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Abstract
In this work, the sum-rate performance of joint opportunistic scheduling and receiver design
(JOSRD) is analyzed for multiuser multiple-input-multiple output (MIMO) space-division
multiple access (SDMA) downlink systems. In particular, we study linear rake receivers
with selective combining, maximum ratio combining and optimal combining in which signals
received from all antennas of each mobile terminal (MT) are linearly combined to improve
the effective signal-to-interference-plus-noise ratios (SINRs). By exploiting limited feedback
on the effective SINRs, the base station (BS) schedules simultaneous data transmission on
multiple beams to the MTs with the largest effective SINRs. Using extreme value theory, the
average sum-rates and their scaling laws for JOSRD are derived. In particular, it is shown
that the limiting distribution of the effective signal-to-interference (SIR) is of the Frechet-type
whereas that of the effective SINR converges to the Gumbel-type. Furthermore, the SIR-based
sum-rate scaling laws are found to follow epsilon log K with 0 less-than epsilon less-than 1,
which stands in contrast to the SINR-based scaling laws governed by the conventional log
log K form. Both analytical and simulation results confirm that significant performance
improvement can be achieved by incorporating low-complexity linear combining techniques
into the design of scheduling schemes in MIMO-SDMA downlink systems.
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Abstract—In this work, the sum-rate performance of joint
opportunistic scheduling and receiver design (JOSRD) is an-
alyzed for multiuser multiple-input-multiple output (MIMO)
space-division multiple access (SDMA) downlink systems. In
particular, we study linear rake receivers with selective com-
bining, maximum ratio combining and optimal combining in
which signals received from all antennas of each mobile terminal
(MT) are linearly combined to improve the effective signal-
to-interference-plus-noise ratios (SINRs). By exploiting limited
feedback on the effective SINRs, the base station (BS) schedules
simultaneous data transmission on multiple beams to the MTs
with the largest effective SINRs. Using extreme value theory,
the average sum-rates and their scaling laws for JOSRD are
derived. In particular, it is shown that the limiting distribution
of the effective signal-to-interference (SIR) is of the Frechet-type
whereas that of the effective SINR converges to the Gumbel-type.
Furthermore, the SIR-based sum-rate scaling laws are found
to follow ϵ logK with 0 < ϵ < 1, which stands in contrast
to the SINR-based scaling laws governed by the conventional
log logK form. Both analytical and simulation results confirm
that significant performance improvement can be achieved by
incorporating low-complexity linear combining techniques into
the design of scheduling schemes in MIMO-SDMA downlink
systems.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) technology em-
ploying multiple transmit and receive antennas has emerged
as one of the most promising techniques for broadband data
transmissions in wireless communication systems [1]. In par-
ticular, recent studies have shown that MIMO can substantially
increase the sum-rate capacity of a downlink system where a
base station (BS) communicates simultaneously with multiple
mobile terminals (MTs) [2]. However, the capacity achieving
strategy using dirty paper coding (DPC) not only incurs high
computational complexity but also requires perfect channel
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state information (CSI) available to the BS [2]. To circum-
vent these obstacles, opportunistic random beamforming with
proportional fair scheduling (ORB-PFS) has been proposed in
[3] as an effective means of achieving the asymptotic sum-rate
capacity by exploiting multiuser diversity with limited channel
feedback. In ORB-PFS, the downlink transmission time is
divided in slots comprised of mini-slots. Users’ channels are
assumed to be approximately invariant during one slot but
may vary from one slot to another. In the beginning of
each slot, the BS broadcasts one pilot symbol weighted by
a randomly generated complex vector (also referred to as
the random beam). Then, each MT evaluates the signal-to-
noise ratio (SNR) by exploiting the pilot signal and feeds
the SNR information back to the BS. Taking into account
fairness, the BS schedules data transmission to the MT with
the best normalized instantaneous channel condition (with
respect to its long-term channel condition) throughout the
rest of the slot. In [3], it has been shown that ORB-PFS
can achieve the sum-rate capacity fairly and asymptotically
as the number of MTs increases. Recently, some extensions
of [3] employing multiple beams have been developed [4],
[5]. Regardless of the number of beams employed in [3]–[5],
these opportunistic schemes schedule only one MT in each
slot, and so can generally be considered to be the time-sharing
scheduling schemes (TS-SS). In contrast, [6] has proposed a
space-division multiple access-based opportunistic scheduling
scheme (SDMA-SS) employing multiple orthonormal beams
to serve multiple MTs simultaneously in each slot. Denote
by M and N the number of transmit and receive antennas,
respectively. It has been shown recently that the sum-rate of
SDMA-SS and DPC grows linearly with M whereas that of
TS-SS increases only linearly with min(M,N) [7]. Since
we typically have M ≥ N in downlink, SDMA is more
advantageous than TS-SS in terms of throughput. In addition
to the more rapidly growing sum-rate scaling law, SDMA-SS
is particularly attractive for practical systems with stringent
latency requirements since multiple users can be served during
each time slot.

In SDMA-SS, the BS broadcasts pilot signals weighted by
multiple orthonormal beams in the beginning of each time
slot [6]. For each single-antenna MT, it evaluates the signal-
to-interference-plus-noise ratio (SINR) on each beam and
feeds back information on its desired beam with the highest
SINR. Assuming that each beam is requested by at least one
MT, the BS awards each beam to the MT with the highest
corresponding SINR among all MTs. For MTs with multiple
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receive antennas, [6] proposes to let each antenna compete for
its desired beam as if it were an individual MT. As a result,
each beam is assigned to a specific receive antenna of a chosen
MT. It will be shown later that this scheme can be considered
as a suboptimal form of the feedback scheme considered in
this work with selection combining. Since signals received
from the undesignated antennas of a chosen MT are discarded,
[6] entails inefficient utilization of multiple receive antennas.
Some extensions of [6] have been proposed to optimize the
training and feedback design for SDMA systems with single-
antenna MTs in [8], [9].

