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querying party and a remote database of face feature vectors.
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ABSTRACT

Alice and Bob possess sequences x and y respectively and

would like to compute the ℓ1 distance, namely ‖ x − y ‖
1
un-

der privacy and communication constraints. The privacy con-

straint requires that Alice and Bob do not reveal their data to

each other. The communication constraint requires that they ac-

complish the secure distance calculation with a small number

of protocol transmissions and key exchanges. This paper de-

scribes and analyzes a privacy-preserving approximation proto-

col for the ℓ1 distance that keeps the communication overhead

manageable by performing a Johnson-Lindenstrauss embedding

into the ℓ2 space. Then, it performs secure two-party computa-

tion of ℓ2 distances using Paillier homomorphic encryption. The

protocol is implemented for private querying of face images,

while maintaining a low communication overhead between the

querying party and a remote database of face feature vectors.

Keywords— Homomorphic Encryption, Secure Multiparty

Computation, Johnson-Lindenstrauss embedding

1. INTRODUCTION

Consider a private querying system in which a user wants to

check if his query image matches one or more images in a

database of images. The querying device (Alice), can extract

features from the user’s image and match these against a feature

vector database (Bob). A common distance metric for matching

image features is the Manhattan distance, or ℓ1 distance. Sup-

pose that the matching criterion is that the ℓ1 distance between

Alice’s feature vector and one of Bob’s feature vectors is below

a certain threshold. However, private querying imposes some

constraints on how this matching is performed. Firstly, for the

user’s privacy, Bob must not know anything about Alice’s fea-

ture vector. Secondly, for security of images in the database,

Alice must not find out anything about Bob’s feature vectors.

Thirdly, for practical usage, the communication protocol em-

ployed by Alice and Bob should not incur a large transmission

overhead. We propose a secure approximation protocol to ad-

dress privacy and communication constraints in problems of this

kind.

There has been significant work on the approximation of

distances in different metric spaces, resulting in elegant solu-

tions based on low-dimensionality embeddings. Du and Atal-

lah [1] used Monte-Carlo techniques to achieve approximation

of ℓ1 and ℓ2 distances between two signals. In a streaming sce-

nario, Feigenbaum et al. used range-summable random vari-

ables to approximate the ℓ1 distance between two massive data

streams [2]. This computation is not secure by design, but in

our opinion, it can be made secure using oblivious transfer and

secure dot product protocols of Yao [3]. However, this would

incur a significant communication overhead between Alice and

Bob. Indyk [4] used stable distributions to map the points x and

y in the original space to points x̃ and ỹ in a lower-dimensional

space while approximately preserving the ℓ1 distance. If Alice

and Bob were each to apply this low-dimensional embedding,

they still need a protocol to compute the ‖ x̃ − ỹ ‖
1
with pri-

vacy. Unfortunately, a privacy preserving two-party protocol to

compute ‖ x̃ − ỹ ‖
1
with low communication overhead is not

available.

To circumvent the above difficulty, we propose a three-step

approach in which the original points x and y are first mapped

into new binary vectors x̃ and ỹwhich reside on a higher dimen-

sional Hamming cube. Next, using Johnson-Lindenstrauss (JL)

embedding, these new points are further mapped into x̂ and ŷ.

The mappings ensure that ‖ x̂− ŷ ‖2
2
≈‖ x̃− ỹ ‖2

2
= ‖ x− y ‖

1
.

The reduction in dimension via JL embedding partially com-

pensates for the increase in dimensionality in the binarization

stage. The problem is then reduced to privacy-preserving com-

putation of squared ℓ2 distance in a space of slightly larger di-

mension than the original space. For computing the ℓ2 distance,
we propose an efficient two-party protocol using Paillier homo-

morphic encryption. The protocol is secure for computationally

bounded Alice and Bob, and incurs much lower communication

overhead compared to oblivious transfer on individual compo-

nents of x̂ and ŷ.

