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Abstract—Compressive sampling (CS) has emerged as signif-
icant signal processing framework to acquire and reconstruct
sparse signals at rates significantly below the Nyquist rate.
However, most of the CS development to-date has focused on
finite-length signals and representations. In this paper we discuss
a streaming CS framework and greedy reconstruction algorithm,
the Streaming Greedy Pursuit (SGP), to reconstruct signals with
sparse frequency content.

Our proposed sampling framework and the SGP are explicitly
intended for streaming applications and signals of unknown
length. The measurement framework we propose is designed to be
causal and implementable using existing hardware architectures.
Furthermore, our reconstruction algorithm provides specific
computational guarantees, which makes it appropriate for real-
time system implementations. Our experimental results on very
long signals demonstrate the good performance of the SGP and
validate our approach.

I. INTRODUCTION

Compressive Sensing (CS) [1–3] has emerged as a powerful
signal processing framework that enables signal acquisition at
rates significantly below the Nyquist rate by exploiting the
sparse structure of natural and man-made signals. The success
of CS has driven both algorithm and hardware development
to implement the theory, which places significant emphasis on
randomized incoherent measurements at the acquisition stage
and increased computation at the reconstruction stage.

Unfortunately, most of the CS results to date focus on finite-
dimensional signals. Even when used to acquire streaming sig-
nals, such as audio, video and radio, the unstated assumption
is that the signal is processed in finite-length blocks. Each
block is compressively sampled and reconstructed using one
of the known finite-dimensional algorithms. Such an approach
can introduce significant blocking artifacts and input-output
delay. Furthermore, existing finite-dimensional algorithms can-
not provide hard guarantees on the computation time, often
a critical requirement of streaming real-time systems. Thus,
significant buffering of the input or excessive allocation of
computation time for reconstruction might be required to
ensure that the system satisfies timing requirements.

In this work we contribute a new CS framework with
features explicitly designed for streaming signals. Specifically,
we present a causal algorithm—inspired by the Compres-
sive Sampling Matching Pursuit (CoSaMP) [4]—to process
the streaming measurements. Our algorithm, which we term
Streaming Greedy Pursuit (SGP), operates at a fixed input
rate, computes the reconstruction with a fixed cost per input

measurement and outputs the estimated streaming signal at a
fixed output rate. The streaming framework we present explic-
itly avoids processing the signal in disjoint blocks and there-
fore avoids blocking artifacts. Furthermore, our framework
provides strict computational guarantees and explicit trade-
offs between input-output delay, reconstruction performance
and computation. These features make our framework very
well-suited for real-time applications. In fact, we have already
successfully used it in on-line reconstruction of high-speed
periodic videos using a low-speed coded exposure camera [5].

Our goal in this paper is to introduce the measurement
framework and provide a streaming reconstruction algorithm
for signals that are sparse or compressible in the frequency
domain. Still, the fundamental concepts can be immediately
extended to other suitable sparse domains as well.

To our knowledge, the only other attempt to date to incor-
porate infinite-dimensional signals in CS is summarized in [6].
The authors assume the signal has a multi-band structure
in the frequency domain and formulate an off-line finite-
dimensional support estimation problem, the solution of which
controls a linear reconstruction system. The authors further
demonstrate exact and very efficient recovery under the multi-
band signal assumption, assuming the estimated support does
not change for the duration of the signal. Otherwise, whenever
the multi-band signal support changes it needs to be re-
estimated using a standard sparse estimation algorithm and
the linear reconstruction system needs to be updated.

Our approach, instead, combines on-line support and signal
estimation, similarly to standard CS algorithms and practice.
Thus, we provide explicit causality and computation guaran-
tees and can also incorporate CS extensions such as model-
based CS or measurement quantization [7–9]. Furthermore, as
we demonstrate in the experimental section, using continuous
on-line support estimation our system can track signals with
frequency drifts, such as linear frequency chirps or signals with
local variations in their frequency support, which are globally
wideband but locally narrowband.

The paper is organized as follows. Section II provides
some background on signal acquisition, CS, and CS hardware
models. Section III establishes our streaming signal and ac-
quisition model. Section IV describes the Streaming Greedy
Pursuit (SGP) and Section V presents simulation results on its
performance.
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Fig. 1. Basic Streaming Acquisition System

II. BACKGROUND

A. Signal Acquisition

To introduce CS to streaming applications we consider the
general streaming system depicted in Fig. 1(a). The signal
x(t) is acquired using an acquisition system (“Acq.” in the
figure) at an average rate of M measurements per time unit and
subsequently reconstructed (“Recon.” in the figure) using those
measurements. In most classical signal acquisition systems the
acquisition component is an analog-to-digital converter (ADC)
which obtains linear measurements using a low-pass anti-
aliasing filter followed by uniform time sampling and quanti-
zation. The reconstruction component is the linear bandlimited
interpolation of the measurements ym.