In this work, we consider an opportunistic MIMO-SDMA
downlink system in which the BS as well as the MTs are
equipped with multiple antennas. In contrast with [6], signals
received from all antennas of a chosen MT are jointly exploited
by the feedback schemes considered in this work to improve
the effective SINR through the use of low-complexity linear
combining techniques. Then, information about Q ≤ M beams
of highest effective SINRs is returned to the BS and employed
as the scheduling metric. Using extreme value theory, we
propose a systematic approach to quantify the average sum-
rates and scaling laws. More specifically, we first prove that
the limiting distribution of the effective signal-to-interference
ratio (SIR) obtained with different linear combining techniques
is of the Frechet-type whereas that of the effective SINR
is of the Gumbel-type. Then, we derive the average sum-
rates and scaling laws for opportunistic scheduling schemes
with different combining techniques by exploiting their corre-
sponding limiting distributions of the effective SIR and SINR,
respectively. It is found that the SIR-based scaling laws follow
ϵ logK with 0 < ϵ < 1 whereas the SINR-based scaling laws
obey the log logK form, where K is the number of MTs.
Furthermore, comparison of the SIR and SINR-based analyses
suggests that, for interference-limited applications such as
SDMA-based systems, the SIR-based analysis has reduced
computational complexity and is more effective in capturing
the asymptotic system performance of the scheduling schemes
under consideration with higher fidelity. Both analytical and
simulation results confirm that incorporating low-complexity
linear combining techniques into the design of opportunistic
scheduling and beamforming schemes can provide substantial
throughput advantages for MIMO-SDMA downlink systems.

Before proceeding further, the main contributions distin-
guishing this work from other existing works should be
emphasized. The notion of joint opportunistic scheduling and
receiver design (JOSRD) was first pioneered in [10]. How-
ever, [10] only considers zero-forcing (ZF) receivers whose
performance was evaluated via simulation. In contrast, this
work concentrates on establishing a theoretical framework to
analyze the sum-rate performance provided by joint oppor-
tunistic scheduling and receiver design using different types
of receivers. Furthermore, unlike [11]–[13] in which single-
antenna receivers are considered, this work analytically exem-
plifies the significance of receiver design via more effective
utilization of multiple receive antennas. Finally, despite the
fact that [14]–[17] also consider receivers equipped with mul-
tiple antennas, the feedback scheme considered in their works
is rather different from that in this work. Indeed, the feedback

scheme studied in [14]–[17] and this work stand for two very
different approaches in interference mitigation for MIMO-
SDMA: the feedback scheme in [14]–[17] is designed to
eliminate interference by the BS via ZF beamforming whereas
interference is mitigated by the receivers in our work. More
specifically, [14]–[17] capitalize on their feedback comprised
of quantized channel direction information (CDI) and channel
quality information (CQI). Thanks to the quantized CDI, ZF
beamforming can be employed at the BS to ensure that all
arriving beams remain orthogonal at each MT. As a result,
inter-beam interference can be completely eliminated in the
absence of CDI quantization errors in [14]–[17]. In contrast,
CDI is not employed in our feedback scheme for the sake
of simple and low-complexity feedback design. As a result,
the lack of CDI in our feedback scheme prevents the BS
from performing ZF beamforming in this work. Thus, the
detrimental impact caused by inter-beam interference is non-
negligible and has to be accurately characterized in analysis.
Both analytical and simulation results have confirmed that
effective interference mitigation plays an important role in
improving system performance for the feedback scheme con-
sidered in this work.

The rest of the paper is organized as follows. We introduce
the signal model for MIMO-SDMA downlink transmissions
in Sec. II. Then, opportunistic scheduling and beamforming
schemes are reviewed for MIMO-SDMA downlink systems
with linear combining in Sec. III. SIR and SINR-based the-
oretical analyses on the average sum-rates and scaling laws
for JOSRD are derived in Secs. IV and V, respectively.
Comparisons between the SIR and SINR-based theoretical
analyses are elaborated in Sec. VI. Finally, simulation results
are shown in Sec. VII while the conclusion is given in Sec.
VIII.

Notation: Vectors and matrices are denoted by boldface
letters. ∥·∥ represents the Euclidean norm of the enclosed
vector and |·| denotes the amplitude of the enclosed complex-
valued quantity. IN is the N ×N identity matrix. [A]i,j and
[a]i indicate the element at the i-th row and j-th column of
matrix A and the i-th entry of vector a, respectively. We use
E {·}, (·)∗, (·)T and (·)H for expectation, complex conjuga-
tion, transposition and Hermitian transposition. Finally, log
and ln are the logarithms to the base 2 and e, respectively.

II. SIGNAL MODEL

We consider the opportunistic MIMO-SDMA downlink
system depicted in Fig. 1 where the BS is equipped with
M transmit antennas and each of the K MTs has N receive
antennas with N ≤ M . Let {am;m = 1, 2, · · · ,M} be a
vector set containing M orthornormal beamforming vectors
of length M . We focus on a particular time slot during which
a beamforming vector set {am} has been chosen from a
common codebook shared by the BS and MTs. During the
p-th mini-slot, the transmitted signal can be expressed as

x(p) =

M∑
m=1

amsm(p) = As(p), (1)

where A = [a1,a2, · · · ,aM ] is the unitary beamforming ma-
trix with AHA = IM and s(p) = [s1(p), s2(p), · · · , sM (p)]

T
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Fig. 1. A block diagram of the opportunistic MIMO SDMA downlink system
under consideration.

with E
{
|sm(p)|2

}
= 1 is the data vector transmitted in the

p-th mini-slot. Thus, the total average transmission power is
set to M [6].

For notational simplicity, we drop the temporal index p in
the sequel. Assuming that each MT experiences independent
and identically-distributed (i.i.d.) frequency-flat Rayleigh fad-
ing, we use hk,j to denote the 1 × M channel gain vector
with the m-th entry, [hk,j ]m, representing the channel gain
from the m-th transmit antenna of the BS to the j-th receive
antenna of the k-th MT. Thus, the signal received by the j-th
receive antenna of the k-th MT can be expressed as:

rk,j =
√
Pkhk,jx+ nk,j , 1 ≤ j ≤ N (2)

where Pk is the average input SNR for the kth MT and nk,j is
a complex, circular additive Gaussian noise that is assumed to
be spatially and spectrally white. Without loss of generality,
all signal powers are normalized with respect to the noise
power. As a result, the entries of hk,j and nk,j are modeled
as CN (0, 1).

