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Abstract

This paper is concerned with the performance of a regenerative relaying protocol on fading wire-
less channels with imperfect channel knowledge at the receivers. Assuming a single source and
a single destination with multiple relay nodes, using binary modulation at the source, we present
optimum receiver at the destination on frequency-flat Rayleigh fading channels by taking into
account the effect of imperfect channel knowledge at the receivers. Since exact performance
analysis of the optimal receiver is complicated due to the non-linear nature of the log-likelihood
ratio contribution from the relay, upon using a standard technique in the literature, we present
a simple approximate receiver and derive closed-form expression for the average bit error rate
(BER) at destination with a single relay node. We also present a simple analytical technique
that allows us to numerically evaluate the average BER for an arbitrary number of relay nodes.
Finally, with perfect channel estimation our proposed receiver subsumes the coherent receivers
in [1] and [2] whereas with a minimum mean-square error channel estimation it reduces to the
non-coherent receiver in [3].
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Abstract—This paper is concerned with the performance of a re-
generative relaying protocol on fading wireless channels with imperfect
channel knowledge at the receivers. Assuming a single source and a single
destination with multiple relay nodes, using binary modulation at the
source, we present optimum receiver at the destination on frequency-flat
Rayleigh fading channels by taking into account the effects of imperfect
channel knowledge at the receivers. Since exact performance analysis of
the optimal receiver is complicated due to the non-linear nature of the
log-likelihood ratio contribution from the relay, upon using a standard
technique in the literature, we present a simple approximate receiver
and derive closed-form expression for the average bit error rate (BER)
at the destination with a single relay node. We also present a simple
analytical technique that allows us to numerically evaluate the average
BER for an arbitrary number of relay nodes. Finally, with perfect channel
estimation our proposed receiver subsumes the coherent receivers in [1]
and [2] whereas with a minimum mean-square error channel estimation
it reduces to the non-coherent receiver in [3].

Index Terms—Regenerative relaying, cooperative communication, im-
perfect channel knowledge, nonlinear receivers, log-likelihood ratio.

EDICS: SPC-DETC, SPC-PERF, SEN-COLB, WIN-PHYL

I. INTRODUCTION

Cooperative wireless relaying ideas have become increasingly at-
tractive for their ability to provide distributed spatial diversity [4], [5],
[6], reduced transmission power requirements [7], [8], [9], extended
coverage [10], and overall capacity improvement [11]. During the past
few years, a large number of results are being reported on the receiver
performance of various relaying protocols. Using an amplify-and-
forward (AF) protocol [12] and with perfect channel state information
(CSI) at the receivers, [13] showed that full diversity of N + 1 is
achievable with N relay nodes and a direct link between the source
and the destination. With regenerative relay (RR) signal processing
(also termed as demodulate-and-forward (DF) relaying), [1] presents
receiver structures at the destination with both perfect CSI as well
as channel statistics, whereas [2] analyzes the performance of a sub-
optimum receiver with perfect CSI.

Estimation of CSI requires training the relay channel, typically by
sending known (pilot) symbols from the source as well as the relays,
thereby reducing the network throughput. The channel estimates may
become outdated if the variation of the channel over time is high
relative to the signaling duration [14]. One way to overcome these
issues is to employ non-coherent detection techniques which do not
require instantaneous channel knowledge. To this end, [15] studies
the performance of orthogonal binary frequency shift-keying (BFSK)
and on-off keying (OOK) modulations with maximum-likelihood
(ML) non-coherent AF receivers. In particular, [15] shows that BFSK
achieves full diversity whereas full diversity is not possible OOK.
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Using a generalized likelihood ratio test receiver [16] with non-
coherent BFSK and a single relay, [17] shows that the average bit
error rate (BER) decays asymptotically as (log SNR)2/SNR2, where
SNR is the average received signal-to-noise ratio. That is, a diversity
order of two is possible only asymptotically. Considering both short-
term as well as long-term average power constraints, approximate
receivers with OOK modulation and non-coherent AF protocol are
studied in [18]. Assuming channel coherence at least over the duration
of two symbols, differential modulation with AF protocol are studied
in [19] and [20] whereas [21] considers both AF and DF protocols.
In particular, [19] shows that the asymptotic average BER behaves
as (log SNR)/SNR2. That is, similar to [15] and [17], full diversity
of two is possible only asymptotically. In [3], the authors study the
performance of non-coherent BFSK signaling with a DF protocol.
In particular, with N relays [3] shows that the achievable diversity
order is upper and lower bounded by (N + 3)/2 and (N + 2)/2,
respectively, for odd values of N whereas it is (N + 2)/2 for even
values of N . That is, with a DF protocol non-coherent signaling loses
approximately half of the available diversity order.

