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Abstract
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first few empty frames of video are used for adaptation, and ii) an active learning approach with
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Abstract

In many computer vision tasks, scene changes hinder
the generalization ability of trained classifiers. For
instance, a human detector trained with one set of
images is unlikely to perform well in different scene
conditions. In this paper, we propose an incremental
learning method for human detection that can take
generic training data and build a new classifier adapted
to the new deployment scene. Two operation modes are
proposed: i) a completely autonomous mode wherein
first few empty frames of video are used for adaptation,
and ii) an active learning approach with user in
the loop, for more challenging scenarios including
situations where empty initialization frames may not
exist. Results show the strength of the proposed methods
for quick adaptation.

1 Introduction
Most learning methods for detecting or classifying

objects in images are trained by providing annotated
samples. Such methods perform well when training
and testing is done in similar conditions, such as on the
same scene. However, conditions often change since
training and deployment can be in different locations
with widely varying illumination, camera position,
apparent object sizes, pose of the subject/object.
The generalization ability of trained classifiers is
compromised in the presence of such changes. For
example, Figure 11 shows the output of a human
detector on a test frame from the CAVIAR dataset2,
when trained using Histogram of Oriented Gradients
(HOG) features [2] on a subset of the INRIA pedestrian
dataset.

For each frame of test video, we employ a sliding
window of 75 pixels by 50 pixels wide, with horizontal
and vertical overlap of 50 and 30 pixels respectively.
HOG features are extracted for each window, and the
obtained vector is passed through the trained Support
∗Work done while at MERL.
1All figures best viewed in color.
2http://homepages.inf.ed.ac.uk/rbf/CAVIAR/

(a) (b)
Figure 1. (a) Original frame. (b) Output of a human
detector trained on the INRIA dataset.

Vector Machine (SVM) classifier. Red boxes indicate
a positive classifier output, i.e., the particular bounding
box contains a human according to the trained classifier.
The figure shows an extremely large number of false
positive detections, primarily due to misleading texture
in the upper part of the frame.

From the previous example, it is clear that the
learned human models do not generalize well, and
heavily rely on the specifics of the training data.
The background texture is never seen in training, and
is consequently classified as a human in the new
frame. On the other hand, we can also see that
the human is detected correctly in the frame. The
model therefore correctly captures some aspects of the
detection problem, specifically, the appearance of the
human.

Motivated by the partial correctness of the learned
model, our objective is to adapt it to the new scene
efficiently and quickly, i.e., with little or no user
input. The goal is to retain the informative aspects of
the previous training data, while also gathering more
information about the new classification task, thereby
constructing a scene-specific classifier from a generic
one. In this paper, we focus on the application of
human detection, which has been an area of significant
recent research [2–4, 10, 12, 13]. However, note that the
approach can be applied to other detection tasks as well.

Broadly, our method works via performing
incremental updates by actively selecting new instances
for training and removing old uninformative instances.
The removal of training examples allows us to maintain
fixed training sizes, so training is efficient, and can
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Figure 2. Block schematic of the proposed system.

work on a fixed memory budget.
Consider the following setting. We have access to a

large set of training examples from a standard dataset,
such as INRIA pedestrian data (generic data). The
objective is to deploy a classifier (human detector) on
a new scene wherein we can access frames from the
video sequence captured by the camera. We propose
two modes of system operation. The first mode is that
of semi-supervised adaptation, with user in the learning
loop. The system adapts to the new scene based on a
few queries made to the user (such as showing an image
window and querying whether it consists of a human
or not). In the second autonomous mode, the system
uses generic data along with the first few frames from
the new video (which does not contain any motion)
to learn a scene-specific classifier. The first mode
is for more challenging environments where human
appearance may differ significantly or where empty
frames are not available for autonomous adaptation.

2 Adaptation with user in the loop
2.1 Active Learning

In this section, we give a short overview of active
learning, followed by our proposed active selection
method. The basic idea in active learning is to query
the user for “informative examples”, so as to learn faster
than passive methods, i.e., with fewer training samples.
Active learning has been employed in applications such
as text classification [9], and more recently computer
vision [5–7].

