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Abstract
This paper extends classical object pose and relative

camera motion estimation algorithms for imaging sensors

sampling the scene through light-paths. Many algorithms

in multi-view geometry assume that every pixel observes

light traveling in a single line in space. We wish to relax

this assumption and address various theoretical and prac-

tical issues in modeling camera rays as piece-wise linear-

paths. Such paths consisting of finitely many linear seg-

ments are typical of any simple camera configuration with

reflective and refractive elements. Our main contribution is

to propose efficient algorithms that can work with the com-

plete light-path without knowing the correspondence be-

tween their individual segments and the scene points. Sec-

ond, we investigate light-paths containing infinitely many

and small piece-wise linear segments that can be mod-

eled using simple parametric curves such as conics. We

show compelling simulations and real experiments, involv-

ing catadioptric configurations and mirages, to validate our

study.

1. Introduction and motivation

The bending of light rays is a very common natural phe-

nomenon producing very many optical effects; reflection on

water, refraction in a dew drop on a leaf, distortion of un-

derwater objects, shimmering on a road’s surface, the blue

oasis in the desert, rainbows, lingering sunset, halo sur-

rounding the sun and twinkling stars are just a few exam-

ples. Despite the significant progress made by the vision

and graphics communities toward realistic models, we are

still far from modeling the extreme complexity of light.

Many algorithms in multi-view geometry use either the

pinhole model, where light rays pass through a single op-

tical center, or a non-central model where every pixel is

mapped to an arbitrary projection ray. Non-central cam-

era models have been studied in the context of catadioptric

configurations [9, 17, 21, 28] and most multi-view geom-

etry algorithms have been extended to such models. Most

of these algorithms assume that a pixel is mapped to a sin-

(a) (b)

(c) (d) (e)

Figure 1. A setup with three planar mirrors and a camera facing

two of them is shown in (a). The light-path for a chosen pixel is

shown in (b). The main highlight of this paper is to extend the

classical pose and motion estimation algorithms for such paths

without any prior knowledge about the correspondence between

the scene point and the individual segment in the piece-wise linear

paths. We show a cube imaged using a pinhole camera in (c). By

sampling light along a parametric curve shown in (d), we synthe-

size the same cube in (e).

gle straight line in space. We wish to relax this assumption

and associate several piece-wise linear segments to a single

pixel and propose pose and motion estimation algorithms.

In particular we wish to study this problem without using

any prior knowledge about the segment of the light-path in-

teracting with the scene. One may wonder: Why is this

generality necessary? Consider Figure 1(a) where we show

a simple configuration with three mirrors and a camera. Af-

ter two or three bounces with two mirrors, it becomes ex-

tremely difficult to know the correspondence between the
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scene point and its associated segment in the light-path.

There is a wide body of literature on reconstruction al-

gorithms involving specular objects [4, 30] (reflective and

refractive)1. In specular stereo works [3, 20], the path of the

light ray, before and after reflection, is studied to recover

the shape of mirror-like objects from two views. Ben-Ezra

and Nayar detect and reconstruct transparent objects from a

sequence of images taken under known motion [1]. Here,

a physics based modeling approach is taken to handle re-

fraction and to reconstruct the shape of transparent objects

in the form of super-ellipsoids. Kutulakos and Steger have

shown some inspiring results in reconstructing specular ob-

jects by recovering the path of a light ray after it undergoes

refraction [16]. In order to recover the light-path they use

reference 3D points whose coordinates are known with re-

spect to the camera. Although we also recover the light-

paths accurately using non-trivial techniques for investiga-

tion purposes, our main contribution is not the light-path

computation. Rather, we search for scene points on the dif-

ferent segments of the known light-path using pose estima-

tion and motion estimation algorithms. Chari and Sturm de-

veloped geometric entities like fundamental matrix for un-

derwater scenarios [5]. Seitz et al. [25] have investigated

the multi-bounce nature of light-paths for decomposing im-

ages and removing inter reflections. Recently Kirmani et

al. [14] used multi-path analysis of light transport to recon-

struct the geometry of hidden regions, which are not in the

line of sight of the camera.

In this paper, we also investigate algorithms for light-

paths containing infinitely many and small piece-wise lin-

ear segments that can be modeled using conics. Although

we are not familiar with any prior work for optical images,

Hartley and Saxena have used curved projection rays for

modeling SAR imagery [13].