By stacking the signals received by N antennas into a
column vector, we can rewrite (2) into the following matrix
form.

rk =
√

PkHkx+ nk, (3)

where rk = [rk,1, rk,2, · · · , rk,N ]
T , nk =

[nk,1, nk,2, · · · , nk,N ]
T and Hk is the k-th MT’s channel

matrix defined as Hk =
[
hT
k,1,h

T
k,2, · · · ,hT

k,N

]T
. Similar

to [5], [6], we assume that each MT has obtained perfect
knowledge of its own channel matrix Hk by means such
as training. Furthermore, it is important to observe that the
channel matrix in (3) is fat. As a result, the MTs in the
MIMO-SDMA systems have only N degrees of freedom
to suppress maximum M − 1 interfering beams. Without
effective interference suppression, the system performance
will be degraded poorly due to the lack of degrees of freedom
for interference suppression.

Thus, the SINR of the m-th beam observed by the j-th
receive antenna of the k-th MT is given by

γ(Observed)
k,j,m =

|hk,jam|2
M∑
i=1
i ̸=m

|hk,jai|2 +
1

Pk

, (4)

for k = 1, 2, · · · ,K, j = 1, 2, · · · , N and m = 1, 2, · · · ,M .
In the sequel, γ(Observed)

k,j,m is referred to as the observed SINR
whereas the effective SINR stands for the SINR obtained by
linearly combining signals from all received antennas. It will
become evident in the following analysis that γ(Observed)

k,j,m is less
than the effective SINR. As a result, the conventional schedul-
ing schemes based on γ(Observed)

k,j,m such as [6] are suboptimal
in terms of system throughput, compared to the the effective
SINR-based schemes considered in this work.

III. JOINT OPPORTUNISTIC SCHEDULING AND RECEIVE
DESIGN (JOSRD)

A. Scheme description

Recall that [10] considers an opportunistic scheduling
scheme in conjunction with ZF receivers. In this section, we
generalize this concept to explore opportunistic scheduling
with different linear receiver structures. More specifically,
we design beamforming and scheduling schemes for MIMO-
SDMA by exploiting the effective SINR obtained with differ-
ent linear combining techniques.

In the beginning of each time slot, each MT evaluates the
effective SINR for each beam and feeds information about
M effective SINRs back to the BS. More specifically, the
effective SINRs of the m-th beam at the k-th MT obtained with
selection combining (SC), maximum ratio combining (MRC)
and optimum combining (OC) techniques can be computed as
follows [18]:

γ(SC)
k,m = max

1≤n≤N


|hk,nam|2∑

i ̸=m

|hk,nai|2 + 1/Pk

 (5)

γ(MRC)
k,m =

∥Hkam∥4∑
i ̸=m

∣∣aH
mHH

k Hkai

∣∣2 + ∥Hkam∥2 /Pk

, (6)

γ(OC)
k,m = aH

mHH
k

Hk

∑
i ̸=m

aia
H
i HH

k +
IN
Pk

−1

Hkam.

(7)

Note that (7) performs active interference suppression by
exploiting the interference structure whereas (5) and (6) simply
intend to amplify the desired signal. It will be shown later
that this characteristic interference-suppression feature of OC
enables the scheduling scheme with OC to considerably out-
perform those with SC and MRC.

Upon receiving the effective SINR information from all
MTs, the BS schedules and starts data transmission to multiple
MTs with the largest effective SINRs on different beams until
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the end of the current time slot. At each chosen MT, received
signals from all antennas are linearly combined using one
of the above linear combining techniques, followed by data
detection. It is worth noting that the probability of awarding
multiple beams to the same MT is rather small, as the number
of MTs grows large. Furthermore, recall that the minimum
mean squared error (MMSE) and zero-forcing (ZF) receiver
structures for MIMO receivers amount to combiners using OC
and MRC for each beam, respectively [18]. As a result, an
MT assigned with multiple beams can focus on one assigned
beam at a time using the chosen combining technique while
regarding all other beams as interfering sources.

B. Fairness in scheduling

Unlike the TS-SS that requires PFS to maintain fair schedul-
ing among all MTs, the SDMA-based scheduling schemes
have been shown to guarantee fairness in scheduling even
in a near-far environment [6]. Intuitively speaking, since the
SDMA-based systems are interference-limited, an MT with
a larger Pk will receive stronger desired signals as well as
interference. Consequently, the effective SINR of each beam
perceived by an MT is mainly determined by the alignment of
the MT’s instantaneous channel vectors and the beam under
consideration.

C. Reduced-feedback JOSRD (RF-JOSRD)

Further feedback reduction for JOSRD can be achieved by
resorting to some ad-hoc feedback approaches. For instance,
rather than returning M SINRs to the BS, each MT can only
feed back information about its largest Q < M SINRs to
the BS. This approach is similar to that adopted in [6] where
Q = N . In the sequel, this alternative feedback scheme is
referred to as the reduced-feedback JOSRD (RF-JOSRD). We
will concentrate our following analysis on JOSRD in which
each MT returns all M SINRs to the BS while evaluating the
performance of RF-JOSRD via simulation in Sec. VII.

In the next two sections, SIR and SINR-based theoretical
analyses on the average sum-rates and scaling laws of the
joint opportunistic scheduling and receiver design scheme are
derived using extreme value theory [19]. In contrast with the
analytical approach adopted in [6] where upper and lower
bounds are employed to approximate the scaling laws, a
systematic approach is developed to derive the average sum-
rates and scaling laws. Most specifically, for a given SIR/SINR
parent distribution function, the proposed approach first de-
termines the domain of attraction of its limiting distribution
before computing the corresponding normalizing factors. From
the resulting limiting distribution, the average sum-rates and
scaling laws can be routinely derived. To shed light on system
performance in the following theoretical analysis, we concen-
trate on a homogenous network in this work, assuming all MTs
have the same average SNR, i.e. Pk = Ps for k = 1, 2, · · · ,K.
While this homogenous assumption is commonly made in the
literature [6], [12], [17], theoretical analysis on the perfor-
mance of opportunistic scheduling in heterogeneous networks
remains a challenging open question. This is partially because
that the design objective in heterogeneous networks becomes

twofold: maximizing system throughput while maintaining
fairness among heterogeneous users. As a result, the analysis
becomes rather complicated due to the necessity of character-
izing both fairness and weighted sum-rate performance in the
presence of different average SNRs.