Assuming a suitable discrete representation xn of the signal
x(t) using N coefficients per time period, the system can be
discretized as shown in Figure 1(b). For example, in classical
bandlimited sampling and interpolation xn = x(nT ), where
T is the signal Nyquist period. In this case the acquisition and
reconstruction components are the identity (i.e., m = n and
x̂n = yn = xn) and the implied reconstructed signal x̂(t)
is the bandlimited interpolation of x̂n. More general cases
with less trivial acquisition and reconstruction components
are discussed in [10]. In this paper we assume that such a
discretization exists and describes the acquisition system to
sufficient accuracy. We examine this discretization for a fairly
general hardware model in Sec. II-C.

Using the discretized model of the acquisition system, the
Nyquist rate becomes a requirement that the rate M of the
acquired measurements ym is greater than or equal to the
input rate N . Otherwise, the system is not invertible for all
input signals and information is lost. However, with additional
information on the signal structure it is possible to acquire
a signal at a lower measurement rate M � N and still
reconstruct it.

B. Compressive Sensing

Compressive Sensing [1–3] demonstrates that a signal
sparse or compressible in some basis can be efficiently sam-
pled and reconstructed using very few linear measurements.
The signal of interest, x ∈ RN , is measured using the system

y = Ax, (1)

where y denotes the measurement vector and A an M × N
measurement matrix with M � N . The signal x is assumed
K-sparse in some basis B, i.e., B−1x contains only K non-
zero coefficients.

The measurement matrix A satisfies the Restricted Isometry
Property (RIP) of order 2K if there exists a constant δ2K < 1
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Fig. 2. System model of the random demodulator

such that
(1− δ2K)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ2K)‖x‖22, (2)

for all x that are 2K-sparse in the basis B. If the RIP
constant δ2K is sufficiently small, then the signal can be
exactly reconstructed using the convex optimization [3]

x̂ = arg min
x

‖B−1x‖1 s.t. y = Ax. (3)

or a greedy algorithm such as CoSaMP [4]. Furthermore, a
small RIP constant provides robustness guarantees for recov-
ery in the presence of measurement noise and for sampling sig-
nals that are not exactly sparse but can be well-approximated
by a sparse signal [3, 4].

C. CS-based Analog-to-Digital Conversion

Significant work has been performed on hardware imple-
mentations of CS on streaming signals [11–13]. Such efforts
focus on the hardware architectures that enable random pro-
jections. However, for most of these systems, the unstated
assumption is that the signal is processed in disjoint finite-
length blocks. Each block is compressively sampled and recon-
structed using one of the known finite-dimensional algorithms.

In this section we describe one of the most successful
architectures for compressive sensing—the random demodu-
lator architecture and its variants [11]—with focus on how
the analog continuous-time components of the system can be
described using a discrete-time model. The demodulator has
several advantages over alternative architectures. Specifically,
it lends itself to a simple and robust hardware implementation,
provides a regular sample output rate, has a straightforward
discrete-time equivalent system for analysis purposes. Several
variants of this architecture include parallel implementations
of banks of modulators, random strobing and coded aperture
implementations for imaging systems [13]. Our aim is to
demonstrate that a discrete-time equivalent is a sufficient
representation for the acquisition process.

The random demodulator, demonstrated in Fig. 2(a), first
multiplies the continuous-time signal x(t) with a random
mixing pulse p(t), generated as

p(t) =
∑
n∈Z

pnpo(t− nT ), (4)

where pn is typically a random ±1 sign sequence, T should be
less than the Nyquist period corresponding to the bandwidth
of x(t) and po(t) is typically a square pulse of width T . The
product x(t) · p(t) is subsequently integrated over a period of
RT and sampled at that rate to produce ym at rate R times
lower that the Nyquist rate of x(t).

If po(t) has support only in 0 ≤ t ≤ T the random demod-
ulator is equivalent to the discrete-time system in Fig. 2(b)



where xn is a discrete representation of x(t). Specifically, xn

is samples of the convolution of po(t) with x(t) at rate T :

xp(t) = x(t) ∗ po(t)⇔ Xp(f) = X(f) · Po(f) (5)
xn = xp(nT ), (6)

where Xp(f), X(f), and Po(f) denote the continuous-time
Fourier transforms of the respective signals. Under this dis-
cretization, the integrator is replaced by a summation of R
consecutive values of the product xnpn:

ym =
(m+1)R−1∑

n=mR

xnpn. (7)

If Po(f) is non-zero in the support of X(f), the dis-
cretization is invertible, and therefore recovering the discrete
representation xn from ym is sufficient to reconstruct x(t). The
discretization preserves the sparsity structure of the signal, i.e.,
the support of the non-zero frequency components.

A simple extension of this hardware is the interleaving of
L such demodulators, each using the same pulse width T
but different random sequences pn and each integrating and
sampling with period LRT , i.e., summing over LR discrete-
time coefficients. By staggering the sampling times of each
demodulator, a constant rate of one measurement per R input
coefficients is maintained but each measurement measures a
larger signal length, thus providing more noise robustness.