We summarize our main contributions below:

• We develop pose and motion estimation algorithms for

cameras where each pixel samples light traveling in a

piece-wise linear path or a parametric curve. We refer

to these cameras as piece-wise linear model (PLM) and

parametric curve model (PCM).

• We show that the correspondence problem between a

scene point and the individual segments of the piece-

wise linear path can be mapped to the enumeration of

all the maximum cliques in an associated graph.

• The main contribution of this paper is an efficient algo-

rithm for PLMs that can work with a large number of

piece-wise segments. We propose an extremely useful

pairwise cheirality constraint that allows one to search

in the large solution space to solve light-paths with

finitely many segments. In particular, we show that it

1We do not address the problem of diffusion where a single light ray

may get split into infinitely many rays.

is possible to extend the pose estimation for light-paths

having more than 100 segments.

• We show compelling simulations and real experiments

to validate our theory for PLMs and PCMs. To work

with real images of mirages, we include a practical

method to compute the refraction parameters from an

image of a mirage.

Overview of the paper: In section 2 we introduce and de-

velop pose and motion estimation algorithms for PLMs. In

section 3 we propose an efficient search algorithm for find-

ing the correspondence between the individual segment of a

piece-wise linear light-path and a scene point. In section 4

we introduce and develop multi-view geometry algorithms

for PCMs. In section 5 we show simulations and real ex-

periments to validate our theory. We use simple camera

configurations with planar mirrors to show the results for

PLMs and use real images of mirages to demonstrate the

results for PCMs.

2. The piece-wise linear model

Every pixel samples light in a piece-wise linear path de-

noted by a sequence of 3D points P0, P1, ..., Pn where n

is the number of segments. We refer to this path as PLP. In

Figure 1(a), we show a configuration consisting of three pla-

nar mirrors and a camera facing two of them. The camera

is facing the back-side of one of the mirrors. For a chosen

pixel shown on the image, we trace the corresponding PLP.

It consists of the segments P4P3, P3P2, P2P1 and P1P0.

In a PLM all pixels are associated to such paths and we as-

sume that they are pre-calibrated. We refer to an object or

the scene as not being part of the PLM. As an object enters

the field of view of a PLM, every point on the object will

lie on multiple segments in various PLPs. This is the reason

for observing the same 3D point at multiple places in the

image. However, for a given pixel, the corresponding scene

point lies in general on only one segment of the pixel’s PLP.

For example the scene point S corresponding to the cho-

sen pixel resides on the segment P4P3. In general it is not

easy to identify this association between the segment and

3D point even manually when there are multiple segments

in a light-path. We explore the feasibility of finding this

correspondence automatically while we solve the pose and

motion estimation problems.

2.1. Pose Estimation

Given three correspondences between points in the world

and their projections on the images, the goal is to com-

pute the pose of the camera in the world coordinate sys-

tem. For the pinhole model, many solutions have been pro-

posed in the literature - Grunert [10], Fischler and Bolles

[8], Church’s method [6], Haralick et al. [11], to name but

a few references. One can also compute pose using both
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points and lines [22], but in this paper we focus on only

points. Recently, there has been algorithms for developing

pose estimation using three points for non-central or gener-

alized cameras [19, 23]. In a generalized camera model, ev-

ery pixel is mapped to a projection ray in space along which

it samples light [9, 27]. Mathematically, the minimal pose

estimation problem is described as follows. Given 3 points

and 3 rays in different coordinate frames, find a rigid trans-

formation such that the points are incident with their cor-

responding rays. In this problem, the number of rays and

points is minimal for computing the transformation. This

algorithm gives 8 solutions in general and additional corre-

spondences are used to prune the ones inconsistent with the

other matches. This algorithm is generally employed in a

hypothesize-and-test framework such as RANSAC [8]. We

use this algorithm as the basic block for developing ours.

We briefly describe the pose estimation problem for

PLMs. Given three scene points and their corresponding

pixels, thus their corresponding PLPs, our goal is to com-

pute a transformation such that each point lies on one of

the segments in its corresponding PLP. Once the correspon-

dence between points and line segments is established, we

may compute the pose using the above generalized pose es-

timation algorithm. A correct transformation could be eas-

ily verified by checking if at least one segment of every PLP

contains the corresponding scene point. Thus the remaining

missing block in developing a pose estimation algorithm is

to compute the correspondence between the segments in a

PLP and its corresponding point. One can use a brute force

search strategy to generate a lot of poses and identify the

correct pose from them. However, this is infeasible when

there are many segments in each PLP. In section 3 we pro-

pose an efficient search strategy to solve the pose estimation

problem using a pairwise cheirality constraint. Without this

constraint, the exhaustive search is highly infeasible.