IV. SIR-BASED THROUGHPUT ANALYSIS

In this section, we first consider the interference-limited
scenario where the interference power is much larger than the
additive noise power, which is the typical scenario for SDMA-
based systems. As a result, the SINRs given in (5)-(7) can be
well approximated by their corresponding SIRs given by:

ρ(SC)
k,m = max

1≤n≤N


|hk,nam|2∑

i̸=m

|hk,nai|2

 , (8)

ρ(MRC)
k,m =

∥Hkam∥4∑
i ̸=m

∣∣aH
mHH

k Hkai

∣∣2 , (9)

ρ(OC)
k,m = aH

mHH
k

Hk

∑
i ̸=m

aia
H
i HH

k

−1

Hkam,(10)

where a necessary condition required to guarantee the invert-
ibility of Hk

∑
i ̸=m aia

H
i HH

k in (10) is M > N .
Assuming ρk,m for k = 1, 2, · · · ,K, are i.i.d. with a

cumulative distribution function (CDF) FX(x), the CDF of
the maximum, ρ∗m = max

k
ρk,m, is given by [FX(x)]

K . Hence,
the resulting average sum-rate of JOSRD can be computed as
[2]

C = E

{
M∑

m=1

log

(
1 + max

k
ρk,m

)}
, (11)

= M

∫ ∞

0

log (1 + x) d [FX(x)]
K
. (12)

In the following, we first find the FX(x) functions obtained
with different combining techniques before establishing their
corresponding limiting distributions.

A. Statistics of effective SIR

The CDF of the effective SIRs obtained with different
combining techniques can be shown as follows [6], [20].

F (Observed)
X (x) = 1− 1

(1 + x)M−1
, (13)

F (SC)
X (x) =

[
1− 1

(1 + x)M−1

]N
, (14)
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F (MRC)
X (x) = 1− 1

(1 + x)M−1
−

N−1∑
p=1

(
M +N − p− 2

M − 2

)
xN−p

(1 + x)M+N−p−1
,

(15)

F (OC)
X (x) = 1− 1

(1 + x)M−N
−

N−1∑
p=1

(
M − p− 1
M −N − 1

)
xN−p

(1 + x)M−p
. (16)

We can easily verify that (14) is identical to (15) for
M = N = 2, which implies that SC and MRC have the
same performance at high SNR for M = N = 2.
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Fig. 2. CDF’s of SIR obtained with K MTs for different combining
techniques with M = 4 and N = 2.

From (14)-(16), the CDF of max
k

ρk,m obtained with dif-

ferent combining techniques, [FX(x)]
K , can be computed

correspondingly. Figure 2 shows the CDFs of the observed
SIR and the maximum effective SIR, [FX(x)]

K , derived from
(13)-(16) for the case of M = 4, N = 2 and K = 1, 5. The
selection of M = 4 and N = 2 is due to the considerable
practical interests in systems with those parameters. Figure 2
indicates that the CDF of the effective SIR obtained with OC
has a heavier tail than those obtained with MRC and SC. As a
result, it is more probable for OC to achieve a larger effective
SIR than the others for given M and N , which leads to a
higher system throughput. Furthermore, it is evident from Fig.
2 that the tail behavior of OC improves more significantly over
MRC and SC as the number of MTs, K, increases.

It is interesting to compare JOSRD using SC and that
proposed in [6]. In [6], a receive antenna at each MT is
regarded as an individual MT. Under some mild assumptions,
it has been shown in [6] that the maximum SINR over all
beams observed by a particular receive antenna is equal to the
maximum SINR for that best beam observed by all N receive
antennas. As a result, the CDF of the maximum effective SIR

for the m-th beam at the k-th MT in the interference-limited
environment can be approximated by[

F (SH)
X (x)

]Km

≈
[
1− 1

(1 + x)M−1

]NKm

, (17)

where Km ≤ K is the number of requests for the m-th

beam from the K MTs with
M∑

m=1

Km = KN . Comparison

between (17) and
[
F (SC)
X (x)

]K
=

[
1− 1

(1+x)M−1

]NK

, reveals
that [6] can be considered as a suboptimal form of JORD
with selection combining. The suboptimality is caused by
the fact that JOSRD with SC requires information on all
M beams from each MT whereas [6] simply feeds back
information on N selected beams. Thus, [6] can be regarded
as a special case of JOSRD using SC but with further reduced
feedback as discussed in Sec. III-C. However, as will be shown
shortly, even the performance of the full-feedback scheduling
scheme with SC is rather unimpressive compared to schemes
employing other combining techniques.

B. Asymptotic throughput

In order to investigate the performance of JOSRD while
keeping the analytical complexity tractable, we concentrate
the following analysis on a system of high practical interest,
i.e. M = 4 and N = 2. The results can be extended to other
values of M and N in a straightforward fashion. Due to space
limitations, we will only detail the derivation for the case of
OC and provide the final results for JOSRD with the other
two combining techniques.

We first investigate the asymptotic behavior of FX(K)
(x) =

[FX(x)]
K as K increases. For M = 4 and N = 2, (16)

becomes

F (OC)
X (x) = 1− 1 + 3x

(1 + x)3
. (18)

It is known in the context of extreme value theory that the
limiting distribution of FX(K)

(x) = [FX(x)]
K , if it exists,

belongs to one of three domains of attraction [19]. Fortunately,
we can easily prove that the parent distribution given in (18)
is of the Pareto type and satisfies the following equation

lim
x→∞

1− F (OC)
X (x)

1− F (OC)
X (cx)

= c2, c > 0 (19)

which is a necessary and sufficient condition for the resulting
limiting distribution being of the Frechet type. Consequently,
FX(K)

(x) = [FX(x)]
K converges to the following Frechet-

type distribution.

F (OC)
X(K)

(a(OC)
K x) =

{
0 x ≤ 0
exp

{
−x−2

}
x > 0

, (20)

where the normalizing factor a(OC)
K can be computed from the

so-called characteristic extreme of (18) as follows:

F (OC)
X (aK) = 1− 1

K
, (21)

a(OC)
K ≈

√
3K − 1. (22)
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Thus, we have

P (OC)
X(K)

(
X(K) ≤

(√
3K − 1

)
x
)
≈ exp

{
−x−2

}
, (23)

for x ≥ 0, or equivalently,

P (OC)
X(K)

(
X(K) ≤ x

)
≈ exp

{
−
(√

3K − 1
)2

x−2

}
. (24)

Substituting (24) into (12), we have the average sum-rate
obtained with OC as follows.

