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Abstract
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shows the proposed controls provide a good balance of metrics.
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Abstract: This paper considers the control design for a vibration reduction system using semi-active actuators to improve the
ride quality. The main challenges come from the nonlinear dynamics, limited control authority, and lack of performance-oriented
nonlinear control design results. Two nonlinear controllers are proposed and compared to a conventional semi-active control.
Simulation shows the proposed controls provide a good balance of 2- and∞-norm metrics.
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1 Introduction

Vibration reduction of transportation systems, for instance
automotive, is required to achieve certain level of ride com-
fort. Existing architectures for the vibration reduction fall
into three categories: passive, fully active, and semi-active,
where passive components, active actuators, or semi-active
actuators are used in the respective architecture. An ac-
tive actuator may remove and inject energy to the system,
whereas a passive component or a semi-active actuator only
takes the energy out of the system. Due to its static design,
the performance of a passive system is limited. The active
architecture, including control mechanism and fully active
actuators, has been successfully applied to automotive sus-
pensions.
Active systems have superior performance at the expense
of a high first cost, relatively large electric power require-
ments and potentially reduced reliability [12]. The semi-
active architecture was originally proposed in [13] to trade
off the performance of vibration reduction and the system
cost. The semi-active architecture enjoys a similar form of
the active counterpart except that the fully active actuators
are substituted by semi-active actuators. A wide range of
study on semi-active systems, mainly on automotive suspen-
sions, demonstrates that a semi-active system can achieve
comparable performance of its active counterpart at a re-
duced first cost and potentially simplify power supply re-
quirements [12].
The application of semi-active actuators such as Magne-
torheological (MR) or Electrorheological (ER) dampers ren-
ders a challenging problem–control of the semi-active sys-
tem subject to performance criteria. The dissipative con-
straint on semi-active dampers not only introduces nonlin-
earity, but also leads to a constrained control problem. Work,
e.g. [13, 15, 7], first performs control design for a fully active
system, then derives semi-active control laws by ‘clipping’
active control laws to ensure that semi-active actuators gen-
erate forces as required by controller. The aforementioned
two-step design approach is straightforward since the fully
active system is linear time invariant. Commonly used ac-
tive control strategies include Sky-Hook [13], Ground-Hook

[20], LQR/LQG [10], andH∞ [6]. This approach however
does not address the nonlinear dynamics during the con-
troller synthesis. Work [11, 19] represents numerous efforts
to establish the control of a semi-active automotive suspen-
sion by treating it as a bilinear system. Optimal control is de-
signed to improve the ride comfort and handling quality. The
optimal control requires the solution of switching differential
Riccati equations and is not in the form of state feedback.
Nonlinear design such as the Lyapunov-based control [16],
decentralized bang-bang control [18], establishes the semi-
active control laws by maximizing the dissipative rate of dis-
tinctive energy functions. One of the disadvantages of these
approaches is that the performance of the closed-loop system
is not guaranteed for the lack of connection between perfor-
mance costs and energy functions. Instead, this paper con-
siders the nonlinearity during the determination of the active
control. The resulting active control is performance oriented
since it is established from approximate value functions of
Hamiltonian-Jacobi-Bellman equations.
This paper is organized as follows. In Section 2 we intro-
duce the semi-active system dynamics, formulate the prob-
lem, and expose the fundamental limitation of the conven-
tional passive system. The control design of the semi-active
system is carried out in Section 3. A number of controls are
simulated and compared in Section 4. Section 5 concludes
this note.
Notation:‖x(t)‖p is thep-norm ofx(t), for 1 ≤ p < ∞. A
positive definite (p.d.f) matrixP is abbreviated byP > 0.
Ik is ak × k identity matrix.