2.2. Motion Estimation

The underlying mathematical problem for generalized

motion estimation is briefly described here: Given two sets

of 6 rays each, the goal is to rotate and translate one set such

that every ray in one set intersects its corresponding ray in

the other. Stewénius et al. gave the solution for generalized

cameras that leads to 64 solutions [26]. We can use addi-

tional correspondences to prune the ones that are inconsis-

tent with other matches. This algorithm will be used as the

basic block for developing the motion estimation algorithm

for PLMs.

We briefly describe the motion estimation problem for

PLMs. Given correspondences between two sets of 6 PLPs

in two cameras, the goal is to compute a transformation such

that one segment in a PLP from the first set intersects with

at least one segment in its corresponding PLP in the sec-

ond set. Once the correspondence between the segments

in every pair of PLP is established, we may compute the

motion using the above generalized motion estimation al-

gorithm. A correct transformation could be easily verified

by checking if at least one segment of every PLP intersect at

least one segment of its corresponding PLP. Similar to the

pose estimation problem, we could employ a brute force

search to generate all possible correspondences. However,

this is even harder than the pose problem. Using a pairwise

cheirality constraint we reduce the search space and solve

the motion estimation.

3. The correspondence problem

We describe the correspondence problem for the pose es-

timation problem in detail. The algorithm for motion es-

timation can be analogously developed. In order to effi-

ciently solve the correspondence problem we primarily use

one geometric constraint. This constraint is a pairwise one

where we can jointly check whether two point–PLP corre-

spondences can jointly hold true. In Figure 2(a), LP and

MQ are two segments from two different PLPs. In order

for the 3D points P and Q to correspond to segments LP

and MQ, the following condition must be satisfied:

dmin
LP ,MQ

≤ dP,Q ≤ dmax
LP ,MQ

(1)

where dmin
LP ,MQ

and dmax
LP ,MQ

are the minimum and max-

imum Euclidean distances between the line segments LP

and MQ, and dP,Q is the distance between the 3D points P

and Q. Later, we will observe that the above simple geomet-

ric constraint reduces the search space for the pose problem

significantly. We refer to this as pairwise cheirality due to

its resemblance to the classical cheirality constraint [12].

The classical one says that the scene points must lie in front

of the camera that view them.

(a) (b)

Figure 2. (a) We show the pairwise cheirality constraint for the

problem of pose estimation for PLMs. (b) The solution space for

correspondences between the individual line segments of a PLM

and the corresponding 3D points could be mapped to the enu-

meration of all possible maximum cliques of size 3 in a tri-partite

graph.

We will now describe a method to compute the possi-

ble correspondences satisfying the pairwise cheirality con-

straint. Consider the graph shown in Figure 2(b). Every
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node Mij represents the correspondence between the ith

point and the jth segment in the corresponding PLP. An

edge between Mij and Mkl exists if two pairwise assign-

ments can happen simultaneously without conflicting with

each other. This implies that the pairwise assignment sat-

isfies the pairwise cheirality constraint given in equation 1

and the uniqueness constraint. The uniqueness constraint

refers to the rule that the same 3D point cannot lie on two

different segments of the same PLP. Thus there is no edge

between any Mij and Mik. All the candidate solutions are

given by the maximum cliques of the graph. The maximum

clique of a graph refers to the largest complete subgraph, i.e.

cliques, where every pair of nodes are connected by an edge.

Note that all the maximum cliques have size three because

the graph is tri-partite. Thus we identify triplet of nodes or

correspondences, where every pair of nodes is consistent. If

each PLP has n segments, the brute force approach leads to

n3 candidates whereas our approach leads to a much lower

number of candidates as shown in section 5.

In the case of motion estimation we can have a similar

pairwise cheirality constraint for pairwise assignments. Let

us assume that for the correct transformation the pairs of

segments (L,M) and (R,S) intersect each other. The in-

tersection is only possible if the following two conditions

hold true:

dmin
L,M < dmax

R,S and dmin
R,S < dmax

L,M (2)

Similar to the pose estimation problem, the correspondence

problem for motion estimation can be mapped to the enu-

meration of maximum cliques of size 6 in a 6-partite graph.