C (OC)

≈ 4

∫ ∞

0

log(1 + x) d

exp
−

(√
3K − 1

)2

x2


 , (25)

= −4

∫ ∞

0

log(1 + x) d

1− exp

−

(√
3K − 1

)2

x2


 ,

(26)

=
4

ln 2

∫ ∞

0

1− exp

{
− (

√
3K−1)

2

x2

}
1 + x

dx, (27)

where the last equality is obtained by using the integration by
parts. Since the closed-form expression of (27) is non-trivial,
we can evaluate the average sum-rate obtained with OC by
resorting to numerical methods.

Similarly, we can derive the average sum-rates obtained with
MRC and SC as follows.

C (MRC) ≈ 4

ln 2

∫ ∞

0

1− exp

{
− ( 3√

4K−1)
3

x3

}
1 + x

dx, (28)

C (SC) ≈ 4

ln 2

∫ ∞

0

1− exp

{
− ( 3√

2K−1)
3

x3

}
1 + x

dx. (29)

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

Number of MTs,  K

T
hr

ou
gh

pu
t b

ps
/H

z

 

 

Analysis (OC)
Simulation (OC)
Analysis (MRC)
Simulation (MRC)
Analysis (SC)
Simulation (SC)

Fig. 3. Comparison of analytical and simulated average sum-rates as a
function of the number of MTs with M = 4, N = 2 and σ2

k = 0.

Figure 3 compares the analytical average sum-rates shown
in (27)-(29) with the simulation results obtained in a noise-
free scenario. It is evident from Fig. 3 that the analytical and
simulated results are in accord with each other. In particular,
despite that the average sum-rates obtained in (27)-(29) have
been derived based on the assumption of a large K, Fig. 3
suggests that (27)-(29) are quite accurate even for smaller
K values. Furthermore, inspection of Fig. 3 reveals that the
average sum-rate obtained with OC is more than 40% larger
than those obtained with SC and MRC for M = 4 and N = 2
in the noise-free scenario, which is attributed to the inherent
interference suppression feature of OC.
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Fig. 4. Real system simulation versus SIR-based analytical results with
M = 4, N = 2 and K = 50.

Furthermore, Figure 4 compares the SIR-based analytical
sum-rates with the simulation results derived from real systems
with M = 4, N = 2 and K = 50 over SNR of [0, 30] dB.
Figure 4 shows that the simulation results approach the SIR-
based analytical results as SNR increases. In particular, the
discrepancy between the SIR-based analytical and simulation
results is reduced to less than 10% for SNR larger than 15 dB,
which is within the operating SNR range for practical systems.

C. Scaling law

To provide insights into the influence of the number of MTs,
K, on the system throughput, we investigate the scaling laws
of JOSRD as a function of K, assuming K is sufficiently large.
Similar to the previous section, we concentrate on the scaling
law for JOSRD with OC whereas only the final results for
those with MRC and SC are provided. To derive the scaling
law of the scheme with OC, we first rewrite (27) by letting
v = 1

x , where v ∈ (0+,∞). Thus, (27) becomes

C (OC)

≈ 4

ln 2

∫ ∞

0+

1− exp

{
−
(√

3K − 1
)2

v2
}

(1 + v) v
dv, (30)
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≈ 4

ln 2

∫ 2√
3K−1

0+

1− exp

{
−
(√

3K − 1
)2

v2
}

(1 + v) v
dv +

4

ln 2

∫ ∞

2√
3K−1

1

(1 + v) v
dv, (31)

where the last approximation is obtained by exploiting the fact
that 1− e−ξ ≈ 1, for ξ ≥ 4.

Taking the limit of (31) as K tends to infinity, it is easy to
show that the limit of the second term on the right hand side
(R.H.S.) takes the following form

lim
K→∞

4
ln 2

∫∞
2√

3K−1

1
(1+v)v dv

4 log
(√

3K
) = 1, (32)

whereas the limit of the first term becomes negligibly small as

lim
K→∞

2√
3K − 1

= 0. As a result, the scaling law for JOSRD

with OC is given by

lim
K→∞

C (OC)

4 log
(√

3K
) = 1. (33)

Similarly, we can obtain the scaling laws for the schemes
with MRC and SC as follows.

lim
K→∞

C (MRC)

4 log
(

3
√
4K

) = 1 (34)

lim
K→∞

C (SC)

4 log
(

3
√
2K

) = 1 (35)
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Fig. 5. Scaling laws as a function of the number of MTs with M = 4 and
N = 2.

Figure 5 depicts the scaling laws obtained in (33), (34) and
(35). Comparison between Figs. 3 and 5 indicates that the
scaling laws approximately follow the simulation results.

It is rather surprising to observe that the analytical results
established in this section are different from those reported
in the literature [3], [6] in two aspects. First, the limiting
distribution of the effective SIR is of the Frechet type, rather

than the Gumbel type. Second, the SIR-based scaling laws
derived in (33), (34) and (35) follow the form of ϵ logK
with 0 < ϵ < 1, which stands in contrast to the conventional
log logK form. In the following, we first repeat our analysis
above by replacing the effective SIR with the effective SINR
followed by some remarks on the comparisons between the
SIR and SINR-based analyses.

V. SINR-BASED THROUGHPUT ANALYSIS

Assuming γk,m in (5)-(7) are i.i.d. for k = 1, 2, · · · ,K with
CDF FY (y), the SINR-based average sum-rate is given by

R = M

∫ ∞

0

log (1 + y) d [FY (y)]
K
. (36)

Following the approach established in the previous section,
we will derive the parent distribution FY (y) obtained with
different linear combining techniques and subsequently, their
corresponding limiting distributions, i.e. lim

K→∞
[FY (y)]

K . By
exploiting the limiting distributions, we derive the average
sum-rates and the corresponding scaling laws.

A. Statistics of effective SINR

The CDFs of the effective SINR obtained with SC and OC
are given in the following forms, respectively [6], [21].

F (SC)
Y (y) =

[
1− exp {−y/Ps}

(1 + y)
M−1

]N

, (37)

F (OC)
Y (y) = 1− exp

{
− y

Ps

} N∑
n=1

An(y)

(n− 1)!

