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Abstract
This paper introduces a stochastic partially homogeneous model for adaptive signal detection.
In this model, the disturbance covariance matrix of training signals, R, is assumed to be a
random matrix with some a priori information, while the disturbance covariance matrix of the
test signal, R0, is assumed to be equal to R, i.e., R0 = R. On one hand, this model extends
the stochastic homogeneous model by introducing an unknown power scaling factor between
the test and training signals. On the other hand, it can be considered as a generalization
of the standard partially homogeneous model to the stochastic Bayesian framework, which
treats the covariance matrix as a random matrix. According to the stochastic partially ho-
mogeneous model, a scale-invariant generalized likelihood ratio test (GLRT) for the adaptive
signal detection is developed, which is a knowledge-aided version of the well-known adaptive
coherence estimator (ACE). The resulting knowledge-aided ACE (KA-ACE) employs a col-
ored loading step utilizing the a priori knowledge and the sample covariance matrix. Various
simulation results and comparison with respect to other detectors confirm the scale-invariance
and the effectiveness of the KA-ACE.
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Knowledge-Aided Adaptive Coherence Estimator in
Stochastic Partially Homogeneous Environments

Pu Wang, Zafer Sahinoglu, Man-On Pun, Hongbin Li, and Braham Himed

Abstract— This paper introduces a stochastic partially homo-
geneous model for adaptive signal detection. In this model, the
disturbance covariance matrix of training signals,R, is assumed
to be a random matrix with some a priori information, while
the disturbance covariance matrix of the test signal,R0, is
assumed to be equal toλR, i.e., R0 = λR. On one hand, this
model extends the stochastic homogeneous model by introducing
an unknown power scaling factor λ between the test and
training signals. On the other hand, it can be considered as a
generalization of the standard partially homogeneous model to
the stochastic Bayesian framework, which treats the covariance
matrix as a random matrix. According to the stochastic partially
homogeneous model, a scale-invariant generalized likelihood ratio
test (GLRT) for the adaptive signal detection is developed,
which is a knowledge-aided version of the well-known adaptive
coherence estimator (ACE). The resulting knowledge-aided ACE
(KA-ACE) employs a colored loading step utilizing thea priori
knowledge and the sample covariance matrix. Various simulation
results and comparison with respect to other detectors confirm
the scale-invariance and the effectiveness of the KA-ACE.

Index Terms— Partially homogeneous model, knowledge-aided,
generalized likelihood ratio test, Bayesian inference.

I. I NTRODUCTION

For the adaptive signal detection problem, a homogeneous
environment is usually assumed, where the test signal shares
the same covariance matrix with the training signals [1],
[2]. Recently, a Bayesian approach to the detection problem
emerged [3], [4], where the covariance matrix is assumed
to be randomly distributed with some prior distribution.
The resulting detectors are often referred to as knowledge-
aided (KA) detectors for the stochastic homogeneous envi-
ronment. Using both measured L-band clutter data and high-
fidelity KASSPER data, the KA detectors were shown to
have improved performance than the conventional detectors
when the homogeneous training signals are limited [4]. For
non-homogeneous environments, several models have been
proposed. One of these models is the compound-Gaussian
model, in which a power-varying texture component across
range bins is used to characterize the heavy-tailed clutter
distributions in radar, especially for sea clutter. Another model
is a partially homogeneous model, where the training signals
share the covariance matrix with the test signal up to an

P. Wang and H. Li are with the Department of Electrical and Computer
Engineering, Stevens Institute of Technology, Hoboken, NJ07030, USA (e-
mail: {pwang4, Hongbin.Li}@stevens.edu).

Z. Sahinoglu and M. O. Pun are with Mitsubishi Electric Research
Laboratories (MERL), 201 Broadway, Cambridge, MA 02139, USA(e-mail:
{zafer, mpun}@merl.com).