These results are not entirely surprising because other corre-

spondence problems in computer vision have been mapped

to similar NP-hard problems before [7, 29]. For each candi-

date match, we compute the motion using generalized mo-

tion estimation algorithm and the correct solution is identi-

fied using additional PLPs.

4. The parametric curve model

In the previous section we observed that the solution

space increases exponentially with the number of segments

in each PLP. In several natural phenomena, the light-path

contains infinitely many small piece-wise segments as in

the case of mirages. For such light-paths, the algorithm

for PLM is infeasible. Here we show that despite the in-

finitely many segments, pose and motion estimation algo-

rithms are feasible if the segments fit a simple parametric

curve like a conic. In order to do this we will represent the

light-path using a parametric curve, generally represented

as (x = x(t), y = y(t), z = z(t)), where t is an indepen-

dent parameter which helps us to navigate along the path of

the curve. A general polynomial parametric curve can be

given by:

x(t) =

n
∑

i=0

ait
i, y(t) =

n
∑

i=0

bit
i, z(t) =

n
∑

i=0

cit
i, (3)

where ai, bi and ci are coefficients in the curve. In what

follows, we consider a simple parametric representation to

illustrate the basic ideas. We assume that the curves pass

through the optical center and the nonlinearity is only along

the x dimension. In the experiments, we use a similar model

for mirages. A parametric curve path (PCP) can be repre-

sented using the following form:





x(t)
y(t)
z(t)



 =





at2 + bt

ct

t



 (4)

where a,b and c are the parameters of the curve. By varying

the parameter t from 0 to ∞ we can navigate along the path

of the curve. Such a curve is conic-shaped and an example

is shown in figure 1(d).

4.1. Motion Estimation
Given two sets of corresponding projection curves from

two cameras, the goal is to compute a transformation such

that every projection curve intersects its counterpart. This

also means that there exists a common point on both the pro-

jection curves if they are expressed in a common reference

frame. For simplicity, we assume that one of the camera

is a PCM and the other one is a classical pinhole camera.

A parametric representation of the classical pinhole ray is

given below:





x(t2)
y(t2)
z(t2)



 =





a2t2
b2t2
t2



 (5)

Under a general motion of (R,T) we have the following

equation:

(

a1t1
2
+ b1t1

c1t1
t1

)

= R

(

a2t2
b2t2
t2

)

+

(

T1

T2

T3

)

(6)

Applying algebraic transformations we eliminate t1 and t2
and we get the equation

∑36

i=1
CiVi = 0 where Ci are func-

tions that depend on the known parameters a1, b1, c1, a2 and

b2. The coupled variables Vi are functions of the unknown

motion parameters.

The coupled variables can be estimated using singular

value decomposition. Using orthogonality constraints on

the rotation matrix the individual motion parameters can be

extracted from the coupled variables. The above method

needs at least 35 point correspondences, although the num-

ber of independent degrees of freedom is only 6. One can

also solve the pose estimation problem in a similar manner

and it is much simpler.
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(a) (b) (c) (d)

Figure 3. We show the simulation platform in (a) and (c). A single PLP is traced to a path containing 100 segments in (a). The PLP is

color-coded from red to blue, i.e., the initial segments are red and the final ones are blue. In (b) we show the comparison between brute

force search and our maximum clique algorithm for pose estimation. In (c) we show 6 PLPs with three segments each. In (d) we show

the comparison between brute force search and our algorithm for generating the candidate solutions for motion estimation.[best viewed in

color]

5. Experiments

Simulations for PLM: We show the simulation platform

in Figure 3. The camera is at one of the corners of a cube of

dimension 100. The camera is facing the inside of the cube

whose six walls are reflective. Using a simple ray-tracing

technique we obtain light-paths with as many segments as

possible starting with random directions from the origin.

This allows us to generate PLPs of any length for a given

pixel in the image with known calibration parameters. In

order to simulate the pose estimation experiment, we gen-

erated random PLPs each of length n. The PLP for a single

pixel having 100 segments2 is shown in Figure 3(a). We

select a random segment in each PLP and select a random

point on it. We generate one 3D point for every PLP. These

points were rotated and translated by a random transforma-

tion matrix. We used our search strategy to generate all the

candidate solutions. In Figure 3(b) we show the reduction

in solution space using our maximum clique formulation.