(
y

Ps

)n−1

,

(38)

where

An(y) =


1+

N−n∑
i=1

(
M − 1

i

)
yi

(1+y)M−1 N < M − 1 + n,

1 otherwise.
(39)

Furthermore, the probability density function (PDF) of the
effective SINR obtained with MRC has been shown as [20],
[22]

f (MRC)
Y (y) =

yN−1e−y/Ps

Γ(N)Γ(M − 1)

N∑
ℓ=0

(
N
ℓ

)
1

PN−ℓ
s

Γ(M − 1 + ℓ)

(1 + y)M−1+ℓ
,

(40)
where Γ(z) = (z − 1)! is the standard Gamma function for
any positive integer z.

Due to space limitations, only the details of the derivation
for JOSRD with OC are provided in the following, whereas
final results for MRC and SC are summarized at the end of
this section. To compare the following SINR-based analysis
with the previous SIR-based analysis, we also concentrate on
the MIMO-SDMA system with M = 4 and N = 2.
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B. Analysis for JOSRD with OC

The CDF and PDF of the effective SINR obtained with OC
for M = 4 and N = 2 can be readily derived from (38) as

F (OC)
Y (y) = 1− exp {−y/Ps}

(1 + y)
2 − 2y exp {−y/Ps}

(1 + y)
3

−y exp {−y/Ps}
Ps (1 + y)

3 , (41)

and

f (OC)
Y (y) =

y exp {−y/Ps}
P 2
s (1 + y)

4

[
(3Ps + 1) y +

(
6P 2

s + 6Ps + 1
)]

,

(42)
respectively.

It is easy to verify that

lim
x→∞

1− F (OC)
Y (y)

f (OC)
Y (y)

= Ps > 0, (43)

which is the necessary and sufficient condition for the limiting

distribution of
[
F (OC)
Y (y)

]K
being of the Gumbel type [19]. As

a result, F (OC)
Y(K)

(y) =
[
F (OC)
Y (y)

]K
converges to the following

Gumbel-type distribution [19].

F (OC)
Y(K)

(
a(OC)
K y + b(OC)

K

)
= exp {− exp {−y}} , y ≥ 0 (44)

or equivalently,

F (OC)
Y(K)

(y) = exp

{
− exp

{
− y

a(OC)
K

+
b(OC)
K

a(OC)
K

}}
, y ≥ 0,

(45)
where a(OC)

K and b(OC)
K are normalizing factors affecting the

shape and location of the limiting distribution, respectively.
From extreme value theory, b(OC)

K and a(OC)
K can be computed

from the characteristic extreme of (41) as [19]

1− F (OC)
Y

(
b(OC)
K

)
=

1

K
, (46)

a(OC)
K = F (OC)

Y

−1
(
1− 1

Ke

)
− b(OC)

K .(47)

Since (46) is an exponential-linear equation of b(OC)
K , it is non-

trivial to obtain the exact solution of b(OC)
K in a closed form.

Fortunately, since 1 − F (OC)
Y(K)

monotonically decreases from
1 to 0 whereas 1/K ∈ [1, 0) for K = 1, 2, · · · ,∞, there
always exists a unique solution to (46). Thus, we can resort
to numerical methods to compute a solution of b(OC)

K which is
referred to as the numerical solution in the sequel. Similarly,
we can also show that there always exists a unique numerical
solution of a(OC)

K that can be found by resorting to numerical
methods.

Rather than the numerical solutions of b(OC)
K and a(OC)

K , if we
assume K is sufficiently large, we can exploit the following
approximation

exp
{
−b(OC)

K /Ps

}
(
1 + b(OC)

K

)2 ≈
b(OC)
K exp

{
−b(OC)

K /Ps

}
(
1 + b(OC)

K

)3 . (48)

As a result, b(OC)
K and a(OC)

K can be approximated by the
following expressions.

b(OC)
K ≈ Ps ln ((3 + 1/Ps)K)− 2Ps ln (Ps lnK) , (49)

a(OC)
K ≈ Ps. (50)

Substituting (45) into (36) followed by some mathematical
manipulations, we can show the average sum-rate obtained
with OC is given by:

R(OC) =
4

ln 2

∫ ∞

0

1− exp
{
− exp

{
− y

a(OC)
K

+
b(OC)
K

a(OC)
K

}}
1 + y

dy.

(51)
Let z = exp

{
− y

a(OC)
K

}
, we have y = −a(OC)

K ln z and dy =

−a
(OC)
K

z dz. Furthermore, for notational simplicity, we define

η = exp
{

b(OC)
K

a(OC)
K

}
. Thus, (51) can be rewritten as

R(OC) ≈ 4

ln 2

∫ 4
η

0+

1− exp {−z · η}(
1− a(OC)

K ln z
) a(OC)

K

z
dz+

∫ 1

4
η

a(OC)
K dz(

1− a(OC)
K ln z

)
z

 . (52)

Recalling (49)-(50), we can easily see that the limit of the
first term on the R.H.S. of (52) becomes vanishingly small as

lim
K→∞

4

η
= 0. Furthermore, the limit of the second term can

be simplified as:

lim
K→∞

4

ln 2

∫ 1

4
η

a(OC)
K dz(

1− a(OC)
K ln z

)
z
= lim

K→∞
4 log

(
b(OC)
K

)
.

(53)
Thus, the corresponding scaling law is given by

lim
K→∞

R(OC)

4 log
(
b(OC)
K

) = 1. (54)

In particular, for Ps = 1, b(OC)
K and a(OC)

K can be approximated
from (49)-(50) as:

b(OC)
K,Ps=1 ≈ ln 4K − 2 ln lnK, (55)

a(OC)
K,Ps=1 ≈ 1, (56)

and the resulting scaling law can be explicitly expressed as
follows.

lim
K→∞

R(OC)
Ps=1

4 log (ln 4K − 2 ln lnK)
= 1, (57)

which stands for a typical scaling law in the log logK form.