In this paper, we study the performance of coherent RR protocols
with training-based practical channel estimation schemes. Assuming
a single-source and a single-destination with multiple relay nodes,
we derive ML receiver structure at the destination on frequency-flat
and time-varying Rayleigh fading channels. Using binary modulation
at the source, our receiver structure takes into account the effects of
channel estimation errors as well as a possible fading decorrelation
due to node mobility. We show that an exact analysis of the optimal
receiver performance is complicated due to the non-linear nature of
the log-likelihood ratio (LLR) contribution from the relays to the
destination. As a result, we present an approximate receiver that
is simple to implement and derive a closed-form expression for
the average probability of error with a single relay node. Without
requiring any numerical integration, our analytical framework is
valid for an arbitrary number of relays and performances of a class
of mismatched receivers can be obtained as special cases of the
analysis presented in this paper. With perfect CSI, we show that
the proposed receiver subsumes the receivers in [1] and [2] whereas
with a minimum mean-square error (MMSE) channel estimation it
reduces to the non-coherent DF receiver in [3]. An analogy between
the approximate receiver in this study and the non-coherent DF
receiver in [3] allows us to conclude that the asymptotic diversity
order achieved with imperfect CSI is identical to the one with no
CSI.

The rest of this paper is organized as follows. In Section II
we introduce our system model and present the ML as well as
approximate receivers in Section III. Performance analysis of the
proposed receivers is detailed in Section IV. An analogy between
coherent RR with imperfect CSI and non-coherent DF with no CSI
is made in Section V. Numerical and simulation results are presented
in Section VI and Section VII concludes our work.

II. SYSTEM MODEL

We consider a cooperative wireless system with N relay nodes
assisting the communication from source to destination. We employ
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a two-time-slot cooperation protocol with half-duplex relays (i.e., the
relays cannot transmit and receive simultaneously) communicating
over orthogonal channels. The cooperation protocol is briefly de-
scribed as follows: In the first time slot the source broadcasts the
information to the relays and the destination. In the second time
slot the source remains silent while the relays regenerate the source
constellation, after demodulation and re-modulation of the received
signal from source, and transmit their information, via orthogonal
channels, to the destination. The destination appropriately combines
the information received from source and the N relays.

We model the fading coefficients on each link as frequency-flat
and slowly varying zero-mean complex Gaussian random variables
(CGRVs). These random fading gains are also assumed independent
across the source→destination (S → D), source→relay (S → Rj)
and relay→destination (Rj → D) links. Specifically, we denote by
g0 the fading gain on S → D link, gj the fading gain on S → Rj
link, and hj the fading gain on Rj → D link, with second moments
E[|g0|2] = Ω0, E[|gj |2] = Ωj and E[|hj |2] = Λj , j = 1, . . . , N .
The variances, {Ωj , j = 0, . . . , N} and {Λj , j = 1, . . . , N} capture
the average path loss across the links and the geometry of relay
network.

In this paper, unlike [3], [1] and [2], we consider channel esti-
mation at the receiver for coherent demodulation. The RR protocol
with receiver channel estimation and no channel knowledge at the
transmitters is described as follows: The overall communication phase
is divided into channel estimation phase (CEP) and data transmission
phases (DTP). Except for the transmission of known pilot symbols
by the source and the relay nodes, the CEP is identical to the DTP.
The pilots from the source enable the channel estimation on S → D
and S → Rj links, whereas the pilots from the relays enable the
channel estimation on Rj → D links. To minimize the performance
degradation due to outdated channel knowledge, the sum of the
durations of the channel estimation and data transmission phases
should equal to or exceed the coherence time of the channel. We
denote by ES,T = ES,pilot + ES,data the total transmission energy
available for source from which a portion, ES,pilot, is spent on
pilot transmissions for channel estimation and the remaining portion,
ES,data, is allocated for data transmission. In a similar manner,
we denote ER,T (j) = ER,pilot(j) + ER,data(j), j = 1, . . . , N ,
where ER,T (j), ER,pilot(j) and ER,data(j) are respectively the total
energy, the energy available for pilot transmission and the energy
available for data transmission at the jth relay.

