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With the simplicity of its application together with compression efficiency, the Discrete Cosine
Transform(DCT) plays a vital role in the development of video compression standards. For
next-generation video coding, a new set of 2-D separable transforms has emerged as a candidate
to replace the DCT. These separable transforms are learned from residuals of each intra pre-
diction mode; hence termed as Mode dependent- directional transforms (MDDT). MDDT uses
the Karhunen-Loeve Transform (KLT) to create sets of separable transforms from training data.
Since the residuals after intra prediction have some structural similarities, transforms utilizing
these correlations improve coding efficiency. However, the KLT is the optimal approach only
if the data has a Gaussian distribution without outliers. Due to the nature of the least-square
norm, outliers can arbitrarily affect the directions of the KLT components. In this paper, we
will address robust learning of separable transforms by enforcing sparsity on the coefficients of
the representations. With this new approach, it is possible to improve upon the video coding
performance of H.264/AVC by up to 10.2% BD-rate for intra coding. At no additional cost,
the proposed techniques can also provide up to 3.9% improvement in BD-rate for intra coding
compared to existing MDDT schemes.
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ABSTRACT

With the simplicity of its application together with compression efficiency, the Discrete Co-

sine Transform (DCT) plays a vital role in the development of video compression standards.

For next-generation video coding, a new set of 2-D separable transforms has emerged as a

candidate to replace the DCT. These separable transforms are learned from residuals of each

intra prediction mode; hence termed as Mode dependent- directional transforms (MDDT).

MDDT uses the Karhunen-Loeve Transform (KLT) to create sets of separable transforms

from training data. Since the residuals after intra prediction have some structural similar-

ities, transforms utilizing these correlations improve coding efficiency. However, the KLT

is the optimal approach only if the data has a Gaussian distribution without outliers. Due

to the nature of the least-square norm, outliers can arbitrarily affect the directions of the

KLT components. In this paper, we will address robust learning of separable transforms

by enforcing sparsity on the coefficients of the representations. With this new approach, it

is possible to improve upon the video coding performance of H.264/AVC by up to 10.2%

BD-rate for intra coding. At no additional cost, the proposed techniques can also provide

up to 3.9% improvement in BD-rate for intra coding compared to existing MDDT schemes.

1. INTRODUCTION

This paper describes a novel mode dependent design of 2-D separable transforms to be used

in video coding. Compared to the current state of the art methods, this method enforces

sparsity on the transform coefficients for given data fidelity. Iterative optimization updates

each separable transform after finding the optimal coefficients in a mode-dependent frame-

work. The mode dependent aspect of the transform design also deviates from prior work

[1, 2] in that the rate-distortion-optimal selection of transforms is abandoned. Hence, no

extra bits are required to signal the transform selection, which makes our approach com-

patible with current video coding architectures.

In video coding, frames are typically encoded in two ways: i) intra coding, ii) inter cod-

ing. In intra coding the correlation of blocks within a frame is utilized to generate prediction

residuals, which will have significantly less energy than the corresponding original image
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blocks. The prediction residual is the difference between an original block and its predic-

tion. Hence, fewer bits are required to encode the blocks at a given level of fidelity. For

inter coding, motion-compensated prediction residuals are generated using blocks within a

temporal neighborhood.

In state-of-the-art video codecs such as H.264/AVC, the prediction for an intra coded

block is computed from previously coded neighboring blocks. Several directional predic-

tions are generated, and a fitness measure such as sum of absolute differences (SAD), sum

of squared error (SSE), or sum of absolute transformed differences (SATD) is computed

for each direction. In H.264/AVC, the best prediction direction or “mode” is selected, and

the corresponding prediction residual is transformed via the conventional integer Discrete

Cosine Transform (DCT) prior to quantization. Since the residuals of the same mode pos-

sess common patterns of correlation, one can design transforms that will further exploit

these patterns to reduce the bit rate. One such set of transforms are the Mode Dependent

Directional Transforms (MDDT) proposed in [3]. While MDDT utilizes the KLT or Sin-

gular Value Decomposition (SVD) to learn 2-D separable transforms for residuals of each

intra prediction mode, this paper describes shortcomings of KLT in the presence of outliers

in the training data. Next, a new L0-norm regularized optimization method is proposed

as a more robust way to learn 2-D separable transforms for video coding. By employing

new transforms, which are termed as Mode Dependent Sparse Transforms (MDST), into

H.264/AVC-based video codec (JM11.0KTA2.6r1), the compression efficiency is improved

by up to 3.9% BD-rate compared to MDDT, while the coding architecture is kept the same.