C. Summary for schemes with MRC and SC

Following the same procedures, we can derive the average
sum-rates and scaling laws for JOSRD with MRC and SC.
More specifically, the CDFs of the parent effective SINR
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obtained with MRC and SC for M = 4 and N = 2 are given
by:

F (MRC)
X (x) = 1 +

x exp {−x/Ps} (1− 1
Ps

)

(1 + x)
3

−exp {−x/Ps}
(1 + x)

2 − 3x exp {−x/Ps}
(1 + x)

4 , (58)

F (SC)
X (x) = 1− 2 exp {−x/Ps}

(1 + x)
3 +

exp {−2x/Ps}
(1 + x)

6 .

(59)

Similarly, we can show that

R(MRC) ≈ 4

ln 2

∫ ∞

0

1− exp
{
− exp

{
− y

a(MRC)
K

+
b(MRC)
K

a(MRC)
K

}}
1 + y

dy,

(60)

and

R(SC) ≈ 4

ln 2

∫ ∞

0

1− exp
{
− exp

{
− y

a(SC)
K

+
b(SC)
K

a(SC)
K

}}
1 + y

dy.

(61)

The corresponding scaling laws take the following forms

lim
K→∞

R(MRC)

4 log
(
b(MRC)
K

) = 1, (62)

lim
K→∞

R(SC)

4 log
(
b(SC)
K

) = 1. (63)

In particular, for Ps = 1, the corresponding scaling laws can
be shown as follows.

b(MRC)
K,Ps=1 ≈ ln 3K − 2 ln (1 + lnK) , (64)

b(SC)
K,Ps=1 ≈ ln 2K − 2 ln (1 + ln 2K) , (65)

a(MRC)
K,Ps=1 ≈ a(SC)

K,Ps=1 ≈ 1. (66)

D. Comparison of results with numerical and approximated
normalizing factors

Finally, we compare the average sum-rates shown in (51),
(60) and (61) obtained with the numerical and approximated
normalizing factors.

Figure 6 shows the average sum-rates derived with the
numerical normalizing factors obtained by numerical methods
for Ps = 1 and Ps = 5. Inspection of Fig. 6 reveals that (51),
(60) and (61) agree well with the simulation results. Similar
to the SIR-based analytical results, the SINR-based analysis
is also very accurate for even smaller K values. Furthermore,
Fig. 6 confirms that the scheduling scheme with OC can
substantially outperform those with MRC and SC even in the
presence of stronger noise. More specifically, for Ps = 1,
JOSRD with OC outperforms those with MRC and SC by
more than 10% and 20% in terms of throughput, respectively.
The advantages of OC becomes more apparent as Ps increases.

Next, rather than the numerical solutions, Fig. 7 depicts the
average sum-rates using the approximated normalizing factors
computed in (55), (64) and (65) together with aK,Ps=1 ≈ 1
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Fig. 6. Simulation versus analytical results with numerical normalizing
factors for Ps = 1, 5.
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Fig. 7. Simulation versus analytical results with approximated normalizing
factors for Ps = 1.

for Ps = 1. Since the approximation expressions have been
derived by assuming a large K, the analytical curves shown in
Fig. 7 approach the simulated curves only when K becomes
large. To inspect the approximation accuracy of (55), (64) and
(65), Fig. 8 shows the numerical and approximated normal-
izing factors as a function of the number of MTs, K. Since
solving the exact solutions to the normalizing factors involves
the linear-exponential functions, it is in general non-trivial to
obtain accurate closed-form expressions for the normalizing
factors, which compromises the accuracy of the subsequently
derived scaling laws.

VI. COMPARISON BETWEEN SIR AND SINR-BASED
ANALYSES

The following remarks on the comparison of the SIR and
SINR-based analyses are of interest.
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Fig. 8. Comparison of the numerical and approximated solutions of the
normalizing factors for Ps = 1.

• On the one hand, it is easy to verify that the CDFs of the
effective SINR shown in (41), (58) and (59) converge the
corresponding CDFs of the effective SIR shown in (16),
(15) and (14) with M = 4 and N = 2, respectively, as Ps

tends to infinity. On the other hand, the SIR and SINR-
based analyses suggest that the limiting distributions of
the effective SIR and SINR do not belong to the same
domain of attraction. Instead, they are of the Frechet-type
and Gumbel-type, respectively. It is natural to conjecture
that the limiting distribution function of SINR might
also converge to the Frechet-type if Ps grows to infinity.
However, our results reveal that this intuition is not true.
This is because that the limit operator is not commutative
in general, i.e. changing the order of two limit operators
generally leads to different results.

• It is generally more difficult to obtain the normaliz-
ing factors in the SINR-based analysis than the SIR-
based analysis since the SINR-based analysis involves
exponential-type CDFs and requires solving exponential-
linear equations such as (46). Therefore, it is more
computationally advantageous to derive the scaling laws
in the SIR-based analysis compared to the SINR-based
analysis in the presence of strong interference.

• When computing the normalizing factors in the SINR-
based analysis, we have to carefully take into account
the high-order terms in FY (y). For instance, if the high-
order terms in FY (y) in (58) and (41) are ignored, the
resulting simplified CDFs for schemes with OC and MRC
will all lead to the same set of normalizing factors, i.e.
exp{−b(OC)

K
/Ps}

(1+b(OC)
K )

2 ≈ exp{−b(MRC)
K

/Ps}
(1+b(MRC)

K )
2 ≈ 1

K . As a result, the

performance of scheduling schemes with OC and MRC
cannot be distinguished simply based on their scaling
laws. Thus, caution must be exercised in evaluating the
SINR-based scaling laws. On the other hand, since it is
generally much easier to compute the normalizing factors

with high accuracy in the SIR-based analysis, we argue
that the SIR-based scaling laws can better characterize
the actual performance of different scheduling schemes
in the interference-limited scenarios.

VII. SIMULATION RESULTS
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Fig. 9. Average sum-rates as a function of the number of MTs with total
power equal to M for M = 2, 4, N = 2 and Ps = 1.

In this section, we use computer simulation to confirm the
performance of JOSRD in different noisy scenarios. Figure 9
shows the average sum-rates of the JOSRD with M = 2, 4,
N = 2 and Ps = 1. Fig. 9 indicates that the sum-rates of OC
represents an impressive 20% and 10% increase compared to
that of SC and MRC for K = 50, respectively. Note that
the total transmission power for M = 4 is twice of that for
M = 2 in Fig. 9. As a result, the average SNR for each beam
is approximately constant.