The remainder of this paper is organized as follows: Sec-

tion 2 describes the first two steps in which the problem of

computing ℓ1 distance is reduced to one of computing ℓ2 dis-

tance. Section 3 reviews Paillier homomorphic encryption and

describes the protocol used for secure computation of ℓ2 dis-

tance. In Section 4, the operations of the previous two sections

are combined to construct the proposed privacy-preserving ℓ1
distance approximation protocol. In Section 5, this protocol is

implemented in a private image querying system that uses ℓ1
distance as a matching criterion for face features. It is shown

that, the approximate ℓ1 distance computed by the protocol is

accurate enough to retain the security-robustness properties of
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the inherent matching algorithm. Further, private querying is

feasible at manageable communication overhead of a few hun-

dred kilobytes per querying instance, including the bit rate ex-

pansion resulting from homomorphic encryption.

2. APPROXIMATION OF ℓ1 DISTANCE

Let Alice and Bob possess two integer sequences of length

n, viz., x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn), where
xi, yi ∈ {0, 1, ...,M − 1} for all i ∈ {1, 2, ..., n}. Define

a function f : {0, 1, ..., M − 1} −→ {0, 1}M−1, such that

f(u) is a binary vector containing 1’s as its first u entries

and 0’s as the following M − 1 − u entries. For vector ar-

guments, define x̃ = f(x) = (f(x1), f(x2), ..., f(xn)) and

ỹ = f(y) = (f(y1), f(y2), ..., f(yn)). Clearly,

‖ x− y ‖
1
=‖ x̃− ỹ ‖

1
=‖ x̃− ỹ ‖2

2
(1)

The vectors x̃ and ỹ both have length n∗(M−1). There areMn

such vectors1 and they reside in {0, 1}(M−1)n. Using (1), Alice

and Bob can employ the secure ℓ2 distance protocol explained

in Section 3 and obtain ‖ x − y ‖
1
exactly, but this will incur a

very high communication overhead. Therefore, we propose to

embed x̃ and ỹ into a lower dimensional space such that the ℓ2
distance between them is approximately preserved. For this, we

use the Johnson Lindenstrauss (JL) Lemma [6].

Lemma 1 [6] Given ǫ > 0 and an integer s, let k be a positive

integer such that k ≥ k0 = O(ǫ−2 log s). For every set P of

s points in R
d there exists g : R

d −→ R
k such that for all

u, v ∈ P

(1 − ǫ)||u− v||2
2
≤ ||g(u) − g(v)||2

2
≤ (1 + ǫ)||u− v||2

2
(2)

Roughly speaking, using the embedding function g the

ℓ2 distance between any two points u, v in a high dimen-

sional space is approximately equal to the ℓ2 distance between

g(u), g(v) in a lower dimensional space with high probabil-

ity. Recently, Achlioptas [7] gave a constructive proof of

JL Lemma, showing that for given ǫ, β > 0, the inequal-

ity (2) holds with probability at least 1 − s−β if k ≥ k0 =
4+2β

ǫ2/2−ǫ3/3 log s. The embedding g is a linear transformation

given by g(u) = 1√
k
Ru, where each entry of the k × d ma-

trix R can be generated i.i.d. from a ±1-valued Bernoulli-0.5

distribution or from a normal distribution. For ease of computa-

tion, the ±1-valued Bernoulli-0.5 distribution will be employed

in this paper.

To determine the number of reduced dimensions after JL em-

bedding, set s = Mn in the JL Lemma. Then, for parameters

ǫ, β > 0, the minimum number of random projections is given

by:

k =
(4 + 2β)n

ǫ2/2 − ǫ3/3
logM (3)

1A similar mapping recently appeared in [5] for private image retrieval.

The parameters ǫ and β are useful in analyzing the fidelity of

the approximation of ℓ2 distance achieved by JL. In a practical

implementation, we can simplify (3) to k = αn logw M where

the constant α captures the parameters β and ǫ in addition to the
change in the base of the logarithm. Increasing α increases the

number of random projections required, thereby improving the

accuracy of the embedding.

Recall from above, that the entries of the matrix R are i.i.d.