We denote by g̃0 the channel estimate on S → D link, and, for
j = 1, . . . , N , by g̃j and h̃j the channel estimates on S → Rj
and Rj → D links, respectively. Ignoring implementation-specific
details of practical channel estimation schemes, in this paper we
model the channel estimates as a result of linear filtering of received
pilots. As a result, the channel estimates are also complex-Gaussian
on a complex-Gaussian fading channel with Gaussian noise. In
particular, due to Rayleigh fading assumption, we let E[g̃j ] = 0
and E[|g̃j |2] = Ω̃j , j = 0, . . . , N and, for j = 1, . . . , N , E[h̃j ] = 0
and E[|h̃j |2] = Λ̃j . Let ρ0, ρ1(j) and ρ2(j) denote the correlation
coefficients between the true and estimated channels on S → D,
S → Rj and Rj → D links, respectively. For simplicity, we assume
ρ0, {ρ1(j), ρ2(j)}Nj=1 to take real values. With this, we can express
the r.vs g0, gj and hj , conditioned on g̃0, g̃j and h̃j , as [22]

g0 =

√
Ω0

Ω̃0

ρ0g̃0 +
√

Ω0(1− ρ2
0)U0 (1)

gj =

√
Ωj

Ω̃j
ρ1(j)g̃j +

√
Ωj(1− ρ2

1(j))Uj , (2)

and hj =

√
Λj

Λ̃j
ρ2(j)h̃j +

√
Λj(1− ρ2

2(j))Vj , (3)

where Uj , j = 0, . . . , N and Vj , j = 1, . . . , N , are independent
CGRVs with zero mean and unit variance. More importantly, U0 is
independent of g̃0, Uj is independent of g̃j , and Vj is independent
of h̃j . Using an approach similar to [23, Section II-A], (1)-(3)
facilitate modeling additive channel estimation errors, pilot-symbol
assisted channel estimation and fading decorrelation as a result of
using outdated (stale) channel estimates in a unified manner by
appropriately computing the correlation coefficients and the second
moments of the channel estimates appearing in them. In what follows,
we use the model in (1)-(3) to derive the receiver structures and
evaluate the resulting performance with imperfect CSI.

Denote by X = ±1 the modulation alphabet of source, the received
signal at the destination during the first time-slot of DTP is

Y0 = g0X
√
ES,data + η0 (4)

whereas at the jth relay it is

Yj = gjX
√
ES,data + ηj j = 1, . . . , N, (5)

where ηj , j = 0, . . . , N , is a zero-mean CGRV with E[|ηj |2] =
N0. Let X̂j ∈ {−1,+1} denotes the demodulated symbol at the
jth relay using Yj and the channel estimate g̃j . That is, X̂j =
sign (Real{Yj/g̃j}), where Real{x} is the real part of x and
sign(x) = 1 for x ≥ 0 and is equal to −1 for x < 0. During
the second time-slot of DTP, the received signal at the destination
from the jth relay is

Zj = hjX̂j
√
ER,data(j) +Wj , j = 1, . . . , N, (6)

where Wj is a zero-mean CGRV with E[|Wj |2] = N0.

III. RECEIVER STRUCTURES

In this section, we derive both optimum and suboptimum receiver
structures at the destination based on the received signals in (4) and
(6) and the channel estimates in (1) and (3). We write the LLR at
the destination as in (7), shown at the top of next page, where

LLRj

(
h̃j
)

, log
(1− Pe,j) eLLRj(h̃j) + Pe,j

1− Pe,j + Pe,je
LLRj(h̃j)

(8)

and LLRj

(
h̃j
)

= log
Prob

(
Zj | X̂j = +1, h̃j

)
Prob

(
Zj | X̂j = −1, h̃j

) . (9)

In (7), Pe,j is the average BER at Rj which is derived as [24]

Pe,j =
1− ρ1(j)

2
+
ρ1(j)

2

(
1−

√
γR,data(j)

1 + γR,data(j)

)
(10)

where γR,data(j) = ES,dataΩj/N0. Using the log-max approxima-
tion of (8), log(ea + eb) ≈ max(a, b), a tight approximation to (7),
leading to a suboptimal implementation, is

LLRapp = LLR0 (g̃0) +

N∑
j=1

L̂LRj

(
h̃j
)
, (11)

where

L̂LRj

(
h̃j
)