The active selection process is usually iterative,
wherein the algorithm queries the user for annotation
on selected unlabeled examples, obtains user feedback,
and appends the data to the training set. The classifiers
are retrained at each round, and the process continues
until the desired accuracy level is reached, or until
no more training data can be obtained. Through
intelligent query selection, active learning can learn
good classifiers with very few training examples.

The most crucial aspect is active learning is the

query selection mechanism. Measuring the potential
informativeness (in terms of future classification rate)
of an unlabeled data point is difficult, as is the case
for query selection. Most methods use proxies such
as uncertainty sampling – i.e., selecting data points on
which the current model is most uncertain, or in other
words the most confusing samples. For example, for a
Support Vector Machine (SVM) classifier, data points
closest to the classification boundary are confusing and
can be potentially informative if labeled. We focus on
uncertainty sampling in this work.

2.2 Incremental learning and forgetting
In this section, we employ active learning and

forgetting for incremental learning. The main idea
is that given a set of generic training images, new
informative images from the location of deployment
can be queried to the user for adding to the training
set, while old uninformative images can be removed.
The selection and deletion (forgetting) processes both
work through active selection. For deletion, the active
selection measure is inverted – i.e., examples which
are least informative are selected. To our knowledge,
this is the first work that employs active forgetting,
and combines it with active learning for incremental
classifier training.

Figure 2 shows our learning setup. Given a new
scene for deployment along with generic training data,
the method queries the user and adds a few training
images from the new frame. This little training data
allows the classifier to quickly adapt to the new scene.
At the same time, old uninformative data is removed
from the training set, thus limiting the total memory
and training time. As the examples to be removed are
selected actively, they are relatively uninformative and
the removal does not significantly hurt accuracy. This
process is performed iteratively, and it results in a new
classifier that is scene-specific, achieved by adapting the
generic training data with little human input. In general,
at a new deployment location, the first few frames of
video can be used for performing the update, and the
resulting classifier can then be deployed on the location.

2.2.1 Uncertainty-based selection measure
The selection measure we employ is based on distance
to the hyperplane of the SVM classifier. In particular,
after an SVM is trained, it is used to estimate
class membership probability values for the unlabeled
images. We give a brief overview of the probability
estimation technique in the following.

Probability estimation based on margins
In order to obtain estimates of class membership
probability from margins, we follow the approach
proposed by [8], which is a modified version of Platt’s
method to extract probabilistic outputs from SVM [11].



The basic idea is to approximate the class probability
using a sigmoid function. Suppose that xi ∈ Rn are the
feature vectors, yi ∈ {−1, 1} are their corresponding
labels, and f(x) is the decision function of the SVM.
The conditional probability of class membership P (y =
1|x) can be approximated using

p(y = 1|x) = 1

1 + exp(Af(x) +B)
, (1)

where A and B are parameters estimated using
maximum likelihood [8, 11]. We employ the LIBSVM
toolbox [1] for implementation.

Consider that L is the set of labeled training data
at any instant. Let x be the unlabeled example for
which the active selection measure (confusion score)
is to be computed. Let y be the true label of
x, which is unknown during selection. We define
the selection measure as the difference between the
estimated probabilities for the two classes |P (y =
1|L) − P (y = 0|L)|. Thus, active example selection
from a large pool A can be formulated as

x∗ = argmin
xi∈A

|P (yi = 1|L)− P (yi = 0|L)| (2)

The above score represents how confused the classifier
is about an unlabeled example. The lower the score,
higher is the confusion (smaller margin), and the
example is more likely to update the current classifier.

We can use the same confusion score above, and
remove examples having the highest score, indicating
that they are farthest away from the classifier boundary.
For SVM classifiers, these examples are not support
vectors and hence removing them does not change
the classifier. Note that adding new examples might
make the removed examples potential support vectors,
however, in practice we observed that this happens
extremely rarely. Consequently, example removal using
the proposed measure does not hurt accuracy.

For binary classification, distance to the margin
suffices. However, using estimated probability values,
we can extend the above method for multi-class settings
as well. The selection measure for a k-class problem is

x∗ = argmin
xi∈A

|P (yk1 |L)− P (yk2 |L)|, where (3)

k1 = argmax
i=1:k

P (yi), k2 = argmax
i=1:k,i6=k1

P (yi).