The outline of the paper is as follows. In the next section, we point out why KLT is vul-

nerable to outliers in the data, and show how L0-norm regularization can bring robustness

to the transform learning process. Section 3 outlines the proposed iterative optimization

method used to generate 2-D separable transforms for video coding, which is followed by

Section 4 where we introduce a new ordering method for the locations of the coefficients

to improve coding efficiency of the entropy coder. In Section 5, experiments to validate the

proposed method are provided. Finally, we make some concluding remarks in Section 6.

2. LEARNING TRANSFORMS FROM DATA

Given a set of random signals, KLT is the standard procedure to extract transforms that will

decorrelate the data to a smaller number of variables. With the KLT, the signal energy is

concentrated mostly to the first few coefficients of this linear orthogonal decomposition,

such that a reduced dimensional representation is achieved within certain fidelity. KLT

solves the following minimization to find the principal component g1

min
g1

∑

j∈S

‖xj − g1c
j
1
‖2

2
s.t gT

1
g1 = 1, (1)

where xj is the j-th vector of size n×1 in the dataset S, and c
j
1

is the coefficient of the prin-

cipal component. The principal vector aligns itself to the direction of maximum variation,

and the solution can be found by using singular value decomposition (SVD). Similarly, the

subsequent k-th components can be found from the residual data after the subtraction of

the first k − 1 principal components. Another way to express the KLT formulation is as
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Fig. 1. Cost functions of (a) L2 norm, (b) L0 norm, and (c) ρ(.) as a function of g
T

i
x for fixed λ = 25 in (5).

follows:

min
G

∑

j∈S

‖xj − Gcj‖2

2
s.t GTG = I, (2)

where g1 is the first column of matrix G. One of the problems with KLT-based learning

arises from its noise intolerance. The least square norm in (1) is prone to outliers, especially

to the ones with large energy. These outliers can arbitrarily skew the direction of the princi-

pal component. In cascade, the subsequent components and the overall performance of this

representation will be affected. In computer vision and statistics literature there are several

methods proposed to overcome this challenge, such as outlier rejection [4], weighted least

squares [5], and utilizing robust error norms to learn subspaces [6].

In compression, recent learning-based designs have been shown to provide superior

performance compared to standard methods such as the DCT or wavelets. Ye and Kar-

czewicz [3] proposed to use KLT to learn 2-D separable transforms for video coding. Sezer

et al. [1, 7] used sparsity enforced transform designs. Apart from iterative update of clusters

and corresponding transforms, the Sparse Orthonormal Transforms (SOT) of [1] provide a

learning algorithm that is more robust than the KLT, by regularizing the cost in (1) with the

sparsity of the coefficients.

To be more specific, let G be of size N × N . A robust estimation of the principal

components can be achieved when the following cost is minimized

min
G

∑

j∈S

min
cj

{‖xj −Gcj‖2

2
+ λ‖cj‖0} s.t GTG = I, (3)

where cj is the coefficient of G for data vector xj, λ is Lagrange multiplier, and ‖.‖0 is

the L0 norm, which is equivalent to the the number of nonzero elements. Next, (3) can be

written as

min
G

∑

j∈S

∑

i

min
c

j

i

{‖xj − gic
j
i‖2

2
+ λ‖cj

i‖0} s.t GT G = I, (4)

where gi is the i-th column of G, and c
j
i is the corresponding coefficient. The cost defined

in (4) penalizes nonzero ci’s; thus enforcing a sparse representation for component gi.

For further analysis, let us examine the first minimization term. This expression can be

expressed as,

ρ(gT
i xj , λ) = min

cj

i

{‖gT
i xj − c

j
i‖2

2
+ λ‖cj

i‖0}, (5)
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Fig. 2. Cost function of KLT (a), L0-norm regularized solution (b), and their corresponding principal com-

ponents.

since gT
i (xj −gic

j
i ) = gT

i xj −c
j
i . The cost defined by ρ is a union of L2 and L0 norms. For

small values of ci, the L2 norm takes precedence, whereas the L0 norm has a greater priority

for larger values of ci. The transition between two norms is defined by λ. Figures 1(a)

and 1(b) show the L2 and L0 norms as a function of gT
i x. Fig. 1(c) plots ρ(gT

i x, λ), which

picks the minimum of these norms for given gT
i x and λ values.