Bernoulli-0.5 random variables and take values +1 or -1. The

seed used to generate the entries of R is assumed to be shared

between Alice and Bob. Now define the linear JL embedding

function g : R
n(M−1) −→ R

k as

x̂ = g(x̃) =
1√
k
Rx̃ , ŷ = g(ỹ) =

1√
k
Rỹ

The vectors x̂ and ŷ have length k. Therefore, by the J-L Lemma

and (1),

‖ x̂− ŷ ‖2
2
≈‖ x̃− ỹ ‖2

2
=‖ x− y ‖

1
(4)

From the point of view of implementation, note that x̂, ŷ are

not integer sequences. It is much more convenient to use in-

teger vectors for the next stage of the algorithm, namely the

protocol for secure computation of ℓ2 distance. To accomplish

this, we note that
√
k x̂,

√
k ŷ are integer sequences, so without

loss of generality, the secure ℓ2 distance protocol can operate

on
√
k x̂,

√
k ŷ and the division by

√
k can be handled later on.

Another approach is to quantize each component of x̂, ŷ to the

closest integer. In the sequel, assume that Alice and Bob have

respectively and separately computed x̂ and ŷ which are “good”

embeddings in the sense of (4).

3. SECURE COMPUTATION OF ℓ2 DISTANCE

We now describe secure computation of exact squared ℓ2 dis-

tance between two vectors a and b of length t using Paillier

homomorphic encryption. The Paillier cryptosystem [8] is re-

viewed briefly below.

• Configuration: Choose two large prime numbers p, q,
and let N = pq. Denote by Z

∗
N2 ⊂ ZN2 =

{0, 1, ..., N2 − 1} the set of non-negative integers that

have multiplicative inverses modulo N2. Select g ∈ Z
∗
N2

such that gcd(L(gλ mod N2), N) = 1, where λ =
lcm(p − 1, q − 1), and L(x) = x−1

N . Let (N, g) be the

public key, and (p, q) be the private key.

• Encryption: Let m ∈ ZN be a plaintext. Then, the ci-

phertext is given by

ξr(m) = gm · rN mod N2 (5)

where r ∈ Z
∗
N is a number chosen at random.

• Decryption: Let c ∈ ZN2 be a ciphertext. Then, the

corresponding plaintext is given by

ψ(ξr(m)) =
L(cλ mod N2)

L(gλ mod N2)
= m mod N (6)



Note that decryption works irrespective of the value of r used
during encryption. Since r can be chosen at random for every

encryption, the Paillier cryptosystem is probabilistic, and there-

fore semantically secure. It can now be verified that the follow-

ing homomorphic properties hold for the mapping (5) from the

plaintext set (ZN ,+) to the ciphertext set (Z∗
N2 , ·),

ψ(ξr(m1)ξr(m2) mod N2) = m1 +m2 mod N (7)

ψ( [ ξr(m1) ]m2 mod N2) = m1m2 mod N (8)

Now, suppose that Alice and Bob own two integer sequences

a = {a1, a2, ..., at} and b = {b1, b2, ..., bt} respectively and let
t≪ N .

‖ a− b ‖2
2

=
t∑

i=1

(ai − bi)
2 =

t∑

i=1

(a2
i + b2i − 2aibi)

= A+B + C (9)

where A =

t∑

i=1

a2
i , B =

t∑

i=1

b2i , C = −
t∑

i=1

2aibi

Observe that Alice knows A, Bob knows B, but C contains the

cross terms and is unknown to both of them. For secure com-

putation, Alice generates a public/private key pair and shares

only the public key with Bob. We assume that Alice and Bob

are honest but curious, i.e., each of them will follow the steps

of the protocol but will attempt to extract as much information

as possible from the data made available to them by the proto-

col. Now, the protocol for secure computation of the squared ℓ2
distance is as follows:

1. For each i ∈ 1, 2, ..., t, Alice encrypts ai into ξri
(ai) ac-

cording to (5). Here, ri is chosen randomly from Z
∗
N .

She transmits the encrypted results to Bob.

2. For each i ∈ 1, 2, ..., t, Bob computes

b̃i = −2bi mod N

ξri
(−2aibi) ≡ [ ξri

(ai) ]b̃i mod N2

3. Bob computes

ξr
C

(C) ≡ ξr
C

(−
t∑

i=1

2aibi) ≡
t∏

i=1

ξri
(−2aibi) mod N2

where r
C

=
∏t

i=1 ri mod N ∈ Z
∗
N . Note that Bob

operates solely in the encrypted domain in this step, so

the values of C and r
C
are unknown to him.