=


−Tj if LLRj(h̃j) < −Tj

LLRj(h̃j) if −Tj ≤ LLRj(h̃j) ≤ Tj
Tj if LLRj(h̃j) > Tj

(12)

and Tj = log
1− Pe,j
Pe,j

. (13)
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LLR = log
Prob

(
X = +1 |Y0, Z1, . . . , ZN , g̃0, h̃1 . . . , h̃N

)
Prob

(
X = −1 |Y0, Z1, . . . , ZN , g̃0, h̃1 . . . , h̃N

) = log
Prob (Y0 |X = +1, g̃0)

Prob (Y0 |X = −1, g̃0)︸ ︷︷ ︸
,LLR0(g̃0)

+

N∑
j=1

log
Prob

(
Zj |X = +1, h̃j

)
Prob

(
Zj |X = −1, h̃j

)
︸ ︷︷ ︸

,LLRj(h̃j)

= LLR0 (g̃0) +

N∑
j=1

log
(1− Pe,j) Prob

(
Zj |X = +1, X̂j = +1, h̃j

)
+ Pe,jProb

(
Zj |X = +1, X̂j = −1, h̃j

)
(1− Pe,j) Prob

(
Zj |X = −1, X̂j = −1, h̃j

)
+ Pe,jProb

(
Zj |X = −1, X̂j = +1, h̃j

)
= LLR0 (g̃0) +

N∑
j=1

LLRj

(
h̃j

)
(7)

Implementation of (7) or (11) requires the knowledge of relay prob-
ability of error at the destination. In the absence of such knowledge,
we also study the performance of the following mismatched receiver:

LLRmis = LLR0 (g̃0) +

N∑
j=1

LLRj

(
h̃j
)
, (14)

a special case of (11) with Tj =∞ in (12). Note that both (11) and
(14) require (ρ0,Ω0, Ω̃0) and {ρ2(j),Λj , Λ̃j}Nj=1 at the destination.

We now simplify the expressions LLR0(g̃0) and LLRj(h̃j),
j = 1, . . . , N . Starting with (4) and (1), conditioned on X and g̃0,
LLR0(g̃0) simplifies to

LLR0(g̃0) =

√
ES,dataΩ0

Ω̃0

4ρ0Real {g̃∗0Y0}
N0 + ES,dataΩ0(1− ρ2

0)
. (15)

In a similar manner, using (6) and (3) while conditioning on X̂j and
h̃j , LLRj(h̃j) simplifies to

LLRj(h̃j) =

√
ER,data(j)Λj

Λ̃j

4ρ2(j)Real
{
h̃∗jZj

}
N0 + ER,data(j)Λj(1− ρ2

2(j))
.

(16)
Conditioned on g̃0 and X , it is straightforward to show that
LLR0(g̃0) in (15) is a real Gaussian r.v (RGRV) with mean
4Xγeff,D(0) and variance 8γeff,D(0), where

γeff,D(0) =
ES,dataΩ0ρ

2
0

N0 + ES,dataΩ0(1− ρ2
0)
× |g̃0|2

Ω̃0

(17)

is the instantaneous received SNR on S → D link. We note that
γeff,D(0) in (17) is exponentially distributed with mean γeff,D(0) =
ES,dataΩ0ρ

2
0/(N0 +ES,dataΩ0(1− ρ2

0)). Following the same lines,
conditioned on X̂j and h̃j , LLRj(h̃j) is also a RGRV with mean
4X̂jγeff,D(j) and variance 8γeff,D(j), where

γeff,D(j) =
ER,data(j)Λjρ

2
2(j)

N0 + ER,data(j)Λj(1− ρ2
2(j))

× |h̃j |
2

Λ̃j
(18)

is the instantaneous received SNR on Rj → D link which is exponen-
tially distributed with mean γeff,D(j) = ER,data(j)Λjρ

2
2(j)/(N0 +

ER,data(j)Λj(1− ρ2
2(j))).

IV. PERFORMANCE ANALYSIS

Since the input constellation is symmetric, without loss of gener-
ality, we assume that X = +1 is the transmitted signal point. The
probability of error for the approximate receiver is

Pe,app = Prob (LLRapp < 0 |X = +1)

=
1

2πj

∫
<{s}>0

ds

s
LLLRapp |X=+1(s), (19)

whereas for the mismatched receiver it is

Pe,mis =
1

2πj

∫
<{s}>0

ds

s
LLLRmis |X=+1(s). (20)

In (19) and (20) LZ(s) = E[e−sZ ] is the Laplace transform (LT) of
the probability density function (pdf) of Z.

