of the algorithm. Active power 
correction is solved by means of a sparse lower 
triangular and upper triangular (LU) decomposition 
algorithm with partial pivoting, and the reactive power 
correction is solved by means of restarted generalized 
minimal residual algorithm with an incomplete LU 
pre-conditioner. Typical distribution generation models 
and distribution load models are included. The impact 
of zero-impedance branches is explicitly modeled 
through reconfiguring of the adjacent branches with 
impedances. Numerical examples on a sample 
distribution system with widespread photovoltaic 
installations are given to demonstrate the effectiveness 
of the proposed method. 

Index Terms⎯Direct method, distributed generations, 
distribution systems, indirect method, power flow, 
zero-impedance branches. 

1. Introduction 
Power flow calculation is one of the most common 

computational procedures used in distribution system 
analysis. Planning, operation, and control of distribution 
systems require such calculations in order to analyze the 
steady-state performance of the systems under various 
operating conditions and equipment configurations. With 
the increasing penetration of various distribution 
generations and implementation of advanced control 
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techniques, the analysis of distribution systems plays even 
more critical role than before, and the complexity of 
analysis has significantly increased as well.  

As a special case of distribution systems, the loads and 
impedances of a balanced distribution system are three- 
phase balanced, and therefore their steady state 
performance is usually analyzed by using single-phase 
power flow analysis with positive sequence parameters. 

Various methods for solving the power flow problem 
are known. Those methods differ in either the form of the 
equations describing the system, or the numerical 
techniques used. Methods based on bus admittance matrices 
are widely used. Typical methods include the Gauss-Seidel 
method[1], the Newton-Raphson method[2]−[6], and the fast 
decoupled method[7]−[12]. Those methods formulate power 
flow problems as linear systems, and solve them by either 
direct[1]−[12] or iterative techniques[13]−[16]. The method 
proposed in this paper also belongs to this category. 

This paper proposes a new efficient and robust power 
flow method for balanced power distribution systems with 
distributed generation sources. It formulates the decoupled 
active power and reactive power equations in polar form. 
Resistance impacts are modeled in both active and reactive 
power equations, and the necessary trigonometric 
operations have been avoided by using an appropriate 
polynomial approximation. It includes second terms of 
phase angle in active power correction equations to reduce 
the number of required iterations for phase-angle updating. 
Direct and iterative solution techniques are used to handle 
active and reactive power corrections, respectively. This 
hybrid solution technique takes full advantage of different 
characteristics of active and reactive power updating to 
speed up the power-flow solution. The method accurately 
models zero-impedance branches by merging them with 
adjacent impedance branches to avoid convergence 
problems resulting from modeling those as small 
impedance branches. It seamlessly integrates various types 
of distribution generation sources and distribution load 
models with the solution process. 

2. Proposed Method  
2.1 Modeling of Distributed Generations and Loads 

The proposed method uses polar coordinates to 
formulate the power flow equations for balanced 
distribution systems. Based on the types of connected 
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generation sources or loads, a bus in the system can be 
modeled as a constant active and reactive power (PQ) bus, 
a constant active power and voltage magnitude (PV) bus, or 
a swing bus. By converting to PV or PQ buses or shunt 
compensations, the distribution source and load models are 
seamlessly integrated into the solution process.  

The generation source for the power distribution system 
is usually a power transmission system, and corresponding 
equivalent source models are expressed as a swing bus, or a 
PV bus in the power flow analysis.  

In addition to the equivalent sources, the distribution 
system can also have distributed generators. Depending on 
the types of energy sources and energy converters, the 
distribution power generators are specified by a constant 
power factor model, a constant voltage model, or a variable 
reactive power model [17]. 

The buses connected to the constant power factor 
generators or the variable reactive power generators are 
treated as PQ buses. For a constant power factor generator, 
the specified values are the active power output and power 
factor. The reactive power output of such a generator is 
determined from the active power and the power factor. For 
a variable reactive power generator, the active power output 
is specified, and the reactive power output is determined by 
applying a predetermined polynomial function to the active 
power output.  

The buses connected to constant-voltage generators are 
treated as PV buses, and the specified values are the outputs 
of the active powers and the magnitudes of bus voltages. 
These buses are also selected as master buses when the 
equivalent system model is constructed. 