2 Preliminary

2.1 The Semi-Active System

To simplify the problem investigated, we consider a quar-
ter car model which can be simplified into a two degree of
freedom (2DOF) system as shown in Figure 1. The 2DOF
system consists of a car (m1), a frame (m2), a controller
(C), sensors (S), dampers (b1, b2) and springs (k1, k2). The
semi-active actuator (b2) is placed between the frame and the
wall. The system dynamics is

ẋ = Ax+B1w +B2u, (1)
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Fig. 1: A 2DOF quarter car model
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A semi-active actuator can implement the control lawu =
b2(x4 − ẇ), andb2 is the damping coefficient to adjust. The
nonlinearity of the semi-active system comes from the term
b2(x4 − ẇ). The system setup is non-unique. For instance,
a semi-active actuator can be placed between the car and
the frame, which appears in automotive suspension design.
Placing a semi-active actuator between ground andm2 al-
lows the effect of the disturbance derivative.

2.2 Problem Statement

The vibration level is generally measured by norms of the
car acceleration and its time derivative (jerk) [24]. The com-
monly used metric of ride comfort in automotive suspen-
sion designs is the 2-norm of acceleration‖ẍ1(t)‖2. This
note considers applications which emphasize the∞−norm
of acceleration‖ẍ1(t)‖∞. The design of control minimizing
‖ẍ1(t)‖∞ is rather difficult. Given the abundance of 2-norm
based control design techniques, we use the metric‖ẍ1(t)‖2

to derive controllers but the∞-norm to evaluate the perfor-
mance of the resulting vibration reduction system.
In practice, a cost function usually reflects physical con-
straints such as the relative displacement between moving
masses (frame and car), the dissipative rate of power [9], and
the bound of control. To simplify the problem to be solved,
we only consider the bounded control constraint. Denoting
bmin, bmax the minimal and maximal damping coefficients
of the semi-active actuator, the semi-active vibration reduc-
tion problem is formulated as follows.

Given system (1) subject to disturbancew, find
a state feedback controlu = b2(x4 − ẇ), with
bmin ≤ b2 ≤ bmax, to minimize certain cost func-
tion J .

2.3 Fundamental Limitation with Passive Architecture

A default passive system can be depicted by Figure 1 by re-
placing the semi-active damper with a conventional damper
and eliminating the controller and sensors. Denoting the car

accelerationz, we have

Gp(s) =
Z(s)

W (s)
=
s2(b1s+ k1)(b2s+ k2)

∆
,

where∆ = (m1s
2 + b1s+ k1)(m2s

2 + (b1 + b2)s+ (k1 +
k2)) − (b1s + k1)

2. A fully active system can be similarly
represented by Figure 1 but with an active actuator instead.
Assuming the active actuator implements the conventional
Ground-Hook strategy [21]

u = bmaxx4, (2)

we have the transfer function

Ga(s) =
Z(s)

W (s)
=
s2(b1s+ k1)k2

∆
,

whereb2 is replaced bybmax. Bode plots ofGp(s) with dif-
ferentb2, andGa(s) are given in Figure 2 to show the funda-
mental limitation of the passive architecture. The introduc-
tion of semi-active actuators is aimed to relax this limitation
by adjusting the damping according to the system state.
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Fig. 2: Frequency responses of passive (solid) and active sys-
tems (*). For the passive case, good disturbance attenuation
over high frequencies with a smallb2 at the expense of higher
peak values of resonance. This phenomenon does not hap-
pen in the active case, which can provide a better balance
between the isolation of vibration and suppression of reso-
nance.

3 Control Design

Control design for semi-active systems has attracted a lot of
attention since 1970s. The well-known Sky-Hook, Ground-
Hook, Clipped optimal controls etc. first determine the ac-
tive controlu from the linear time invariant system (1), then
clip the control to ensure the dissipative constraint. Simi-
larly, this paper first derives nonlinear active control, then es-
tablish the semi-active control by enforcing the control con-
straint. The main difference is that the proposed control is
based on a nonlinear augmented system, and the correspond-
ing active control is nonlinear.