2.3 Results with semi-supervised adaptation
The experiments are performed on an two video

sequences, one from a local parking lot obtained with
a surveillance camera (referred to as VID), and another
from the CAVIAR dataset. The extracted image frames
have a lot of confusing reflections and texture.

Since the mistakes in predictions are false positives,
the primary evaluation measure used is False Positives
per Window (FPPW) for each frame. All the classifiers
detect the human in the frame correctly.

In this section, we compare our method of
incremental active learning (IL+A) with two baselines:
i) using the generic classifier on VID (called GC), and
ii) incremental learning, but with Random selection
of examples to add and remove, instead of active
selection (IL+R). Figure 3(d) shows the achieved
FPPW rate over multiple frames on VID, alongside
the number of training examples used from VID.
Figures 3(a)–(c) shows sample detection results on one
frame of CAVIAR. The improvement of incremental
active learning over the generic classifier demonstrates
the importance of scene-specific training, whereas the
improvement over random selection demonstrates the
importance of active selection.

Note that our proposed method is not intended
to replace other detection techniques, but rather
complement them by adding incremental active
learning. As such the proposed approach can be used
with other existing techniques that perform well in
particular domains, such as classifier cascades which
have been demonstrated to give good performance in
human detection applications [4].

The above method of semi-supervised adaptation
can be applied to many incremental learning tasks, even
when training and test conditions differ substantially
and no other information is available. In many real
human detection applications, more information is
available. For example, at the deployment location, we
might have access to a few frames of video without
any human in the scene. Alternatively, motion sensors
are often available in surveillance environments – these
motion sensors can be used as a primary sensor to
indicate the presence of a frame without a human. In
these scenarios, we can adapt the generic classifier to
the new scene completely autonomously as follows.

3 Autonomous adaptation
In the example of Figure 1, there are a large number

of false positives we aim to eradicate, while keeping the
correct detection as is. If we have access to the video
frames when there is no human in the scene, we can use
image windows from that frame to gather more negative
training images.

3.1 Which negative examples to select?
The number of sliding windows per frame can be

very large, because of the small window size and
substantial overlap. As such, it is impractical to use
all of the windows as negative training instances, from
both perspectives of training set size, and retraining
time. In this section, we discuss our method of example
selection and removal.

The generic classifier is deployed on the empty
frame, and all the windows on which it gives a positive
response are selected for training. As the frame
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Figure 3. Sample results with 75 training examples from CAVIAR, (a) Generic classifier, (b) Incremental learning with random selection,
(c) Incremental learning with active selection. (d) FPPW values of different methods with varying number of training examples on VID.

is known to be empty, the positive detections are
essentially misclassifications by the generic classifier.
Therefore, adding them to the training data is likely to
change the classifier, and reduce the number of false
positive detections.

3.2 Maintaining training set sizes
On the other hand, adding new training instances

increases the size of the training set. This is undesirable
in memory-constrained situations and where processing
rate is critical. Therefore, we also propose to remove an
equal number of old negative examples from the generic
data. This is accomplished by using the method of
the previous section, i.e., removing examples that are
farthest away from the boundary.

3.3 Results with autonomous adaptation
Figure 4 shows the results of using initial

background frames to extract false negatives along with
the generic training data. As the number of background
frames used increases, the number of false positives
goes down. The method is thus a viable candidate
to adapt a classifier to a new location without the
need for any human supervision. Furthermore, in
many cases scene conditions such as illumination levels
change over time. One can use autonomous updates
using empty frames to adapt the classifier when such
changes occur, so that detection quality is consistently
maintained.

4 Conclusion
We propose two approaches, one completely

autonomous, and one with little user supervision to

(a) (b)
Figure 4. (a),(b) show results with using 1 and 2
background frames respectively for autonomous updates.

adapt generic training data to provide scene-specific
detectors. The discussed methods address the important
issue of quick deployment in various locations, without
involving expensive operations of data collection at the
location. Using incremental learning, the classifiers can
combine the advantages of available generic data as
well as scene-specific data.
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