4. Bob chooses r
B
∈ Z

∗
N at random and computes

ξr
D

(B + C) ≡ ξr
B

(B) ξr
C

(C) mod N2

where r
D

= r
B
r

C
mod N ∈ Z

∗
N . Bob transmits this re-

sult to Alice. The value of r
D
is implicit in the encryption

result but is unknown to Bob.

5. Alice chooses r
A
∈ Z

∗
N at random and computes

ξr(‖ a− b ‖2
2
) = ξr(A+B + C)

≡ ξr
A

(A) ξr
D

(B + C) mod N2

where r = r
A
r

D
mod N ∈ Z

∗
N . Again, the value of r

is implicit in the encryption result but unknown to Alice

because she does not know rD.

6. Using the private key, Alice decrypts A + B + C =‖
a − b ‖2

2
according to (6). If required by the applica-

tion, this result is transmitted to Bob. The decrypted ℓ2
distance requires far fewer bits to transmit compared to

the encrypted transmissions in the previous steps, so the

communication overhead of this last step is neglected.

Note that, by design, the protocol does not reveal a to Bob or

b to Alice. In order to know ai, Bob must decrypt Alice’s

transmissions in the absence of the decryption key. Since he

is computationally bounded, Alice’s inputs are computation-

ally secure. Since Paillier encryption is semantically secure,

repeated encryptions of a bit value (0 or 1) will result in a dif-

ferent ciphertext every time, dictated by the random choice of

r in (5). If Alice wants to find out Bob’s inputs, she must de-

crypt ξr
D

(B + C) = ξr
D

(
∑t

i=1(b
2
i − 2aibi)) which gives her

1 equation and t unknowns. Thus, for t ≥ 2, Bob’s data is se-
cure. In terms of the communication overhead, Alice transmits

a maximum of t logN2 bits in Step 1. Thus Alice’s maximum

communication overhead is t logN2 bits, while Bob transmits

a maximum of logN2 bits. Since N is a fixed constant based

on the desired security of the encryption algorithm, the com-

munication complexity, in terms of the vector length t, is O(t)
for Alice and O(1) for Bob. For more details on the computa-

tional overhead incurred by Alice and Bob, the reader is referred

to [9].

4. SECURE COMPUTATION OF APPROXIMATE ℓ1
DISTANCE

Finally, we cascade the operations in Section 2 and Section 3

and generate a secure two-party approximation of the ℓ1 dis-

tance between x and y. In the setup phase, Alice and Bob share

a randomly picked seed that they use to generate the matrix R

for JL embedding. Also, Alice generates a public/private key

pair for Paillier encryption and shares the public key with Bob2.

Now, the steps of the combined protocol are as follows:

1. Starting with x, Alice obtains x̂ using binarization fol-

lowed by JL embedding as explained in Section 2. Simi-

larly, starting with y, Bob obtains ŷ. These x̂ and ŷ satisfy

(4).

2. Alice sets a = x̂. Bob sets b = ŷ. The two parties

then employ the protocol in Section 3. After one round of

2The communication overhead for sharing the random seed to generate R is

assumed negligible. The overhead for transmission of the public encryption key

with Bob can be folded into the first step of the secure ℓ2 distance protocol.



communication, Alice obtains the value of ‖ x̂ − ŷ ‖2
2
≈

‖ x − y ‖
1
. If necessary, this value can be transmitted to

Bob.

When Alice and Bob are computationally bounded, the proto-

col from Section 3 ensures that the privacy constraints in the

two-party computation are satisfied. Let e be the absolute value
of the error between the ℓ1 distance and its ℓ2 approximation.

Then, from the JL Lemma, we have with probability at least

ρ(s, β) = 1 − s−β , the absolute error e ≤ ǫ ‖ x − y ‖
1
. Us-

ing (3), it is clear that reduction in ǫ and increase in ρ(s, β)
are achieved at the expense of an increased number of random

projections, i.e., the number of rows of R. Calculating the num-

ber of projections by choosing β and ǫ values using (3) gives

a conservative (hence large) estimate of the required number of

projections. We find that a much smaller number of projections

is sufficient in practice. For instance, in the implementation of

Section 5, we useM = 256, n = 900, w = 2, α = 1 resulting

in an embedding into a space with k = αn logw M = 7200
dimensions. It is especially important to keep the number of

projections small because, in the secure computation protocol,

the projections have to be encrypted and the resulting cipher-

texts, being large, incur a significant transmission penalty.