The distribution load models include a constant 
impedance load, a constant power load, and a constant 
current load.  

The constant impedance load is directly treated as 
connected bus shunt impedance, which is embedded into 
the bus admittance matrix. If a bus is connected with a 
constant impedance load, its equivalent shunt admittance is 

( )
( ) 2

sh i

R R
Z Z

i
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i

P jQ
Y

V

−
= i               (1) 

where  is the equivalent shunt admittance at bus i, sh
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ZP  

and 
i

R
ZQ are the active and reactive powers of constant 

impedance load at bus i, and R
iV is the rated voltage of load 

at bus i. 
The constant power load is modeled as bus injected 

power. If a bus is connected with a constant power load, its 
equivalent bus power injection is 
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where is the equivalent power injection at bus i, iS
i

R
SP  and 

i

R
SQ  are the active and reactive powers of constant power 

load at bus i. 

The constant current load is converted to equivalent bus 
injected powers to be modeled. The equivalent injected 
powers are based on estimated bus voltages. The powers 
are recalculated when the current bus voltages become 
available during the iterations of the solution. The 
equivalent power injection for a bus connected with 
constant current load is  
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where
Ii

RP and
Ii

RQ are the active and reactive powers of 

constant current load at bus i, ( )k
iV is the estimated voltage 

magnitude at bus i, and k is the current iteration number. 

2.2 Modeling of Zero-Impedance Branches 
Many branches in a power distribution system have 

very low impedance, such as voltage regulators, switches, 
ideal transformers, ideal phase shifters, elbows, and 
jumpers.  

In practice, these low impedances are ignored and set to 
zero in conventional models. The consequence is that some 
entries in the resultant bus admittance matrix are infinite, 
and thus the admittance matrix based approaches are 
inapplicable. In order to use approaches based on bus 
admittance matrices, conventional methods have arbitrarily 
assigned small non-zero impedances to those branches. 
However, assigning such small impedances makes the 
analysis ill-conditioned, and power flow calculations are 
often difficult to converge[18]. This paper uses a different 
approach to handle the zero-impedance branches in power 
flow analysis. 

Fig. 1 shows a generalized model for representing 
zero-impedance branches in a distribution system. A branch 
has a master bus m and a slave bus s. The buses are 
connected by an ideal transformer. The transformer has a 
ratio 1: , where is a complex number.  ,m sa ,m sa

The complex transformer ratio becomes 1 when the 
branch is a switch or a small conductor, a real number when 
it is a voltage regulator or an ideal transformer, and a 
complex number with magnitude 1.0 when it is an ideal 
phase shifter.  

The current flowing into the slave bus through the 
branch is equal to the current flowing from the master bus 
divided by the negative conjugate of the complex ratio. The 
voltage at the slave bus is equal to the voltage at the master 
bus multiplied by the complex ratio. 

 
 
 
 
 Master bus Slave bus 

m 
1:am,s 

s 

Fig. 1. Generalized zero-impedance branch model. 
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Fig. 2. Equivalent model for the distribution system with zero 
impedance branches. 

When constructing the bus admittance matrix, only 
non-slave buses are considered. Zero-impedance branches 
are not used. The impacts of zero impedance branches are 
represented through the associated master buses and the 
branches adjacent to the slave buses, as shown in Fig. 2. 

Fig. 2 shows an example construction of an equivalent 
distribution system model with non-zero impedances. The 
construction transforms a model of distribution system with 
zero impedance branches to the equivalent distribution 
system model with non-zero impedances.  

In Fig. 2, a zero-impedance branch is connected to three 
branches (broken lines) by the slave bus and to two 
branches (double lines) by the master bus. Taking one 
adjacent branch between slave bus s and bus k as an 
example, the branch admittance matrix is 

, ,

, ,

s s s k

k s k k

s k
Y Ys
Y Yk

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

where ,s sY and are the self admittances of the branch at 
the slave bus s and the bus k,

,k kY
 

,s kY and are the mutual 
admittances of the branch between the bus s and bus k, and 
bus k and bus s, respectively. The master bus m provides an 
injected complex power , and a shunt compensator with 
admittance . The slave bus s provides an injected 
complex power

,k sY

mS
sh

mY

sS and a shunt compensator with 
admittance sh

sY . 
In the equivalent model, the zero-impedance branch 

and the slave bus s are removed. There are no changes for 
the branches connected to the master bus m. The branches 
connected to the slave bus s are reconnected to bus m, and 
the branch admittance matrices are modified accordingly. 