B. Himed is with AFRL/RYRT, Dayton, OH 45433 (e-mail: Bra-
ham.Himed@wpafb.af.mil).

unknown scaling factor [5]–[8]. A recent addition to the non-
homogeneous model is a stochastic heterogeneous model [9]–
[11], in which two layers of random matrices are used to model
the heterogeneity between the test and training signals. This
model includes not only the power variation across the range,
but also the structural difference of the covariance matrix.

In this paper, we consider the partially homogeneous model,
which has received much attention over the last decade [5]–[8].
One motivation to consider the partially homogeneous model
is due to the use of guard cells in radar signal processing.
In array signal processing and space-time adaptive processing
(STAP), a number of guard cells are often used to mitigate the
sidelobe effects and hence separate the test signal and training
signals, which may lead to a power difference between the test
and training signals [12]. A stochastic partially homogeneous
model is proposed in this paper, which is different than the
standard partially homogeneous model. This model allows us
to incorporate somea priori knowledge of the environment,
while also retaining the heterogeneity between the test and
training signals by using the power scaling factor. Specifically,
we consider the following hypothesis testing problem [5]–[8]:

H0 : x0 = d0, xk = dk, k = 1, · · · ,K,

H1 : x0 = αs + d0, xk = dk, k = 1, · · · ,K,
(1)

wherex0 ∈ C
N×1 is the test signal,xk = dk, k = 1, · · · ,K,

are target-free training signals,s is theknown array response,
α is an unknown complex-valued amplitude,d0 and dk are
independent, zero-mean complex-valued Gaussian distributed
random vectors with covariance matrices given by

E{d0d
H
0 } = R0 = λR, E{dkd

H
k } = R, (2)

where λ is an unknown power scaling factor. Furthermore,
we assume the covariance matrixR to be random and has a
complex inverse Wishart distribution, i.e.,R ∼ CW−1((µ −
N)R̄, µ) [3], [4], [9]:

p(R) =

∣

∣(µ − N)R̄
∣

∣

µ

Γ̃(N,µ) |R|
µ+N

e−(µ−N) tr(R−1
R̄), (3)

whereΓ̃ (N,µ) = πN(N−1)/2
∏N

k=1 Γ (µ − N + k) with Γ(·)
denoting the Gamma function and̄R the known prior co-
variance matrix which can be obtained from sources such
as land-cover/land-use (LCLU) maps, past measurements, etc.
[11]. The parameterµ indicates the importance of the prior
knowledge R̄. The largerµ is, the more importantR̄ is.
Since R0 = λR, it is straightforward to show thatR0 ∼
CW−1((µ − N)λR̄, µ). If λ = 1, the stochastic partially
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homogeneous model reduces to the stochastic homogeneous
model [3], [4].

According to the stochastic partially homogeneous model,
the scale-invariant generalized likelihood ratio test (GLRT)
is developed within a Bayesian framework. The likelihood
function is first obtained by averaging the conditional like-
lihood function w.r.t. the prior distribution of the covari-
ance matrix. Then, maximization of the likelihood function
is performed with respect to the deterministic parameters,
namely the scaling factorλ and the amplitudeα. Finally,
the generalized likelihood ratio test is derived in closed-form.
The resulting scale-invariant GLRT is a knowledge-aided (KA)
version of the adaptive coherence estimator (ACE) of [5],
which is referred to as the KA-ACE. Specifically, the proposed
KA-ACE uses a linear combination of the sample covariance
matrix and thea priori matrix R̄, where the amount of loading
R̄ is controlled by the parameterµ, which reflects the accuracy
of the priorR̄. Moreover, the scale-invariance property of the
KA-ACE and numerical comparisons with other detectors are
investigated in this paper.

II. GENERALIZED L IKELIHOOD RATIO TEST FOR

STOCHASTIC PARTIALLY HOMOGENEOUSENVIRONMENT

In the following, the likelihood function which involves
maximization with respect toλ and maximization with respect
to α is discussed.