Using 4 or more points, we were able to compute the exact

pose from PLPs having as many as 100 segments. The algo-

rithm identified the correct segments even in the presence of

noise. Note that only the candidate matches are generated

using the minimal set of 3 correspondences. For each can-

didate match, we compute the pose using generalized pose

estimation algorithm and check its validity using additional

points. The computed pose is checked using a few other

points. In general 4 points were sufficient to identify the

correct pose. The solution space for pose estimation is n3

using a brute force search. The number of candidates ob-

tained by the enumeration of the maximum cliques is much

lower, as shown in Figure 3(b).

We used a similar simulation platform for testing the mo-

tion estimation algorithm. It is difficult to generate matches,

2The experimental setup is inspired by the illumination problem, where

light-paths are indefinitely traced inside a mirror-walled polygon.

since this involves finding PLPs in two cameras that inter-

sect each other, which is a hard problem. In the first cam-

era, we generate PLPs of arbitrary length. Seven or more

random points were chosen on random segments in each

PLP. These points were rotated and translated by a random

transformation matrix. For the second camera we used a

single bounce to reach the camera center. In other words,

we were able to compute PLPs for the second camera of

length 2. Note that the solution space of motion estimation

is extremely large compared to the pose estimation prob-

lem. For two sets of PLPs, each of length n, the overall

solution space using brute force search is n12. Using our

maximum clique formulation we reduced the search space

significantly.

Real Experiments for PLM: We show results for real ex-

periments with the setup shown in Figure 4. Testing was

done using two mirrors and considering light-paths up to

length 3. The planar mirrors are squares of size 304 mm

each. The cube is of size 127 mm. The correspondences are

given manually in the images. Note that automatic match-

ing algorithms that are invariant to mirror flips could also

be used to match point features. We used images of size

2272 × 1704. The main challenge was the precise calibra-

tion of the two mirrors. Using the initial calibration of the

mirrors we did a bundle adjustment from known calibration

grid points after multiple reflections. This improved the ori-

entation of the planes significantly and the setup was precise

enough for our experiments. We believe that this idea of op-

timizing on the light-paths after multiple reflections would

prove useful for several other catadioptric configurations.

After computing the motion, we reconstructed the cube by

intersecting the correct segments of the matching PLPs. We

measured the error using the difference between the ground-

truth data and the reconstructed model. The overall RMS

errors in pose and 3D reconstruction results are 8 mm and
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15 mm respectively. Note that this error is without any fur-

ther refinement using bundle adjustment.

Degeneracy: Axial cameras refer to a class of cameras

where all the projection rays intersect in a single line in

space [24]. During the experiments, we observed that the

axial configuration might be a degenerate case for the 6-

point motion estimation algorithm [26]. In our real and syn-

thetic experiments, we did not use an axial configuration.

(a) (b)

(c)

Figure 4. (a) and (b) are two images captured from the same pre-

calibrated setup using a single camera and two mirrors. The cube

is rotated and translated between the two views. The correspon-

dences are given manually. Every 3D point occurs multiple times

in the images. Our algorithm can work with any correct match.

The reconstructed cube and the PLPs are shown in (c). The cor-

rect segment is automatically identified and it is shown in blue.

[best viewed in color]

Modeling PCMs using conics: We simulated a PCM

whose projection curves are conic-shaped. Images of 3D

synthetic models of a unit cube are generated using non-

linear ray tracing. Algorithms such as motion estimation

and 3D reconstruction were tested. The concept of epipolar

lines generalizes to epipolar curves. Analogously epipolar

planes manifest themselves as epipolar surfaces. The basic

idea is very simple; for every pixel x in the left image we

look at all the pixels in the right image whose rays intersect

the ray associated with pixel x. In figure 5, the synthesized

images and the epipolar curves on both the PCM and the

pinhole images are shown.

(a) (b)

(c) (d)

Figure 5. (a) and (b) show synthesized images of the inside of a

cube using a PCM and a pinhole respectively. (c) Epipolar curve

on the PCM image is shown. This curve is obtained by collecting

the pixels whose projection rays (conic-shaped rays) intersect a

projection ray (a straight line) of pixel x′ in the pinhole image.