The minimization over the coefficients can be substituted by the M-estimator ρ(.) as

follows:

min
G

∑

j∈S

∑

i

ρ(gT
i xj , λ) s.t GTG = I. (6)

Due to orthonormality conditions imposed on the solution, this expression essentially

searches for the axis rotations that will minimize the cost function ρ(.) over a set of obser-

vations. Sparsity imposed on a component helps robust estimation of components orthog-

onal to that. To visualize this, Fig. 2 gives a 3D perspective of the L2 and L0-regularized

cost functions used in (1) and (6) for 2-D data. If g1 assumed to be the principal com-

ponent, the cost function in Fig. 2(b) is attained by imposing sparsity on the coefficients

of g2, where g1 ⊥ g2. Here we show how the principal components should be aligned

with respect to given data (dots in 2-D) to minimize the costs. Note that even a single

large outlier would arbitrarily change the direction of KLT-solution shown in Fig. 2, due to

rapid increase of the cost function. On the other hand, the proposed approach limits this

influence. The robustness of L0-norm regularized SOT solution comes from this reality.

Also in order to avoid local minima, annealing λ is a common approach in robust statistics

literature [8, 9]. A linear regression experiment with outliers is provided in Section 5 to

compare the robustness of standard KLT and L0-norm regularized solution.

3. MODE DEPENDENT SPARSE TRANSFORMS (MDST)

There are two standard approaches for block-based 2-D data transforms: i) separable, and

ii) non-separable transforms. In the separable case, each column and row of the block

is considered as a 1-D signal, and 1-D transforms are used to map the block of data to

a set of coefficients. The 1-D transforms used in each direction could be the same, but



may also be different. For non-separable transforms, the block is generally ordered as a

1-D vector by lexicographically ordering columns or rows of the block. The disadvantage

of this is that non-separable transforms would require more memory to hold the entries

of the transform matrix. Also, large matrix multiplications are generally too complex for

hardware implementations. Therefore, separable transforms are appealing. However, there

is a cost for separable transforms, since they only utilize the correlation with a column

or row; hence the compression performance of the separable transforms is lower around

directional edges as compared to non-separable transforms.

Intra coding of H.264/AVC has been shown to provide higher coding efficiency com-

pared to standard block based image compression methods such as JPEG, and it has com-

petitive performance with, if not better than, wavelet based JPEG2000 [10, 11]. The success

is largely due to intra prediction methods employed prior to transform coding. In general,

the residual data generated by intra prediction has less energy than the original image block,

hence requires fewer bits to represent coefficients after transform coding. Nevertheless,

even after the intra prediction, residuals are observed to possess directional structures often

aligned with the direction of prediction. Therefore for each directional prediction mode a

new transform is trained in [3] to further utilize the inherent structure of that prediction

mode to reduce the bitrate. We will improve upon that transform design process with a new

iterative optimization method to learn 2-D separable transforms for each intra prediction

mode.

We define the number of prediction modes as M , where M = 9 for intra prediction of

4× 4 and 8 × 8 block sizes, and M = 4 for 16 × 16 blocks. For each mode, two separable

transforms are needed. The vertical and horizontal transform for mode i is denoted as Vi

and Hi, respectively. Let the N × N block X
j
i be the j-th residual block encoded using

intra mode i, and C
j
i be the corresponding coefficient matrix of the residual signal. The

sparsity-distortion cost function can be written as follows:

i ∈ {1, ..., M} :

min
Vi,Hi

(

∑

j∈Si

min
C

j

i

‖Xj
i −ViC

j
iHi

T‖2

2
+ λ‖Cj

i‖0

)

(7)

s.t Vi
TVi = I, Hi

THi = I .