A. Likelihood Ratio Test

The KA-ACE is developed from a Bayesian framework
which takes the form as

T =

max
α,λ

∫

f1 (x0,x1, · · · ,xK |α, λ,R ) p(R)dR

max
λ

∫

f0 (x0,x1, · · · ,xK |λ,R ) p(R)dR
, (4)

where

fi (x0,x1, · · · ,xK |α, λ,R ) , i = 0, 1,

=fi (x0 |α, λ,R ) f (x1, · · · ,xK |R )

=
1

π(K+1)NλN |R|
K+1

exp
{

− tr
(

R−1Σi

)}

, (5)

and

Σi = λ−1yiy
H
i + S, (6)

with yi = x0 − βiαs, β1 = 1, β0 = 0, andS =
K
∑

k=1

xkx
H
k .

The likelihood function can be obtained by averaging the
conditional likelihood function w.r.t. the prior distribution as

∫

fi (x0,x1, · · · ,xK |α, λ,R ) p(R)dR

=

∣

∣(µ − N) R̄
∣

∣

µ

π(K+1)NλN Γ̃ (N,µ)

∫

|R|
−(L+N)

e− tr(R−1
Σ̄i)dR

=

∣

∣(µ − N) R̄
∣

∣

µ
Γ̃ (N,K + µ + 1)

π(K+1)N Γ̃ (N,µ) λN

∣

∣Σ̄i

∣

∣

−L
, (7)

whereL = K + µ + 1, and

Σ̄i = Σi + (µ − N) R̄ = λ−1yiy
H
i + S + (µ − N) R̄. (8)

The likelihood function incorporates the prior knowledgeR̄

and retains the information from the sample covariance matrix
S. With (7), the likelihood ratio test of (4) reduces to

T =
max

α
max

λ
λ−N

∣

∣Σ̄1

∣

∣

−L

max
λ

λ−N
∣

∣Σ̄0

∣

∣

−L
. (9)

B. Maximization over the Scaling Factor λ

From (9), the maximum likelihood (ML) estimate of the
scaling factorλ is

λ̂i =arg max
λ

λ−N
∣

∣Σ̄i

∣

∣

−L
, i = 0, 1,

=arg min
λ

λN
∣

∣λ−1yiy
H
i + S + (µ − N) R̄

∣

∣

L
. (10)

Let Ξ = S + (µ − N) R̄. The above cost function can be
simplified as

λN
∣

∣λ−1yiy
H
i + Ξ

∣

∣

L
= λN |Ξ|

L ∣

∣λ−1Ξ−1yiy
H
i + I

∣

∣

L

= |Ξ|
L

λN
(

1 + λ−1yH
i Ξ−1yi

)L
(11)

Taking the log-derivative and setting it to zero, we have

N − L
yH

i Ξ−1yi

λ + yH
i Ξ−1yi

= 0, (12)

which gives the ML estimate ofλ

λ̂ML ,i =
L − N

N
yH

i Ξ−1yi. (13)

The cost function reduces to

min
λ

λN
∣

∣Σ̄i

∣

∣

L
=

(

L

L − N

)L

|Ξ|Lλ̂N
ML ,i (14)

Therefore, the generalized likelihood function becomes

T = max
α

λ̂N
ML ,0

∣

∣

∣
Σ̄0

(

λ̂ML,0

)∣

∣

∣

L

λ̂N
ML,1

∣

∣

∣
Σ̄1

(

α, λ̂ML,1

)∣

∣

∣

L

=





xH
0 Ξ−1x0

min
α

(x0 − αs)
H

Ξ−1 (x0 − αs)





N

. (15)

C. Maximization over the Amplitude α

By minimizing the term(x0 − αs)
H

Ξ−1 (x0 − αs), the
ML estimate ofα is given by [1, the fourth equation on p. 118]

α̂ML =
sHΞ−1x0

sHΞ−1s
, (16)

and the minimum cost function is

min
α

(x0 − αs)
H

Ξ−1 (x0 − αs) = xH
0 Ξ−1x0 −

∣

∣sHΞ−1x0

∣

∣

2

sHΞ−1s
.