We recall from Section III that, conditioned on X , LLR0(g̃0)

and L̂LRj(h̃j), j = 1, . . . , N , are independent r.vs appearing in
the approximate receiver of (11) whereas LLR0(g̃0) and LLRj(h̃j),
j = 1, . . . , N , are independent r.vs appearing in the mismatched
receiver of (14). It then follows that

LLLRapp |X=+1(s) = LLLR0 |X=+1(s)

N∏
j=1

L
L̂LRj |X=+1

(s) (21)

and

LLLRmis |X=+1(s) = LLLR0 |X=+1(s)

N∏
j=1

LLLRj |X=+1(s) (22)

where, for brevity, in (21) and (22) we have suppressed the depen-
dence of LLR0 on g̃0, and L̂LRj and LLRj on h̃j . Since LLR0(g̃0),
conditioned on X and g̃0, is a RGRV with mean 4γeff,D(0) and
variance 8γeff,D(0), with the help of [24, App. C], we have

LLLR0 |X=+1(s) = LZ
(
s; 4, 8, γeff,D(0)

)
, (23)

where
LZ (s; a, b, c) =

1

1 + cs
(
a− sb

2

) . (24)

In a similar manner, upon averaging over X̂j , we arrive at

L
L̂LRj |X=+1

(s) = (1− Pe,j)LW
(
s; 4, 8, γeff,D(j),−Tj , Tj

)
+Pe,jLW

(
s;−4, 8, γeff,D(j),−Tj , Tj

)
(25)

and LLLRj |X=+1(s) = (1− Pe,j)LZ
(
s; 4, 8, γeff,D(j)

)
+Pe,jLZ

(
s;−4, 8, γeff,D(j)

)
. (26)

In (25)

LW (s; a, b, c, d, e) = e−sdΞ(d; a, b, c) + e−se (1− Ξ(e; a, b, c)) +

1− e
d

(
a
b

+ 1
b

√
2b+a2c

c
−s
)

a
b

+ 1
b

√
2b+a2c

c
− s

+
e
e

(
a
b
− 1
b

√
2b+a2c

c
−s
)
− 1

a
b
− 1

b

√
2b+a2c

c
− s

(27)

and Ξ (z; a, b, c) in (27) is defined as

Ξ (z; a, b, c) =
1
2

(
1−

√
a2c

2b+a2c

)
e
az
b

+ z
b

√
2b+a2c

c z ≤ 0

1− 1
2

(
1 +

√
a2c

2b+a2c

)
e
az
b
− z
b

√
2b+a2c

c z ≥ 0
. (28)
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In [24], we show that (25) reduces to (26) as Tj → ∞. Upon
substituting (23) and (25) in (21), and (23) and (26) in (22), we
arrive at

LLLRapp |X=+1(s) = LZ
(
s; 4, 8, γeff,D(0)

)
×

N∏
j=1{

(1− Pe,j)LW
(
s; 4, 8, γeff,D(j),−Tj , Tj

)
+

Pe,jLW
(
s;−4, 8, γeff,D(j),−Tj , Tj

)}
(29)

and LLLRmis |X=+1(s) = LZ
(
s; 4, 8, γeff,D(0)

)
×

N∏
j=1

{
(1− Pe,j)LZ

(
s; 4, 8, γeff,D(j)

)
+

Pe,jLZ
(
s;−4, 8, γeff,D(j)

)}
. (30)

From (24) and (27), we note that all the poles appearing in (29) and
(30) are real. As a result, by invoking Cauchy’s residue theorem [25],
(19) and (20) can be expressed, in non-integral form, as

Pe,S = −
K∑
n=1

Residue

(
LLLRS |X=+1(s)

s
, sn > 0

)
, (31)

where S ∈ {app,mis} and sn > 0 denotes the nth of the K poles on
the positive real axis. For an arbitrary number of relay nodes, average
BER of sub-optimum and mismatched receivers can be numerically
obtained by using (29) and (30), respectively, in (31) at the locations
of poles given in Table I.