The branch between buses s and k in the system is 
replaced with a new branch between bus m and bus k in the 
equivalent system and the branch admittance matrix is 

* *
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 Model with zero-impedance branches 

, ,

, ,

              

where is the conjugate of zero-impedance branch ratio. 
The self admittance at bus m is determined from the 
product of self-admittance at bus s in the model and the 
square of the zero-impedance branch ratio. The mutual 
admittance for bus m to bus k is the product of the 
conjugate of the zero-impedance branch ratio and mutual 
admittance for bus s to k in the original system. The mutual 
admittance for bus k to bus m is the product of the 
zero-impedance branch ratio and mutual admittance for bus 
k to bus s in the original model. 

*
,m sa

The powers at bus s are directly added to bus m, and the 
resulting equivalent complex power at bus m is 

m s
s M

S S
∈

+ ∑  

where M is the set of buses that have connected with bus m 
through zero-impedance branches.  

The shunt compensation admittance at bus s is 
multiplied by the square of the zero-impedance branch ratio 
to add to bus m, and the equivalent shunt compensation 
admittance at bus m is 

sh * sh
, ,m m s m s

s M
Y a a Y

∈
+ ∑ s . 

2.3 Decoupled Power Flow Equations with Full 
Impedances and Second-Order Terms 

The power flow equations for any bus i are 

( ) (, ,cos sini i j i j i j i j i j
j

P V V G Bθ θ θ θ )⎡ ⎤= − + −⎣ ⎦∑   (4) 

( ) (, ,sin cosi i j i j i j i j i j
j

Q V V G Bθ θ θ θ )⎡ ⎤= − − −⎣ ⎦∑   (5) 

where and are the active power and reactive power 
injections at bus i,

iP iQ
 

iV and iθ are the voltage magnitude and 
phase angle at bus i, and and are the real and 
imaginary parts of the bus admittance matrix element 
associated with bus i and bus j. 

,i jG ,i jB

Similarly to the fast decoupled method, active power is 
expressed as a function of bus phase angles, and reactive 
power is a function of bus voltage magnitudes. By applying 
the Taylor expansion to (4) and (5), and retaining up to 
second-order terms, we define 

1
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where V is the bus voltage magnitude vector, ΔP  and 
ΔQ  are the vectors of bus active and reactive power 
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changes, Δθ and are the vectors of bus phase angle and 
voltage magnitude changes, 

ΔV
θJ  and θH  are the Jacobian 

and Hessian matrices of bus active powers with respect to 
bus phase angles, and  is the Jacobian matrix of bus 
reactive powers with respect to bus voltage magnitudes. 
The trigonometric functions are replaced with the Taylor 
series up to second-order term respectively to simplify the 
formulation and speed up the calculation during the 
formulation of the Jacobian and Hessian matrices: 

VJ

sin( )θ θ≈                (8) 
2cos( ) 1 2θ θ≈ − .           (9) 

The element of the Jacobian and Hessian matrices can 
be calculated using the following equations: 
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2.4 Hybrid Direct and Indirect Procedures 
The power flow equations are usually solved either by 

means of a direct solution technique[19] or an iterative 
solution technique[20]. Considering the characteristic 
difference between active power and reactive power 
problems, the proposed method uses a hybrid procedure to 
solve the power flow equations described in (6) and (7), in 
which the direct solution technique is used to solve the 
active power mismatch equations, and the iterative 
procedure is used to solve the reactive power mismatch 
equations. 

For the active power mismatch problem, the following 
equation is used: 

( )(0) (0),θ Δ =J V θ θ  

( )
( )

( ) (0) (0) ( )
( )

1 ,
2

k
k T k

k θ
Δ

− Δ Δ
P θ H V θ θ

V
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The Jacobian matrix and the Hessian matrix 

are determined by using the initial bus 
voltage magnitude and phase angle , which remain 
constant during the iterations.  