5. PRIVATE QUERYING OF FACE DATABASES

We now consider an application of the proposed protocol for

private querying of face images that was introduced at the be-

ginning of the paper. As shown in Fig. 1, a photograph of the

query face is presented to the querying device (Alice), which

performs face detection and extracts an integer feature vector x

from it. This integer feature vector must now be compared with

a remote database (Bob) containing face feature vectors yi of

a large group of people, such as employees in an organization,

suspects in crime scenes, and so on. The query will be deemed

successful if ‖ x − yi ‖
1
≤ Dth for some yi, where Dth is

some threshold agreed upon by Alice and Bob. It is desired that

querying be accomplished such that (a) The query face features

are not revealed to the database server, and (b) The querying

device gets no information about the yi in the database except

what is conveyed by ‖ x− yi ‖1
for all i. This requires that the

database vectors are not indexed by the name of the legitimate

user. This is accomplished by using a different random order-

ing of the yi for every querying instance, and approximating

‖ x− yi ‖1 according to that ordering3.

Let n > 2 be the length of the integer feature vectors, and

U be the number of feature vectors in the database. We now

present a scheme which achieves these objectives with O(n)
andO(U) communication overhead fromAlice and Bob respec-

tively. The querying device (Alice) possesses a public/private

key pair, while the database (Bob) possesses only the public

key but not the private key. Using the JL embedding in Sec-

3While we are concerned only with privacy-preserving querying, many fur-

ther actions are possible in the event of a successful query. One example is that,

if a query is successful, Alice and Bob may later decide to share the relevant

images.

tion 2, the vectors x and yi, i = 1, 2, ..., U are transformed to

x̂ and ŷi such that ‖ x̂ − ŷ ‖2
2
≈‖ x − y ‖

1
. By following

the secure ℓ2 distance protocol in Section 3, Alice obtains the

values of ‖ x̂ − ŷi ‖2
2
for i = 1, 2, ..., U , and verifies whether

‖ x̂− ŷi ‖2
2
≤ Dth for some i.

We first test whether the approximation resulting from JL

embedding compromises the accuracy of matching faces based

on the ℓ1 distance between their corresponding integer feature

vectors. To perform this test, we used faces from the Multiple

Biometric Grand Challenge (MBGC) database [10] from NIST.

Note that, even though the underlying data is a public biomet-

ric database, we are using it for a database querying application

and not for biometric authentication. Thus, when considering

potential attacks on the system, we should be concerned with

attempts to discover x and y, not with attempts to gain unautho-

rized entry by subverting a biometric access control system.

To facilitate querying, integer feature vectors with length

n = 900 are extracted from two-dimensional Haar-like features

applied to the face images using the algorithm proposed in [11].

Owing to large differences in illumination, pose and expression,

the MBGC dataset is known to be a very challenging dataset

for face recognition with most feature extraction algorithms, in-

cluding the one that we adopt for these simulations. However,

for the purposes of this paper, we are not concerned with the

goodness of a particular feature extraction algorithm; our objec-

tive is only to test whether our approximation via JL embedding

preserves the fidelity of the feature matching algorithm. To that

end, Fig. 2(a) plots the intra-user and inter-user distances cal-

culated between pairs of integer feature vectors for 100 users,

each having between 2 and 20 faces. The solid lines depict the

distribution of the exact ℓ1 intra-user and inter-user distances

while the dashed lines depict the distribution of the respective

approximate distances using our protocol. It is clear that the

distributions are almost identical, suggesting that the approxi-

mation is accurate. The distributions are nearly Gaussian as a

consequence of the Central Limit Theorem; the individual face

features are nearly independent and uniformly distributed in [0,

255], so the calculation of the ℓ1 distance results in addition of

a large number of nearly i.i.d random variables. A histogram of

the approximation error has been plotted in Fig. 2(b) for 6000

randomly chosen pairs of faces. The mean and standard devi-

ation are both very small, providing further evidence that the

approximations are very accurate.