To learn the transforms for mode i, we have formed a training dataset Si, over which the

cost function will be minimized. The given cost models distortion as the reconstruction

error (first term in the summation), and an approximation to rate is given by L0 norm term,

which is the number of nonzero coefficients. In Section 2 we have also pointed out how

L0-norm regularization relates to robust estimation. The proposed method iteratively finds

optimal coefficients and updates one of the separable transform at each iteration. Let us

assume vertical and horizontal transforms are initialized with the DCT, then for the i-th

mode we apply the following steps:

I. Optimal coefficients for a given transform: The sparsest representation for a given

transform can be found by solving

C
j
i

∗
= arg min

D
(‖Xj

i − ViD
j
iHi

T‖2

2
+ λ‖Dj

i‖0). (8)

Note that since both Vi and Hi are orthonormal, the optimal solution is obtained by

hard-thresholding the components of D = Vi
TX

j
iHi with

√
λ.
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Fig. 3. Comparison of separable transforms of MDST and MDDT. MDST of vertical prediction (mode 0) (a),

MDDT of vertical prediction (mode 0) (b), MDST of horizontal prediction (mode 1) (c), MDDT of horizontal

prediction (mode 1) (d).

II. Optimal vertical transforms for given coefficients: The optimal vertical separable or-

thonormal transform for given coefficient vectors from previous step can be found by

solving

V∗
i = arg min

A

{

∑

X
j

i
∈Si

‖Xj
i −AC

j
i

∗
Hi

T‖2

2

}

(9)

s.t. ATA = I.

Note here that the horizontal separable transform, Hi, is assumed to be fixed. Let

Y =
∑

X
j
i
∈Si

X
j
i

T
Hi

TC
j
i , and its SVD be Y = UΛ1/2WT . The solution for the

optimal orthonormal transform can be found by V∗
i = WUT . For details of the

optimization please refer to [1].

III. Optimal coefficients with updated vertical transform: This time optimal coefficients

are found with optimized transform, V∗
i , from the previous step,

C
j
i

∗
= arg min

D
(‖Xj

i −V∗
i D

j
iHi

T‖2

2
+ λ‖Dj

i‖0). (10)

Note that since both Vi and Hi are orthonormal, the optimal solution is obtained by

hard-thresholding the components of D = V∗
i
T X

j
iHi with

√
λ.

IV. Optimal horizontal transforms for given coefficients: Similarly, the optimal horizontal

separable orthonormal transform can be calculated with updated coefficients and the

vertical transform found in previous steps;

H∗
i = arg min

A

{

∑

X
j

i
∈Si

‖Xj
i −V∗

i C
j
i

∗
AT‖2

2

}

(11)

s.t. ATA = I.

Note this time vertical separable transform Vi is assumed to be fixed. Next, let Y =
∑

X
j

i
∈Si

C
j
i

T
Vi

TX
j
i , and its SVD be Y = UΛ1/2WT . The solution for the optimal

orthonormal transform is H∗
i = WUT .

Return to Step I and repeat the process till the cost function converges to a steady state

value. Sample transforms are shown in Fig. 3 together with their MDDT counterparts. This



optimization method differs from those used in [1] and [2]. In [1], the proposed transform

design method reduces the sparsity-distortion cost of a set of data extracted from natural

images via iterative clustering and transform optimization for the nonseparable case. In

this paper, the data is residual blocks extracted from a video coder, and the corresponding

clusters are defined by the intra prediction mode. Hence, the data clusters are fixed, so

relabeling after the transform optimization is not needed. Thus, the mode-dependent term

is coined for the transforms in the current design.

The 2-D separable transform design provided in [2], which is based on the optimization

given in [1], lacks the mode-dependent characteristic, and its iterative optimization has two

shortcomings. The first problem is the update step for vertical transforms in Equation (9)

of [2], whereby the vertical and horizontal separable components converges to the same

transforms. For mode-dependent transforms, it is expected that the vertical and horizontal

transforms will be different due to the directional characteristics of the residual data. Cor-

rection is provided in Step II of our iterative optimization procedure. The second problem

stems from the iterative update of vertical and horizontal transforms without updating coef-

ficients. When vertical or horizontal transforms are updated, the coefficients do not belong

to new transform anymore. Therefore, in the iterative optimization described above, the

transform update is always followed by a coefficient update.