(17)

Taking theN -th square root of (15) and utilizing the mono-
tonic property of the functionf(x) = 1/(1 − x), we obtain
the KA-ACE statistic as

TKA-ACE =

∣

∣sHΞ−1x0

∣

∣

2

(

sHΞ−1s
) (

xH
0 Ξ−1x0

)

H1

≷
H0

γKA-ACE (18)
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whereγKA-ACE denotes a threshold set by a chosen probability
of false alarm. It is seen that the KA-ACE for the stochastic
partially homogeneous environment takes the same form as
that of the standard ACE [5], except that the whitening matrix
is given by

Ξ = S + (µ − N)R̄ =

K
∑

k=1

xkx
H
k + (µ − N)R̄. (19)

which uses a linear combination of the sample covariance
matrix S and the prior knowledgēR. The weighting factor
of R̄ is controlled byµ. Specifically, the KA-ACE puts more
weight onR̄, when the prior matrix is more accurate (i.e.,µ is
large). In comparison, the standard ACE takes the form of (18)
but with the whitening matrix given by the sample covariance
matrix Ξ = S. It is interesting to note that the KA-ACE can
also be derived from other heuristic ways:

• TheMAP-ACE which exploits the maximuma posteriori
(MAP) estimate ofR takes the form

TMAP-ACE

=

max
α,λ,R

{f1 (x0,x1, · · · ,xK |α, λ,R ) p(R)}

max
λ,R

{f0 (x0,x1, · · · ,xK |λ,R ) p(R)}
. (20)

It can be shown that the MAP estimate ofR is [4]

R̂MAP,i =
Σ̄i

L + N
, i = 0, 1 (21)

Substituting the MAP estimate into (20), the MAP-ACE
takes the same form of (9) and, hence, coincides with the
KA-ACE (18) afterwards.

• The MMSE-ACE takes the form of (20) with the mini-
mum mean square error (MMSE) estimate ofR replacing
the MAP estimate,

TMMSE - ACE

=

max
α,λ

{f1 (x0,x1, · · · ,xK |α, λ,R ) p(R)} |
R=R̂MMSE,1

max
λ

{f0 (x0,x1, · · · ,xK |λ,R ) p(R)} |
R=R̂MMSE,0

,

(22)

where the MMSE estimate ofR is obtained as the mean
of the posterior probability [4]

R̂MMSE,i =

∫

Rfi (R |x0,x1, · · · ,xK , α, λ ) dR

=
Σ̄i

L − N
, i = 0, 1, (23)

which is proportional to the MAP estimate of (20).
Therefore, the MMSE-ACE results in the form of (9) and
gives the same detection statistic as that of the KA-ACE
in (18).

III. PERFORMANCEEVALUATION

In this section, simulation results are provided to demon-
strate the performance of the KA-ACE detector, which is also
compared to other detectors. In all simulation examples, we
consider the case whereN = 16 channels and the steering
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Fig. 1. Scale-Invariance: Threshold versus the scaling factor λ for various
detectors whenN = 16, K = 32, µ = 17, Pf = 0.01, and SNR= 25 dB.

vector is given bys = [1, · · · , 1]T . The average signal-to-
noise ratio (SNR) is defined as

SNR= |α|2sHR̄−1s, (24)

whereR̄ is the mean of the random covariance matrixR. We
set the prior covariance matrix̄R as [9]

[R̄]ij = ρ|i−j|, (25)

where ρ = 0.9 is chosen. The simulated performance is
obtained using 10000 Monte Carlo trials and the probabilityof
false alarm is set toPf = 0.01. It is noted that these simulation
parameters, e.g., the covariance matrix of (25) andPf , are
selected mainly for the convenience of computer simulation.
In practice, the covariance matrix usually possesses a more
complex structure, while the probability of false alarm could
be as low asPf = 10−6. For each Monte-Carlo trial, the
covariance matrixR is generated from an inverse Wishart
distribution with meanR̄, and then, the covariance matrixR0

is generated by multiplyingR with a scaling factorλ, i.e.,
R0 = λR.