Having verified the accuracy of our approximation scheme,

we now turn to secure calculation of ‖ x̂ − ŷ ‖2
2
. This is done

according to the protocol described in Section 3. Both parties

use Paillier homomorphic encryption with encryption parame-

ters p, q and g. Thus, the public encryption key is (N = pq, g)
and the private decryption key is (p, q). We used 100-bit prime

numbers4 for p and q but they could be larger if higher computa-

tional security is desired. As noted earlier, the encryption key is

known to both Alice and Bob, but the decryption key is known

only to the Alice. We verified that the squared ℓ2 distance calcu-
lated using the protocol is exactly ‖ x̂− ŷ ‖2

2
. Now, for the final

4For e.g., p = 1267650600228229401496704256919, q =

1267650600228229401496705310003, g = 2.
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Fig. 1. A querying system based on ℓ1 distance between integer face feature vectors. The querying device (Alice) determines

whether an input image is similar to one or more images in the database (Bob) without revealing the query and without knowing the

images in the database.

step in querying, it is left to choose a value for the distortion

threshold Dth. This depends on the distribution of intra-user

and inter-user distances in Fig. 2 and the desired querying ac-

curacy. Clearly, the overlap between the distributions leads to

false positives and false negatives. Since our approximation is

very accurate, the probability of false positives and false neg-

atives depends only on the underlying feature extraction algo-

rithm, which is not the focus of this paper.

It is more pertinent to compute the communication overhead

incurred by our protocol. The original length of the feature vec-

tors possessed by Alice and Bob is n = 900. After binarization,
this results in binary vectors of length (M−1)n = 255×900 =
229500. JL embedding of the binary vectors results in inte-

ger vectors of length O(logMn). Using base-2 logarithms

and absorbing the conversion into the multiplicative constant

for the order, we choose to embed the binary vectors into an

ℓ2 space of dimension log2M
n = 900 log2 256 = 7200.

Finally, in the secure ℓ2 distance protocol, Alice transmits a

maximum of 7200 × logN2 = 7200 × 400 ≈ 360 kilo-

bytes to Bob, where N = pq is a 200-bit number. Then,

for each user i in the database, Bob transmits logN2 bits to

Alice. Thus, the total communication overhead for Bob is

U logN2 = 100×400 ≈ 5 kilobytes. If greater computational

security is desired, N is increased, thereby increasing the com-

putational overhead for Alice and Bob. Also, if an even closer

approximation to the original ℓ1 distance is desired, the JL em-

bedding can embed into a ℓ2 space of larger dimension, which

would also increase the communication overhead for Alice but

not for Bob. This may be important because the database (Bob)

could conceivably be handling requests from multiple querying

devices (“Alices”) at the same time.

At the end of the protocol, Bob only has access to encrypted

integers x̃j , j = 1, 2, ..., 7200 from Alice, which he cannot de-

crypt because he does not possess the private key. Bob does not

even find out whether the query succeeded or failed. Alice only

has access to the approximate distances ‖ x̂ − ŷi ‖2
2
, but does

not know anything else about the yi, i = 1, 2, ..., 100. Since we
consider honest but curious parties, we have not explicitly ad-

dressed the case in which Alice and/or Bob use the malleability

of homomorphic encryption to modify the encrypted transmis-

sions and force incorrect results from the protocol. A feature

of the proposed protocol is that, even though such malicious

actions can result in erroneous ℓ1 distances, they cannot com-

promise the privacy of the innocent party.

We have presented one realization of privacy-preserving

querying based on ℓ1 and ℓ2 distances, and many refinements

are possible that are outside our current scope. For example,

it may be desirable to protect Bob’s database from repeated

queries by Alice because such repeated queries would allow Al-

ice to gain some information about the distribution of faces in

Bob’s database. In such cases, it is not advisable to present

Alice with a vector containing distance values ‖ x̂ − ŷi ‖2
2

for all i. Instead, Alice and Bob could engage in a minimum-

finding protocol, at the end of which, only the smallest distance

d = mini ‖ x̂ − ŷi ‖2
2
≈ mini ‖ x − yi ‖

1
corresponding to

the closest face is disclosed to Alice. Then, Alice’s query is

successful if and only if d ≤ Dth.