4. REORDERING TRANSFORMS

Entropy coders in current video codecs are optimized to work with the DCT. Although the

optimization described in this paper initializes transforms with DCT, the resulting trans-

form coefficients may compact energy in a different order than with the DCT. Therefore,

the columns of the vertical and horizontal 2-D separable transform are reordered depending

on the energy of the coefficient values of the residual data set of the corresponding mode.

Let Q be an N × N matrix whose entries are defined as follows:

Q(m, n) =
∑

j∈S

Cj(m, n)2. (12)

where Cj is the coefficient matrix of the j-th block in the training set of mode S. Then sum

of the energies along the rows and columns can be defined respectively as,

qr(m) =
∑

n

Q(m, n) ∀m, qc(n) =
∑

m

Q(m, n) ∀n. (13)

To rank these energies, the x and y variables that will satisfy

qr(x1) ≥ qr(x2) ≥ . . . ≥ qr(xN ), qc(y1) ≥ qc(y2) ≥ . . . ≥ qc(yN) (14)

can be found. Next the columns of the optimized vertical and horizontal separable trans-

forms are reordered as

Vo(m, n) = V(m, xn), Ho(m, n) = H(m, yn) ∀m, n (15)

where H and V become Ho and Vo after reordering. The new order statistically ensures

that the coefficients with higher energy appear closer to the top-left corner of the coefficient

matrix similar to DCT. The transforms for each mode and block size are ordered in same

fashion. Later, they are scaled up and rounded off to have integer values.
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Fig. 4. Crosses show axises of components found by KLT (a), and L0-norm regularized solution (b).

5. RESULTS

Two sets of experiments are provided in this section. First, the robustness of the L0-norm

regularized solution is compared with KLT for a linear regression problem. The second set

of experiments show the video coding performance of the proposed MDST method with

respect to MDDT, which is already implemented in the JM11.0KTA2.6r1 (or KTA) codec.

In addition, a set of KLT-based 2-D separable transforms is trained by using the same

method as MDDT but with our data set. This enables us to analyze the effect of training

data for the performance improvement that we achieved.

5.1. Model-based Experiment on Robust Regression

In this part a simple linear regression application of KLT and L0-norm regularized solution

is given. A 2-D set of vector are generated by the following model

y = 2x + 5w (16)

where w is a zero-mean and unit-variance Gaussian random variable. One-hundred Gaus-

sian noise samples are generated and added to x values from −50 to 50. Both the KLT and

the proposed L0-norm regularized solutions recover the correct principal direction. How-

ever, when random sparse outliers are included in the data set, the KLT fails to capture

the correct direction, as shown in Fig. 4(a). The L0-norm regularized solution, however,

almost perfectly aligns with the direction of correlation set in (16), as shown in Fig. 4(b).

The only disadvantage of L0-norm regularized solution over KLT is its complexity, which

is in general less of a concern for off-line training. Nevertheless, initializing the algorithm

with the components of KLT and annealing λ improves the convergence speed. For this

experiment, the cost function converged in 15 iterations with a fixed λ = 502 when the

components were initialized with KLT.

5.2. Video Coding with MDST

The transforms generated by the proposed algorithm is used to replace the MDDT trans-

forms currently implemented in the KTA software. As mentioned before, the transforms

are trained by extracting intra prediction residuals for 4×4, 8×8, and 16×16 block sizes.

For each block size, a set of 2-D separable transforms is trained with the proposed iterative

optimization scheme described in Section 3. The training data contains High-Definition

(HD) and CIF (352 × 288) sequences. The video frames used for training are not used for



testing. The sequences are encoded as all intra pictures using four QP values 25, 29, 33,

and 37. A different set of values are used for HD sequences: 25, 28, 31, and 34. These

QP values are identical to those used in [12]. The CABAC entropy coder is used, and the

anchors used for comparison are generated using the DCT-enabled KTA encoder.

Table 1 shows experimental results for several sequences. To understand how much of

the performance improvement comes from the data that is used to learn transforms, a set of

controlled experiments are performed with KLT as the learning method, using the same set

of training data. One could expect similar coding results between our controlled experiment

and MDDT, provided that the training data of both are similar. For performance compar-

isons, BD metrics are used [13]. On the second and third columns of Table 1, although

BD-rate improvements of individual sequences differ, the averages are very close (our im-

plementation is only 0.2% better). The fourth column shows performance improvement of

the proposed method, MDST. Overall a BD-rate improvement of 1.29% is achieved over

MDDT at no extra cost, and the improvement goes up to 2.97% in HD sequences.