With one relay node, we now present a closed-form solution to
Pe,app. With N = 1, LLLRapp |X=+1(s) in (29) and LLLRmis |X=+1(s)
in (30) are given by (32) and (33), shown at the top of the next page.
Upon using (32) in (31), and after some algebra, the average BER
of approximate receiver with one relay simplifies to (34), shown in
the next page, where

α0 =
1

2

(√
1 + γeff,D(0)

γeff,D(0)
− 1

)
β0 = 1 + α0 (35)

α1 =
1

2

(√
1 + γeff,D(1)

γeff,D(1)
− 1

)
β1 = 1 + α1 (36)

Φ(α, β, T ) =

(
1− αe−βT

α+ β

)
1T≥0 +

βeαT

α+ β
1T<0 (37)

Ψ(α0, β0, α1, β1, T ) = 1−
(α0α1)

(
1−e(α1+β0)T

1−eα1T

)
(α0 + β0)(α1 + β0)

(38)

Υ(α0, β0, α1, β1, T ) =
β0β1

(
1− e−(α0+β1)T

)
(α0 + β0)(α0 + β1) (1− e−β1T )

(39)

and 1A in (37) is the indicator function that evaluates to 1 when
A is true and evaluates to 0 otherwise. The average BER of the
mismatched receiver is obtained as a special case of the average BER
of the approximate receiver in (34) by taking the limit as T1 →∞.

We are also interested in the asymptotic behavior of (34) at
high average SNRs on S → D, S → R1 and R1 → D
links. To proceed forward, we introduce the positive scaling pa-
rameters tD(0), tD(1) and tR(1) such that γeff,D(0) = tD(0)Γ,
γeff,D(1) = tD(1)Γ and γeff,R(1) = tR(1)Γ, where Γ is the
common SNR. By letting Γ → ∞ we let γeff,D(0) → ∞,
γeff,D(1) → ∞ and γeff,R(1) → ∞ simultaneously. Using these
in (35)-(36), (10) and (13), as Γ→∞, we have α0 ≈ 1/(4tD(0)Γ),
β0 ≈ 1/(4tD(0)Γ), α1 ≈ 1/(4tD(1)Γ), β1 ≈ 1/(4tD(1)Γ), and
T1 = log(

√
1 + γeff,R(1) +

√
γeff,R(1)) − log(

√
1 + γeff,R(1) −√

γeff,R(1)) = 2 log(
√

1 + γeff,R(1) +
√
γeff,R(1)) ≈ log Γ +

TABLE I
POLES ON THE POSITIVE REAL AXIS OF FUNCTIONS IN (29) AND (30).

Function Locations of poles sn > 0

LZ
(
s; 4, 8, γeff,D(0)

)
1
2

(√
1+γeff,D(0)

γeff,D(0)
+ 1

)
LZ
(
s; 4, 8, γeff,D(j)

)
1
2

(√
1+γeff,D(j)

γeff,D(j)
+ 1

)
LZ
(
s;−4, 8, γeff,D(j)

)
1
2

(√
1+γeff,D(j)

γeff,D(j)
− 1

)
LW

(
s; 4, 8, γeff,D(j),−Tj , Tj

)
1
2

(√
1+γeff,D(j)

γeff,D(j)
+ 1

)
LW

(
s;−4, 8, γeff,D(j),−Tj , Tj

)
1
2

(√
1+γeff,D(j)

γeff,D(j)
− 1

)

log tR(1). Using these approximations, and after some algebra, (34)
as Γ→∞ simplifies to

Pe ≈
f1 (tD(0), tD(1), tR(1)) + f2 (tD(0), tD(1), tR(1)) log Γ

Γ
2 ,

(40)
where f1 (tD(0), tD(1), tR(1)) = 3/(16tD(0)tD(1)) +
1/(8tD(0)tR(1)) + log tR(1)/(4tD(0)tR(1)) and
f2 (tD(0), tD(1), tR(1)) = 1/(4tD(0)tR(1)). From (40), due
to the presence of log Γ, we conclude that full diversity of order 2
is not possible with coherent RR protocol.

V. CONNECTIONS WITH NON-COHERENT DF RECEIVER IN [3]

In this section, we show that there is a close connection between
the coherent RR system with imperfect CSI studied in this paper and
the non-coherent DF receiver considered by Chen and Laneman in
[3]. With MMSE channel estimation at the relay nodes, the correlation
coefficient between the true and the estimated channel at the jth relay
is given by [23, Section V] ρ1(j) =

√
γR,pilot(j)/(1 + γR,pilot(j))

where γR,pilot(j) = ES,pilotΩj/N0 is the average received pilot
SNR. The effective SNR at the jth relay is then

γeff,R(j) =
γR,data(j)ρ2

1(j)

1 + γR,data(j) (1− ρ2
1(j))

=
1

4
×

γ2
R,T (j)

1 + γR,T (j)
(41)

with ES,pilot = ES,data = ES,T /2, where γR,data(j) =
ES,dataΩj/N0 and γR,T (j) = ES,TΩj/N0. Upon substituting (41)
in (10), we obtain

Pe,j =
1

2

(
1−

√
γ2
R,T (j)

4 + 4γR,T (j) + γ2
R,T (j)

)
=

1

2 + γR,T (j)
,

(42)
which is the average BER with binary orthogonal modulation and
non-coherent detection [26].