(0) (0)( ,θJ V θ )

(0) (0)( , )θH V θ
(0)V (0)θ

The first item in the right-hand side is the bus active 
power mismatch divided by the corresponding bus voltage 
magnitude that is determined by means of the bus voltage 
magnitude and phase angle obtained during the previous 
iteration k. The second item is the additional mismatch 
added by the second-order term of phase angle changes, 
and it is also determined by the phase angle obtained at the 
previous iteration. This linear equation is solved by means 
of a sparse lower triangular and upper triangular (LU) 
decomposition with partial pivoting. The bus phase angle 
vector θ is updated when the phase angle correction vector 
Δθ  is determined.  

For the reactive power mismatch problem, the 
following equation is used 

( )
( )

(0) (0)
( ),

k

V k

Δ
Δ =

QJ V θ V
V

.          (19) 

The Jacobian matrix  is determined 
from initial bus voltage magnitudes and phase angles, 
which remain constant during iterations. The right-hand 
side is the bus reactive power mismatch divided by the 
corresponding bus voltage magnitude that is determined 
from the bus voltage magnitude and phase angle obtained 
during the previous iteration k. This linear equation is 
solved by means of the restarted generalized minimal 
residual method with incomplete LU pre-conditioner. The 
diagonal elements of the Jacobian matrix are taken to be the 
preconditioned matrix. The bus voltage magnitude vector V 
is updated when the voltage magnitude correction vector 

(0) (0)( ,VJ V θ )

ΔV is determined. 
The initial values for bus voltage magnitudes and phase 

angles are set as follows: 
(0)

swi
t N

V V tα
∈

= ∏                (20) 

(0)
swi

p N
pθ θ

∈
= + ∑ β              (21) 

where ndswV a swθ are the voltage magnitude and phase angle 
of the swing bus, N is the set of devices located on the 
shortest path between the swing bus and bus i, tα is the 
voltage increasing ratio resulting from transformer t, and 

pβ is the phase angle increase resulting from the phase 
shifter p. 

The initial voltage magnitude of a bus is set as the 
result of multiplying the swing bus voltage magnitude by 
all voltage increasing ratios resulting from the transformers 
along the shortest path from the swing bus to the study bus. 

The bus initial phase angle is set as the swing-bus phase 
angle plus all phase-angle changes resulting from the phase 
shifters along the shortest path from the swing bus to the 
bus.  
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3. Numerical Examples 
The proposed method has been tested on several sample 

systems, and satisfactory results have been obtained. The 
testing results on a sample 6.6 kV distribution system and 
computation performance are compared with other existing 
methods provided below. Five different algorithms have 
been implemented to calculate the load flow of the sample 
system, including the method proposed in this paper, the 
Gauss-Seidel method, the Newton-Raphson method, and 
the BX and XB versions of the fast decoupled method. 

As shown in the Fig. 3, the test system has 7 feeders 
and 142 nodes. Two of the feeders, FDR1 and FDR7, are 
used for power generation only, and each node along the 
feeders has installed a photovoltaic unit. The other 5 
feeders are used for both generating power and serving 
power demand from customers, and each node along the 
feeder also has a photovoltaic unit and a service load 
transformer installed. The load demand at each node 
contains 40% constant power load, 30% constant current 
load, and 30% impedance load. The system has 14 
zero-impedance branches, including 7 closed switches, and 
7 voltage regulators.  

Six different test cases are simulated as shown in Table 
1. Those cases represent typical operation scenarios of this 
system. The first three cases, Case I, Case II, and Case III, 
simulate normal power-supply scenarios. In those cases, the 
main grid satisfies the major portion of the total system 
load demand, and the remaining portion is satisfied by local 
photovoltaic units. The last three cases, Case IV, Case V, 
and Case VI, simulate back-feeding scenarios. Besides 
satisfying the load demands from local customers, the 
distribution system still has power surplus that can be fed 
back to the main grid. In test Case I and Case IV, the power 
factors of the photovoltaic units are set to 1.0, i.e., the units 
generate only active power. The power factors are set to 0.9 
for Case II and Case IV, and to 0.8 for Case III and Case VI. 
The photovoltaic units for those cases generate both active 
and reactive power. 