In contrast, Figure 10 depicts the average sum-rates of
JOSRD with M = 2, 4 and N = 2 for a fixed total
transmission power of 2. It is evident from Fig. 10 that the
sum-rate with M = 4 is higher than that with M = 2 for the
same amount of total transmission power. This is because the
effect of an increasing M on the average sum-rate is two-fold.
On the one hand, a larger M creates more interference to a
specific desired beam, which incurs loss of SINR. On the other
hand, a larger M also linearly increases the system throughput
as indicated in (12), which outweighs the throughput loss due
to a reduced SINR as indicated in Fig. 10.

Throughout this work, our performance analysis was carried
out by assuming the presence of a large number of MTs. In
this last experiment, we examine the performance of different
combining techniques with only a smaller number of MTs.
Figure 11 shows the average sum-rates of a system with M =
4, N = 2 and K = 5 using different combining techniques.

Inspection of Figure 11 reveals that OC provides a substan-
tially higher throughput gain as compared to SC and MRC.
This is because the likelihood of having several users’ channel
vectors perfectly aligned to different orthogonal beams reduces
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Fig. 10. Average sum-rates as a function of the number of MTs with total
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Fig. 11. Average sum-rates as a function of Ps with K = 5.

with the number of MTs. As a result, a receiver employing
OC can provide more effective interference suppression, which
leads to considerable performance improvement.

Finally, we examine the performance of reduced-feedback
JOSRD (RF-JOSRD) discussed in Sec. III-C. Figure 12
compares the performance between JOSRD with Q = M
feedback and RF-JOSRD with Q = 1 (i.e. feeding back only
the best beam information).

Inspection of Figure 12 suggests that the performance
degradation due to reduced feedback is rather marginal for
reasonably large networks (i.e. networks comprised of more
than 15 MTs in our simulation). The same observation has
been reported in [15], [17]. This can be partially explained by
the fact that unitary codebooks are employed in this work.
As a result, if a user has a channel closely aligned with
one beamforming vector, then its channel is approximately
orthogonal to other beamforming vectors. Since the effective
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Fig. 12. Performance comparison between JOSRD and RF-JOSRD with
Q = 1.

SINR associated with those orthogonal beams is rather small,
feeding back the best beam information only incurs marginal
performance degradation for large networks.

VIII. CONCLUSION AND FUTURE WORK

Performance analysis on joint opportunistic scheduling and
receiver design (JOSRD) for MIMO-SDMA downlink sys-
tems has been established in this work. Through asymptotic
analysis and computer simulation, it has been shown that
incorporating low-complexity yet effective linear combining
techniques into the design of scheduling schemes for MIMO-
SDMA downlink systems can substantially increase the system
throughput. Furthermore, a systematic approach has been
developed to derive the average sum-rates and scaling laws
for OS schemes by utilizing extreme value theory [19]. In
particular, our analytical results have shown that the limiting
distribution of the effective SIR is of the Fretch type and the
resulting scaling laws follow the ϵ logK form for 0 < ϵ < 1
whereas the limiting distribution of the effective SINR is
of the Gumbel type leading to the scaling laws governed
by the conventional log logK form. Simulation results have
confirmed the effectiveness in improving system throughput
by incorporating low-complexity linear combining techniques
in OS schemes. Finally, it has been argued through comparison
of SIR and SINR-based analyses that the SIR-based analysis
is more computationally efficient for SDMA-based systems
and it captures the asymptotic system performance with higher
fidelity.

There are several extensions of this study that can be further
explored. First of all, rather than setting M and N to some spe-
cific values in our sum-rate analysis, the feasibility of deriving
a generalized expression for asymptotic sum-rate performance
in terms of M and N remains an open question. Inspection of
(38)-(40) may hint that such an attempt may be analytically
intractable. However, such an expression will provide great
insight into the impact of M and N on the system throughput.
Furthermore, it will be of great practical interest to compare
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JOSRD with other existing schemes proposed in the literature.
However, caution has to be exercised in order to provide a fair
view of these feedback schemes. A comprehensive comparison
should take into account throughput performance, feedback
overhead and computational complexity. In particular, further
analysis to quantify the performance degradation of JOSRD
and other existing schemes with respect to DPC is of great
importance. Finally, throughout this work, homogeneous net-
works have been studied, which is commonly assumed in the
literature. However, performance analysis on heterogeneous
networks comprised of MTs with unequal SNRs stands for a
more practical challenge that merits further investigation.

APPENDIX A: DERIVATION OF (27)

In this section, we provide the derivation details of (27).

C (OC)

= −4

∫ ∞

0

log(1 + x) d

1− exp

−

(√
3K − 1

)2

x2


 ,
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−
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∫ ∞
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=
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∫ ∞

0

1− exp
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− (

√
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2

x2

}
1 + x

dx. (67)

APPENDIX B: DERIVATION OF (49) AND (50)

Substitute (41) into (46), we have

exp
{
−b(OC)

K /Ps

}
(
1 + b(OC)

K

)2 +
2b(OC)

K exp
{
−b(OC)

K /Ps

}
(
1 + b(OC)

K

)3

+
b(OC)
K exp

{
−b(OC)

K /Ps

}
Ps

(
1 + b(OC)

K

)3 =
1

K
(68)

Exploiting the following approximation for large b(OC)
K

exp
{
−b(OC)

K /Ps

}
(
1 + b(OC)

K

)2 ≈
b(OC)
K exp

{
−b(OC)

K /Ps

}
(
1 + b(OC)

K

)3 , (69)

we can rewrite (68) as

(3 + 1/Ps) exp
{
−b(OC)

K /Ps

}
(
1 + b(OC)

K

)2 ≈ 1

K
, (70)

b(OC)
K ≈ Ps ln ((3 + 1/Ps)K)− 2Ps ln (Ps lnK) .

(71)

Repeating the above computation on (47), we can show that

a(OC)
K + b(OC)

K ≈ Ps ln ((3 + 1/Ps)Ke)− 2Ps ln (Ps lnK) ,

(72)
a(OC)
K ≈ Ps. (73)

The result of a(OC)
K ≈ Ps can be justified from the fact that

the shape of the Gumbel-type limiting distribution is unaltered
compared to the parent distribution. As a result, the random
variable y in (45) is scaled by the same factor, i.e. Ps, as x
in (41).
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