3.1 Input-to-State Stability

We will establish that the closed-loop semi-active system (1)
with any semi-active control law, e.g.

u = α(x4 − ẇ), bmin ≤ α ≤ bmax, (3)

is Input-to-State Stable (ISS), where the disturbance is
treated as input.

Proposition 3.1 Provided thatw(t), ẇ(t) are bounded, sys-
tem(1) with the control(3) is ISS.

Proof: The closed-loop semi-active system can be rewritten
as

ẋ = A(α)x + ψ(w, ẇ, α), (4)

whereψ is a smooth function ofw, ẇ. We first study the
stability of the homogenous part of (4)

Σ1 : ẋ = A(α)x, (5)

Taking the Lyapunov function candidate as the physical en-
ergy of the unforced system (5), we haveV̇ < 0, ∀x 6= 0
because of the dampers in the physical system. Denoting
V = xTPx, P > 0, we haveV̇ ≤ −xTQx,Q > 0.
To show that (4) is ISS, we use the sameV . Its time deriva-
tive is

V̇ ≤ xTQx+ 2 ‖Px‖ ‖ψ‖
∞

≤ xTQx+ ǫxTP 2x+
1

ǫ
‖ψ‖2

∞
,

whereǫ > 0, andψ is bounded. One can always take a
sufficiently smallǫ s.t. xT (Q + ǫP 2)x ≤ −µ ‖x‖2

2 . Hence,
we haveV̇ ≤ −µ ‖x‖2

2 + 1/ǫ ‖ψ‖2
∞
, and

V̇ ≤ −(1 − θ)µ ‖x‖2
2 , ∀ ‖x‖ ≥ ‖ψ‖

∞√
µθǫ

,

where0 < θ < 1. Applying [14, Thm. 4.19], we conclude
that system (4) is ISS w.r.t.w, ẇ. �

3.2 Nonlinear State FeedbackH∞ Control Design

The control of vibration by semi-active actuators is essen-
tially a nonlinear disturbance attenuation problem. Given
the 2-norm metric, we know it can be treated under the non-
linear H∞ control framework. The original system (1) is
however not in the standard form due to the coupling term
ẇu. We augment the original system by including the dis-
turbance model, which is approximated by a second order
LTI system. Denotingξ1 = w, ξ2 = ẇ, the disturbance dy-
namics is

ξ̇1 = ξ2,

ξ̇2 = −a1ξ1 − a2ξ2 + v,
(6)

wherea1, a2 are positive, andv is the standard white noise.
The augmented system dynamics is written as

ẋ = Ax+ g1v + g2(x)u, (7)

wherex = (ξ1, ξ2, x1, x2, x3, x4)
T , and
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,

g1 = (0, 1, 0, 0, 0, 0)T ,

g2 = (0, 0, 0, 0, 0,−x4 − ξ2
m2

)T .

Given the disturbed system dynamics (7), the nonlinear state
feedbackH∞ control problem is formulated as follows.

Problem 3.2 [22, Def. 15] Find, if existing, the smallest
valueγ∗ > 0 s.t. ∀γ > γ∗ there exists a state feedback
u(x) s.t.L2 gain fromv to (z, u)T is less than or equal toγ.

TheH∞ control is generally difficult to obtain, and the sub-
optimal solution is sought instead. That is to find a con-
trol s.t. given the disturbancev, the closed-loop system has
L2 gain less than or equal toγ. The existence of such a
state feedback is reduced into the solvability of the follow-
ing HJB [23].

Vxf +
1

4
Vx

[

1

γ2
g1g

T
1 − g2g

T
2

]

V T
x

+ hTh = 0, V (0) = 0,

(8)

whereVx = ∂V/∂x, f = Ax, and

h(x) =

[

0, 0,− k1

m1
,− b1

m1
,
−k1

m1
,
b1
m1

]

x.