The computational performance of all implemented 
methods is shown in Table 2 and Table 3. The allowed 
maximum active and reactive power mismatch was set to 

per unit, and the allowed maximal number of iterations 
was set to 5000. 

510−

Taking Case I as an example, it took 16 ms and 12 
iterations for the proposed algorithm to find the final 
solution with the required precision. In comparison, it took 
7394 ms and 1641 iterations for the Gauss-Seidel algorithm, 
and 640 ms and 23 iterations for the Newton-Raphson 
algorithm to find the solution with the same precision. The 
two fast decoupled algorithms, either the BX version or the 
XB version, failed to converge to a solution within the 
given maximum number of iterations. Similar results can be 
found for the other five cases. 

 
Fig. 3. Sample of the 6.6 kV distribution system. 

Table 1: Test Scenarios 

Load demands PV generations 
Scenario Case

MVA Power factor MVA Power factor

I 12.0 0.8 3.5 1.0 
II 12.0 0.8 3.5 0.9 

Normal 
power 
supply III 12.0 0.8 3.5 0.8 

IV 12.0 0.8 35 1.0 
V 12.0 0.8 35 0.9 

Backfeed 
to main 
grid VI 12.0 0.8 35 0.8 

Table 2: Computation time in seconds for test cases 

Case 
Algorithm 

I II III IV V VI 

Proposed method 0.016 0.016 0.016 0.016 0.031 0.031

Gauss-Seidel method 7.394 7.457 7.332 12.62 9.313 9.032

Newton-Raphson method 0.640 0.374 0.328 0.172 0.140 0.140
Fast decoupled method, 
XB version 1.934 2.215 1.762 1.810 1.778 2.200

Fast decoupled method, 
BX version 1.794 2.028 2.090 1.872 1.809 1.825

Table 3: Total number of iterations for test cases 

Case 
Algorithm 

I II III IV V VI 

Proposed method 12 12 11 13 38 61 

Gauss-Seidel method 1641 1636 1641 2712 2096 1996

Newton-Raphson method 23 13 12 6 5 5 

Fast decoupled method, 
XB version 5000 5000 5000 5000 5000 5000

Fast decoupled method, 
BX version 5000 5000 5000 5000 5000 5000
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Fig. 4. Sample bus daily generation and load profiles. 

Table 4: Computation performance under daily generation and 
load variations 

Algorithm Average computation 
time (s) 

Average number of 
iterations 

Proposed method 0.012 13.459 
Gauss-Seidel method 6.847 1557.23 
Newton-Raphson 
method 0.127 4.397 

 
The proposed method was also tested against daily 

generation and load variations. A total of 480 test cases 
were created for a typical weekday by taking one sample of 
system loads and generations every 4 min. Both the 
generation output of the photovoltaic units and the load 
demands of the buses varied over time. The daily variation 
patterns of load demand and power generation for different 
buses may be different as well. As an example, Fig. 4 gives 
the daily generation and load profiles for a sample bus in 
the system. In the figure, the lower and upper curves 
represent the daily generation profile and daily load profile, 
respectively. The overall computational performances of 
three different methods are given in Table 4, including the 
proposed method, the Gauss-Seidel method and Newton- 
Raphson method. The average computation time, and the 
average iteration number for one single case are used to 
compare the computation performances among different 
methods. 

From these test results, we can see that the proposed 
method is much more efficient than the Gauss-Seidel and 
Newton-Raphson algorithms, and has much better 
convergence than the fast decoupled ones. 

4. Conclusions 
The paper has proposed a hybrid decoupled power flow 

method for balanced power distribution systems with 
distributed generation sources.  

The method formulates the power flow equations in 
active power and reactive power decoupled form with 
constant Jacobian and Hessian matrices. It uses a hybrid 
procedure to solve the power flow equations, in which the 
direct method is used to solve the active power equations, 
and the indirect method is used to solve the reactive power 
equations. 

It models zero-impedance branches accurately and 
avoids solution divergence that is usually caused by zero or 
small impedance branches in conventional methods.  

The test results have proven experimentally that the 
proposed method is much faster than both the Gauss-Seidel 
and Newton-Raphson algorithms, and has better 
convergence than the fast decoupled algorithms.  
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