Next, with MMSE channel estimation on S → D and Rj →
D links, we have ρ0 =

√
γS,pilot(0)/(1 + γS,pilot(0)) and

ρ2(j) =
√
γR,pilot(j)/(1 + γR,pilot(j)), where γS,pilot(0) =

ES,pilotΩ0/N0 and γR,pilot(j) = ER,pilot(j)Λj/N0. Using these
with ER,pilot(j) = ER,data(j) =

ER,T (j)

2
and ES,pilot = ES,data =

ES,T
2

, the pdfs of the LLRs on the S → D and Rj → D links
simplify to

fLLR0 |X(z) =

(
1 + γD,T (0)

)
e
Xz
2 −

|z|(2+γD,T (0))
2γD,T (0)

γD,T (0)
(
2 + γD,T (0)

) (43)

and fLLRj |X̂j (z) =

(
1 + γD,T (j)

)
e
X̂jz

2 −
|z|(2+γD,T (j))

2γD,T (j)

γD,T (j)
(
2 + γD,T (j)

) , (44)
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LLLRapp |X=+1(s) = (1− Pe,1)LZ
(
s; 4, 8, γeff,D(0)

)
LW

(
s; 4, 8, γeff,D(1),−T1, T1

)
+Pe,1LZ

(
s; 4, 8, γeff,D(0)

)
LW

(
s;−4, 8, γeff,D(1),−T1, T1

)
(32)

LLLRmis |X=+1(s) = (1− Pe,1)LZ
(
s; 4, 8, γeff,D(0)

)
LZ
(
s; 4, 8, γeff,D(1)

)
+ Pe,1LZ

(
s; 4, 8, γeff,D(0)

)
LZ
(
s;−4, 8, γeff,D(1)

)
. (33)

Pe,app = (1− Pe,1)Φ (β0, α0, T1) Φ (β1, α1,−T1) + Pe,1Φ (β0, α0, T1) Φ (α1, β1,−T1) +

(1− Pe,1)Φ (β0, α0,−T1) {1− Φ (β1, α1, T1)}+ Pe,1Φ (β0, α0,−T1) {1− Φ (α1, β1, T1)}+

(1− Pe,1)Ψ (β0, α0, β1, α1,−T1) {Φ (β1, α1, 0)− Φ (β1, α1,−T1)}+ Pe,1Ψ (β0, α0, α1, β1,−T1) {Φ (α1, β1, 0)− Φ (α1, β1,−T1)}+

(1− Pe,1)Υ (β0, α0, β1, α1, T1) {Φ (β1, α1, T1)− Φ (β1, α1, 0)}+ Pe,1Υ (β0, α0, α1, β1, T1) {Φ (α1, β1, T1)− Φ (α1, β1, 0)} , (34)

respectively. In (43) and (44), γD,T (0) = ES,TΩ0/N0 and
γD,T (j) = ER,T (j)Λj/N0. It is interesting to know that the LLR
pdfs in (43) and (44) are identical to the pdfs of the non-coherent
detector output test statistics t0 and t1, respectively, derived in [3].

Finally, upon using Pe,1 = 1/
(
2 + γR,T (1)

)
, T1 =

log
(
1 + γR,T (1)

)
, α0 = 1/γD,T (0), β0 = 1 + 1/γD,T (0),

α1 = 1/γD,T (1), and β1 = 1 + 1/γD,T (1) in (34), the resulting
expression coincides with the average BER of binary orthogonal
signaling with non-coherent DF relaying in [3, Eqns. (14) and (15)].
With N relays, [3] shows that the diversity order is lower and upper
bounded by (N + 2)/2 and (N + 3)/2, respectively, for an odd
value of N whereas it is (N + 2)/2 for an even value of N . Since
our coherent RR system with imperfect CSI is different from the
non-coherent DF in [3] only in terms of the average effective SNRs,
and as far as the diversity order analysis is considered the average
effective SNRs in both the systems differ only up to multiplicative
constants, it follows immediately that the diversity order of coherent
RR system with imperfect CSI is identical to that of [3].