Table 1. Coding performance, reference is JM-KTA 2.6r1

MDDT KLT MDST KLT HD MDST HD

number BD- BD- Avg BD- BD- Avg BD- BD- Avg BD- BD- Avg BD- BD- Avg

Sequences of Rate PSNR BD- Rate PSNR BD- Rate PSNR BD- Rate PSNR BD- Rate PSNR BD-

frames (%) (dB) Rate (%) (dB) Rate (%) (dB) Rate (%) (dB) Rate (%) (dB) Rate

352x288 -5.07 -5.07 -5.73 -5.20 -5.52

Foreman 100 -5.93 0.322 -5.84 0.318 -8.10 0.446 -6.16 0.335 -7.35 0.402

Mobile 100 -4.27 0.444 -4.74 0.495 -4.77 0.500 -4.52 0.471 -4.77 0.499

Coastguard 100 -5.39 0.335 -5.00 0.310 -5.09 0.315 -5.39 0.337 -4.86 0.301

Container 100 -4.67 0.301 -4.71 0.305 -4.94 0.320 -4.74 0.307 -5.08 0.329

832x480 -5.07 -5.18 -6.26 -5.48 -6.01

BasketballDrill 30 -5.87 0.288 -6.14 0.304 -6.91 0.344 -6.51 0.322 -6.90 0.342

PartyScene 30 -3.85 0.294 -4.09 0.313 -5.31 0.408 -4.14 0.317 -4.88 0.376

BQMall 30 -5.59 0.362 -5.42 0.353 -7.21 0.474 -5.96 0.389 -6.78 0.445

RaceHorses 30 -4.69 0.306 -5.08 0.333 -5.61 0.370 -5.30 0.348 -5.48 0.361

1920x1080 -5.72 -6.09 -7.54 -7.22 -8.14

Kimono1 10 -6.58 0.245 -6.65 0.249 -8.90 0.341 -9.68 0.372 -10.25 0.397

ParkScene 10 -6.38 0.298 -6.96 0.327 -7.12 0.334 -6.99 0.329 -7.07 0.332

Cactus 10 -6.39 0.257 -6.96 0.281 -7.70 0.312 -7.49 0.304 -8.05 0.326

BasketballDrive 10 -4.47 0.114 -4.73 0.121 -7.44 0.192 -6.10 0.157 -8.38 0.217

Tennis 10 -4.80 0.154 -5.16 0.167 -6.52 0.211 -5.86 0.191 -6.94 0.226

Average -5.30 -5.50 -6.59 -6.07 -6.68

For visual quality comparison, frames coded at the same rate using MDDT and MDST

are also provide in Fig. 5. MDST result on the right have slightly better reconstruction of

facial features and edges compared to MDDT.

Due to increased importance of efficiently coding HD sequences, one last set of exper-

iments is done by changing training data set to all HD sequences. Both KLT of controlled

experiment and MDST are learned from this new data. Columns five and six of Table 1

shows these results. Surprisingly, the KLT in this case has significant performance im-

provement not just on HD but for all the sequences. This can be attributed to the statistics

of the residuals extracted from HD sequences. Compared to previous training data, it is

likely that these residuals have fewer outliers, hence the components of KLT align better

with the data. On the other hand, the training method used for MDST outperforms KLT-

based learning in all these settings.

6. CONCLUSIONS

This paper presents the Mode-Dependent Sparse Transform (MDST), a new 2-D separable

transform design for video coding. The implicit relation between sparsity-enforced opti-



(a) (b)

Fig. 5. Reconstructed foreman image (a) with MDDT 32.93dB and 0.196bpp, and (b) with MDST at 33.04dB

and 0.194bpp

mization of transforms and robust learning is revealed. When the training data has outliers,

the proposed training method is more robust than the conventional KLT-based training. Uti-

lizing this approach, a new set of 2-D separable transforms are trained using residual data

from each intra prediction mode in the KTA codec. Compared to DCT and MDDT-based

video coding, bit-rate reductions of up to 10.2% and 3.9% are achieved, respectively.
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