Given the solution of HJB (8), the control is given by

u(x) = −1

2
Vxg2. (9)

Note that the control solved from (8),(9) only address the
nonlinearity of semi-active actuators. Ignoring the dissipa-
tive constraint, the resulting control (9) is essentially active,
and may violate the bound conditionsu ∈ [bmin, bmax].
Control (9) is not implementable by the semi-active actua-
tor and requires a clipping.

Remark 3.3 It is difficult to obtain an exact solution of(10).
Numerous results are available to obtain its approximate
solution, e.g. viscosity solution, basis function approach.
Readers are referred to [2, 1] and references therein. For
simplicity, we consider a quadratic functionxTPx, P > 0
to approximate the solution of(10). Work [22] shows that
locally, the solvability of the HJB(8) is equivalent to that of
the Algebraic Riccati Equation (ARE)

ATP +PA+P

[

1

γ2
g1g

T
1 −GGT

]

P +HTH = 0, (10)

whereG,H are the linearization ofg(x), h(x) aroundx0

respectively. WhenG = 0, i.e.,ξ2 − x4 = 0, the linearH∞

control problem is not well posed in the neighborhood of the
origin. Hence, the nonlinear state feedbackH∞ control is
locally well-defined only ifG 6= 0. �



Remark 3.4 To be consistent with the∞−norm metric, it
is more appropriate to formulate control design of the semi-
active vibration reduction system as aL∞ control problem
instead of aH∞ control problem. The objective ofL∞ con-
trol is to minimize the peak of the plant output w.r.t. distur-
bance. For an LTI system,L∞ control can be solved as aL1

problem [25, 4, 5, 3]. TheL∞ control problem of nonlinear
systems is however still open. �

Considering the small magnitude of disturbance and that the
semi-active system is ISS w.r.t. disturbance, the trajectory of
(7) will stay inside a neighborhood of the origin. It is there-
fore reasonable to approximate the nonlinearH∞ control
by a linearH∞ control, which justify the use of quadratic
cost function as an approximate solution of (8). To solve
a quadratic value function from (10), we need to assume a
constantG. Given certainγ and a constantG, we solve the
ARE (10) forP , and take the control

u = −1

2
gT
2 Px. (11)

Note that the control (11) is nonlinear. This is the main dif-
ference from existing work where a linearH∞ control ap-
proach is applied and a linear controller is resulted. In our
approach, the approximation is made to compute the value
function instead of control. Alternatively,G can be updated
along the system trajectory. We could design a set of linear
H∞ controls based on the different values ofG (or ξ2 − x4)
off-line, and schedule the control laws based on the value of
ξ2 − x4.

3.3 Control Lyapunov Function Approach

A Control Lyapunov Function (CLF) can be used to con-
struct a stabilizing state feedback control of a nonlinear sys-
tem. It is also well-known that a CLF is a value function
associated with certain cost [8]. That is a CLF is optimal in
some sense. Consider the nonlinear dynamics

ẋ = f(x) + g(x)u, f(0) = 0, (12)

with x ∈ R
n is the state,u ∈ R

m control andf(x) : R
n →

R
n andg(x) : R

n → R
n×m are smooth.

Definition 3.5 [17] A control Lyapunov function is a con-
tinuously differentiable, proper, positive definite function
V : R

n → R
+ s.t.

inf
u
{Vxf(x) + Vxg(x)u} < 0, ∀x 6= 0,

whereVx = ∂V (x)/∂x.

Given a CLF of system (12), the resultantu(x) is generally
defined inR and violates the bounded constraint of control.
A bounded state feedbacku(x) can be constructed from a
CLF defined for a bounded control setB = {u| ‖u‖2 ≤ 1}
[17]. That is, if there existsu s.t.

inf
u∈B

{Vxf + Vxgu} < 0, ∀x 6= 0,

a control lying inB can be constructed as

u(x) =







−Vxf+
√

(Vxf)2+(Vxg)4

Vxg(1+
√

1+(Vxg)2
, Vxg 6= 0,

0, Vxg = 0.
(13)