A. Scale Invariance

In the first example, we examine the invariance of various
detectors with respect to the scaling factorλ. Among the
examined detectors are Kelly’s GLRT [1], the AMF [2], the
standard ACE [5], the KA-GLRT [4], and the KA-AMF [4].
In this case, the threshold subject to the probability of false
alarm Pf = 0.01 is obtained from Monte Carlo simulations,
when the scaling factor varies fromλ = 1 to λ = 16 in a step
size of 2.

Fig. 1 shows the threshold of several detectors as a function
of the scaling factorλ when the number of training signals is
K = 32 and the SNR is 25 dB. As illustrated, the standard
ACE and the proposed KA-ACE have a constant threshold
independent ofλ and, hence, is scale-invariant to the power
scaling factor. By contrast, the thresholds of the AMF and
the KA-AMF increase linearly asλ increases, and the GLRT
and the KA-GLRT give thresholds with two distinct phases:
a gradually increasing phase whenλ is small; and a saturated
phase whenλ is large, e.g.,λ > 10 in this example.
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Fig. 2. Probability of detection versus SNR for differentK whenN = 16, λ = 8, andPf = 0.01 for cases of (a)µ = 17; (b) µ = 36.

B. Performance of Detection

For the detection performance comparison, we consider the
ACE and the KA-ACE detectors, which are scale-invariant to
λ. Two cases,µ = 17 and µ = 36, are considered, which
correspond to scenarios with less reliable and more accurate
prior knowledge, respectively. In either case, we considerthree
training sizes,K = 16, K = 24, andK = 32, are used. Note
that K = 16 is the minimum training size for the ACE to
ensure the sample covariance matrix is full rank.

Fig. 2(a) shows the probability of detection versus SNR
when the priorR̄ is less reliable, i.e.,µ = 17. In this case, the
knowledge-aided color loading in (19) put less weights on the
prior matrix R̄. As seen from Fig. 2(a), in all cases, the KA-
ACE has better detection performance than the standard ACE.
Particularly, whenK = 32 and Pd = 0.8, the performance
gain of the KA-ACE over the ACE is about 1.5 dB, while
the marginal gain becomes more evident when the number of
training signals is smaller, i.e.,K = 24 andK = 16.

Fig. 2(b), on the other hand, shows the probability of
detection versus SNR when the prior knowledgeR̄ is more
accurate, i.e.,µ = 36. The results confirm that the KA-
ACE has better performance than the ACE for the three
training sizes considered. WhenK = 32 and Pd = 0.8,
the performance gain of the KA-ACE over the ACE is about
2.1 dB, larger than that of Fig. 2(a), which is because the
prior knowledge is more accurate whenµ = 36. Comparison
between Figs. 2(a) and (b) also reveals that more training
signals are more helpful to improve the detection performance
whenµ = 17, i.e., the prior knowledge is not so reliable.

IV. CONCLUSION

We introduced a stochastic model for adaptive detection
in partially homogeneous environment. The model can incor-
porate a prior knowledge and handle clutter power variation
between the test and training signals. The proposed KA-
ACE detector has the same form as the conventional ACE
except that the former employs a linear combination of the
sample covariance matrix and the prior covariance matrix for

whitening, and the combining coefficients take into account
the accuracy of the prior knowledge. Simulation results show
that the KA-ACE offers better probability of detection thanthe
ACE in cases of sufficient and, respectively, limited training
signals. A future direction is to examine adaptive selection
of parameterµ, which indicates the significance of the prior
covariance matrix, in the proposed stochastic model.
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