(d) The epipolar curve on the pinhole image is the set of pixels

whose projection rays intersect the conic-shaped ray of pixel x in

the PCM image.

Simulation of Mirages: We use a physics based model-

ing for mirages [2, 18]. Mirages occur when the refractive

index of air changes from one region to another. When a

light ray passes from one medium to another having differ-

ent refractive indices, its path is determined by Snell’s law.

In our modeling the atmosphere is sliced into very small

layers of constant refractive index each and we use Snell’s

law at each boundary. We show the path of a mirage ray in

figure 6. The light ray enters at an angle of θ with respect

to the vertical. Let n be the refractive index at the starting

point (y = 0). Let m refer to the parameter that describes

the variation in refractive index relative to altitude. Thus

the refractive index for a specific altitude y is n+my. The

parametric model for the light rays during the formation of

mirages is given below:




x(t)
y(t)
z(t)



 =





c

t

f(t, k,m, n)



 (7)

where

f(t, k,m, n) =
k

m
log(mt+ n+

√

(mt+ n)2 − k2)−

k

m
log(n+

√

n2 − k2) (8)
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where c refers to a constant and k is given by nsin(θ). The

above equation refers to the mirage ray corresponding to

one pixel in the image. We assume that all mirage rays cor-

responding to pixels in one vertical scanline in the image lie

on a single plane.

Figure 6. A single light curve during the formation of a mirage.

Note that the curve undergoes total internal reflection (TIR) and

changes its path.

During the formation of a mirage, total internal reflec-

tion (TIR) also takes place as shown in figure 6. We refer to

the point at which TIR happens as the turning point. When

a light ray passes into a less dense medium and the angle

of incident light is greater than the critical angle, TIR takes

place. In our work, we compute the turning point, shift the

origin to this point, and finally update the incident angle. In

other words, the initial part of the ray is not useful to model

the mirages. Thus we remove this part and model the re-

maining projection curve. Using Taylor expansion, one can

show that the above model for mirages shown in Equation 8

can be approximated by the following parametric curve:





x(t)
y(t)
z(t)



 =





f

dt+ e

at2 + bt+ c



 (9)

where a, b, c, d, e and f are known constants that describe

the path of the light ray. Note that the above approxima-

tion is valid for typical values of m, which is very small for

normal temperature variations.

Mirage simulation and testing: We test the accuracy of

our modeling using a synthesize-and-compare algorithm.

For a given image of the mirage we approximate the differ-

ent objects in the image as planar segments. For example in

Figure 8, the desert image has two types of planes: vertical

planes corresponding to the trees and a horizontal plane cor-

responding to the ground. We use different depth values for

the trees and synthesize mirages by non-linear ray-tracing

[2, 18]. We synthesize mirages for different values of the

calibration parameters: change in refraction index (m), field

of view and scaling along z and y axis. For example in Fig-

ure 7, we show the synthesis of mirages for different values

of m. In order to do the synthesis we used a pixel shader

program in GPU to generate several mirages per second and

do the matching. By doing chamfer matching between the

synthesized and real images of the mirages we were able

to optimize on the chosen parameters. Some of the results

based on this matching are shown in figure 8. Testing the

motion estimation and pose estimation algorithms for real

images of mirages are very challenging and they are still

unresolved problems. The main bottleneck is the lack of

real data. In order to test motion estimation, we need two

images of mirages of the same scene from different view-

points along with the calibration parameters. The pose esti-

mation requires a known object in the scene along with the

mirage parameters.

6. Discussion

We made a few non-trivial observations of light-paths us-

ing theoretical analysis, simulations and real experiments.

We still believe that the experiments do not convey the gen-

erality of the proposed technique. Note that once the light-

paths are known, our techniques can apply to several scenar-

ios like refraction through water or glass and reflections on

arbitrary shaped mirrors. Computation of long light-paths

(3 or more segments) in these scenarios is an active area

of research and involve specialized calibration techniques,

which is not the main focus of this paper. We believe that

the ability to compute pose and motion in such challenging

scenarios will spur further research in exact light-path com-

putation techniques and their utilization in applications.

We used simple optimization techniques to study PLMs

and PCMs. For example, we enumerated all the maxi-

mum cliques in a graph using a simple tree-based search.

We could use efficient branch and bound techniques to im-

prove the performance. The use of Groebner basis solvers

[15] might also prove beneficial for modeling higher degree

curves in PCMs.
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