Provided that the white noisev is ignored, the aforemen-
tioned result can be applied to construct a bounded control
for system (7). We only need to find aV s.t.

inf
u∈B

{Vxf + Vxg2u} < 0. (14)

It is straightforward to construct a CLF satisfying (14). The
bounded control is constructed according to (13). Simula-
tion demonstrates that the control is bounded but very small.
This is because the construction of CLF and the correspond-
ing control (13) is a worst-case design. The resultant closed-
loop semi-active vibration reduction system exhibits a simi-
lar performance as a passive system does.
Noticing the necessity of a saturated control to outperform
passive damping systems, we focus on the search of a ‘good’
CLF. Since the value function is related to a meaningful cost,
we can treat it as a CLF. A value function of system (7) w.r.t.
a quadratic cost requires to solve a nonlinear HJB similar to
(8).
Due to the difficulty of solving the HJB analytically, we take
the approximate value functionV (x) = xTPx. This gives a
HJB

ATP + PA− Pg2g
T
2 P + CTC = 0. (15)

We make assumption further to simplify the above equation.
That is to takēg2 as a constant by evaluating it at the certain
point of the trajectory. With̄g2 a constant vector, the HJB
(15) is reduced to an ARE. Treating the approximate value
function as a CLF, we construct the control law

u(x) =

{

−Vxf+
√

(Vxf)2+(Vxg2)4

Vxg2

, Vxg2 6= 0,

0, otherwise.
. (16)

Remark 3.6 Although the CLF-based design approach is
based on the 2-norm metric, it can be generalized to a more
general cost functional case. A realistic approximation of
the∞−norm cost is

J =

∫ T

0

(ẍ1(t)
2p + u2)dt,

wherep is sufficiently large. The corresponding HJB takes
the form of

Vxf − 1

4
(Vxg2)

2 + ẍ1(t)
2p = 0. (17)

Unlike the 2-norm metric case, the approximate solution of
the HJB(17)can not be quadratic. �

4 Simulation

Simulation is performed to compare the performance of the
approximateH∞ control (11), the CLF-based control (16),
the default passive system, the active control (2), and the
conventional semi-active control law

u =











max{min{bmax,
bmaxx4

x4−ẇ
}, bmin},

if x4(x4 − ẇ) > 0,

bmin, otherwise.

(18)

We takeḡ2 = G = [0, 0, 0, 0, 0, 1e − 1], Q = 8e2I6, and
γ = 1 to solveP in (15), (10). Simulation results are shown



in Figures 3, 4 and Table 1. In Figures 3, 4, semi-active 1, 2,
3 represent the controls (18), (11), (16) withḡ2 constant, re-
spectively, and semi-active 4 is the control (16) solved from
(15) with ḡ2 updated along the system trajectory. Table 1
shows that conventional control (18) achieves lower level of
the RMS of car acceleration than the proposed controls. The
proposed semi-active control 4 obtain a good balance of the
metrics: 2- and∞−norm of the acceleration. It is worth
mentioning the proposed control requires full state and dis-
turbance information.
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Tab. 1: Performance of passive, active, and semi-active sys-
tems

Controls ‖ẍ1‖2
(m/s2) ‖ẍ1‖

∞
(m/s2)

passive 6.6092 0.1272
active (2) 2.0770 0.0621
semi-active 1 3.4961 0.1382
semi-active 2 4.0752 0.1035
semi-active 3 4.0691 0.0950
semi-active 4 3.8550 0.0936

5 Conclusion

This note considered the nonlinear control design for a semi-
active vibration reduction system to improve the ride qual-
ity. The control design was treated as a nonlinearH∞

control problem. An nonlinear approximateH∞ control
was obtained based on a quadratic solution of the nonlin-
ear HJB. A CLF-based control design approach was also
investigated and the control were derived from solving the
approximate value function of the corresponding HJB. The
proposed semi-active controls are simulated and demonstrate
a lower peak acceleration compared to a conventional semi-
active control.
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