VI. RESULTS AND DISCUSSION

In this section, we present some numerical and simulation results
on the performance of regenerative relays with imperfect channel
knowledge. For simplicity, we restrict our results to the case of
a single relay node. Figs. 1(a) and 1(b) show the average BER
performances at the destination as a function of the total average SNR
on the S → D link, γD,T (0). In Fig. 1(a) we set γR,T (1) = 10 dB
whereas it is set to 80 dB (i.e., almost error-free S → R links) in
Fig. 1(b). In both Figs. 1(a) and 1(b), we set γD,T (1) = γD,T (0).
The average BER of coherent RR system with perfect channel
knowledge is compared against the performance of a non-coherent
RR system with no channel knowledge. In Figs. 1(a) and 1(b), the
exact performance curves are obtained by Monte-Carlo simulation of
the receiver in (7) (by simulating 40 million bits per SNR point),
whereas the approximate and mismatched receiver performances are
obtained via the analytical results derived in Section IV. From the
excellent match between the simulated exact performance and analyt-
ical approximate performance in Figs. 1(a) and 1(b) we conclude that
there is almost no loss of performance incurred by the receiver in (11).
Figs. 1(a) and 1(b) also show the impact of relay probability of error
on the overall error performance of approximate and mismatched
receivers. The positive impact of LLR clipping of approximate
receiver is conspicuous in Fig. 1(a), where, at γR,T (1) = 10, the
mismatched receiver suffers from severe error floor. On the other
hand, as the average received SNR on S → R link improves, there
is less need to clip the LLRs from the relays, and the mismatched
receiver yields performance close to the approximate receiver.

The average BER as a function of the normalized squared cor-
relation coefficient on S → D link, ρ2

0, is plotted in Fig. 2 for
various values of ρ2

1(1) and ρ2
2(1) on S → R1 and R1 → D links,
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(b) One relay with γR,T = 80 dB

Fig. 1. Average BER as a function of the total average SNR γD,T (0) =
ES,TΩ0/N0 on S → D link. Regenerative receivers with perfect and no
CSI are compared.

respectively. In Fig. 2, we set ρ2
1(1) = ρ2

2(1), ES,dataΩ0/N0 = 40
dB, ES,dataΩ1/N0 = 20 dB and ER,dataΛ1/N0 = 30 dB. From
Fig. 2, we conclude that a five percent degradation in ρ2

1(1), from
perfect CSI to ρ2

1(1) = 0.95, introduces a degradation in average
BER by an order of magnitude, whereas for the same percentage
change in ρ2

0 leads to a BER degradation by more than two orders
of magnitude.

The impact of mobility on the average BER is investigated in
Fig. 3. The source and the relay nodes are assumed to be stationary,
the receivers are assumed to have perfect CSI, and Jakes correlation
model [14] is employed to model the time variations on the S → D
and R → D links. In Fig. 3, we set γR,T (0) = γD,T (1) = 10
dB. The average BER is shown in Fig. 3 as a function of the
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Fig. 2. Average BER as a function of the normalized correlation coefficient,
ρ0, on S → D link with a single relay node.

0 50 100 150
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Destination Speed (Kmph)

A
ve

ra
ge

 B
it 

E
rr

or
 R

at
e

SNR
R−>D

  = 10 dB. SNR
S−>R

 = 10 dB.

 

 

SNR
S−>D

  = 5 dB.

SNR
S−>D

  = 10 dB.

SNR
S−>D

  = 20 dB.

SNR
S−>D

  = 30 dB.

Fig. 3. Impact of mobility on the average BER with a single relay node.

destination speed, parameterized by the average received on S → D
link, γD,T (0). From Fig. 3, we conclude that the degradation in
average BER is more pronounced at higher values of the average
received SNR on S → D link. For example, with γD,T (0) = 30 dB,
the average BER increases by approximately 1000 folds when the
destination speed increases from 1 to 100 Kmph, whereas it degrades
by about 10 folds with γD,T (0) = 5 dB.

VII. CONCLUSION

In this paper, we studied the performance of coherent regenerative
relaying on time-varying Rayleigh fading channels with imperfect
CSI. Using a two-hop orthogonal multiple-access protocol with
multiple relay nodes, we derived optimum and suboptimum receiver
structures with binary modulation. For specific values of correlation
coefficients between true and estimated channels, our receiver struc-
tures subsume coherent and non-coherent receivers studied in [1], [2]
and [3], respectively. For an arbitrary number of relay nodes, employ-
ing Laplace transform techniques, we derived analytical expressions
for the average BER at the destination. With one relay our closed-
form expression for the average BER was shown to subsume the
results in [3], whereas with multiple relays the achievable diversity
order was shown to be identical to that [3].
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