6. SUMMARY

A two-party protocol for privacy-preserving approximation of

ℓ1 distance was presented in this paper. Using Johnson-

Lindenstrauss embeddings, the two parties map their vectors x

and y into new vectors x̂ and ŷ such that ‖ x̂− ŷ ‖2
2
≈‖ x−y ‖

1
.

Then, they use Paillier homomorphic encryption for secure

computation of ‖ x̂ − ŷ ‖2
2
. The security and communication

overhead of the two untrusting parties is analyzed. The approx-

imation protocol is employed in a private face querying system,

where a querying device can interact with a remote database

without revealing its input image, and none of the face features
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Fig. 2. (a) The probability distributions of the inter-user and intra-user distances calculated using the proposed approximation

scheme are very close to the true probability distributions.(b) A histogram of the error between the actual ℓ1 distance and its secure

approximation computed for 6000 randomly chosen pairs. The mean error is 0.0011 and its standard deviation is 0.05.

in the database are compromised. In experiments with a public

database, it is found that the protocol closely approximates the

ℓ1 distance while preserving the privacy and security require-

ments.

7. ACKNOWLEDGEMENTS

The authors are grateful to Petros Boufounos for introducing

them to the JL Lemma, and to Kuntal Sengupta and Mike Jones

for providing the face feature extraction software.

8. REFERENCES

[1] W. Du, M. Atallah, and F. Kerschbaum, “Protocols for se-

cure remote database access with approximate matching,”

in Seventh ACM Conference on Computer and Communi-

cations Security, 2000, pp. 523–540.

[2] J. Feigenbaum, S. Kannan, M. J. Strauss, and

M. Viswanathan, “An approximate l1-difference algorithm
for massive data streams,” SIAM J. COMPUT., vol. 32, no.

1, pp. 131–151, 2002.

[3] A. C-C. Yao, “How to Generate and Exchange Secrets,”

in Proceedings of the 27th Annual Symposium on Foun-

dations of Computer Science (SFCS), Washington, DC,

USA, 1986, pp. 162–167, IEEE Computer Society.

[4] P. Indyk, “ Stable Distributions, Pseudorandom Gener-

ators, Embeddings and Data Stream Computation,” in

IEEE Symposium on Foundations of Computer Science,

Redondo Beach, CA, Nov. 2000, pp. 189–197.

[5] W. Lu, A. Varna, and M. Wu, “Secure Image Retrieval

through Feature Detection,” in Proceedings of the IEEE

International Conference on Acoustics, Speech and Signal

Processing, Taipei, Taiwan, 2009.

[6] W. B. Johnson and J. Lindenstrauss, “Extensions of Lips-

chitz Mapping Into Hilbert Space,” Contemporary Math-

ematics, vol. 26, pp. 189–206, 1984.

[7] D. Achlioptas, “Database-friendly Random Projections:

Johnson-lindenstrauss With Binary Coins,” Journal of

Computer and System Sciences, vol. 66, pp. 671–687,

2003.

[8] P. Paillier, “Public-Key Cryptosystems Based on Com-

posite Degree Residuosity Classes,” in Advances in Cryp-

tology, EUROCRYPT 99. 1999, vol. 1592, pp. 233–238,

Springer-Verlag, Lecture Notes in Computer Science.

[9] S. Rane, W. Sun, and A. Vetro, “Secure Distortion Com-

putation in the Encrypted Domain Using Homomorphic

Encryption,” in Proc. IEEE International Conference on

Image Processing, Cairo, Egypt, Oct. 2009.

[10] National Institute of Standards and Technology

(NIST), “Multiple biometric grand challenge database,”

http://face.nist.gov/mbgc/.

[11] M. Jones and P. Viola, “Face recognition using boosted

local features,” MERL Technical Report, TR2003-25, May

2003.


	Title Page
	Title Page
	page 2


	Privacy-Preserving Approximation Of L1 Distance for Multimedia Applications
	page 2
	page 3
	page 4
	page 5
	page 6