III. STREAMING COMPRESSIVE SAMPLING

In contrast to standard finite-length CS signal models,
streaming signals do not have a pre-determined length. While
it is possible to acquire the whole stream and post-process
it, the storage and computational requirements for such an
endeavor are often prohibitive. Furthermore, several applica-
tions often require on-line processing of such signals. Standard
CS approaches perform on-line computation by processing the
stream in finite-length blocks which are considered indepen-
dent of each other. However, this approach ignores the conti-
nuity of the signal and introduces significant blocking artifacts.
Instead, the algorithm we propose assumes a streaming signal
and measurement model, which we describe in this section.

A. Signal model

Although frequency-domain sparsity is straightforward to
define in finite-length signals, its infinite-dimensional exten-
sion can be elusive. The model we consider in this paper
resorts to the well-defined concepts of sparsity and compress-
ibility of finite-dimensional signals to describe snapshots of
the infinite-dimensional signal. Thus we are able to exploit a
wide literature of existing CS results and provide adaptivity
to local changes in the signal sparsity structure even when the
signal is not globally sparse.

In particular, we consider finite-length snapshots of xn using
a window vn of length N = MR, where M is an integer
and vn is strictly positive on its support and zero outside
it. Our model assumes that any such snapshot has a sparse
or compressible discrete Fourier transform (DFT). In other
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Fig. 3. Measurement system parameters.

words, if x ∈ RN denotes a length-N segment of the signal
we assume that FVx is well approximated with few significant
coefficients, where F denotes the DFT and V is a diagonal
operator with the window coefficients on its diagonal.

The model is inspired by the success of the short-time
Fourier transform and spectrogram methods in representing
and analysing signals that exhibit some local structure but are
globally wideband. Signals often encountered in practice, such
as speech, chirps, FM and frequency hopping radio exhibit
such behavior. Furthermore, the model encompasses stationary
signals that exhibit a global sparsity structure.

B. Measurement Model

We consider a general measurement model with sufficient
richness to describe several acquisition architectures suitable
for streaming signals. Specifically, we measure the streaming
signal xn using a time varying linear system am,n as

ym =
∑

n

xnam,n = 〈x,am〉, (8)

where ym is the sequence of measurements, and am is
sequence of infinite-dimensional measurement vectors. The
system has an input rate of N coefficients per unit time for xn

and an output (measurement) rate of M = N/R measurements
per unit time, where R denotes the downsampling rate. For
notational simplicity, in the remainder of this paper we assume
that R is an integer1.

We assume that the measurement system is causal with finite
response length L. Thus am,n has nonzero support in

n = mR, . . . , (m + L)R− 1, (9)

Figure 3(a) summarizes the relevant parameters of the mea-
surement system am,n. The shaded area demonstrates the sup-
port of the system relative to the axes. The system coefficients
are assumed zero in the unshaded area and can take any
value in the shaded area, depending on the hardware modeled.
With appropriate choice of the system parameters this model
can accommodate several hardware architectures, such as the
random demodulator and the bank of L interleaved random
demodulators described in Sec. II-C, parallel non-interleaved
random demodulators, the random sampler, periodic non-
uniform sampling, the coded strobing and coded aperture
camera, and several others.

1In several instances in this paper we assume rates and lengths are integer
multiples of each other. Non-integer rates are straightforward to accommodate
with appropriate use of rounding operators. However, the notation becomes
cumbersome without adding any insight to the fundamental concepts.



C. System Snapshots

The Streaming Greedy Pursuit operates on snapshots of the
system, updated at the measurement rate. The ith snapshot of
the signal, the measurements and the measurement system are
denoted respectively using

xi = [xiR, . . . , xiR+N−1]T , (10)

yi = [yi, . . . , yi+M−1]T , and (11)

Ai =

 ai,iR . . . ai,iR+N−1

...
. . .

...
ai+M−1,iR . . . ai+M−1,iR+N−1

 , (12)

where N = RM is an appropriate length for the signal to
be sparse under the model in Sec. III-A. We use s = Fx to
denote the corresponding frequency-domain representation of
the signal snapshot, in which F is the N ×N DFT matrix.

We further assume that M × N snapshots of the mea-
surement matrix, pictorially shown in Fig. 3(b) satisfy the
RIP for frequency sparse signals, i.e. Ai satisfies (2) with
small δ2k with F as the sparse basis. Although the RIP is
not a necessary condition for recovery, it is a sufficient one
and provides several robustness and reconstruction guarantees.
It has already been shown that a length N snapshot of
the random demodulator satisfies the RIP with very high
probability as long as M = O(K log(N/K)) [12]. It is also
straightforward to show that if one length-N snapshot of the
demodulator satisfies the RIP for frequency sparse signals,
then a periodic replication of that length-N sequence pn will
also satisfy the RIP for every snapshot of the system as defined
in (12).

IV. STREAMING GREEDY PURSUIT

In contrast to the standard CoSaMP reconstruction algo-
rithm, the Streaming Greedy Pursuit (SGP) is an on-line
algorithm that receives one measurement per iteration and
outputs the estimate of R consecutive signal values. In each
iteration the algorithm operates once on the current snapshot
of the system, which is updated after the iteration.

To simplify the presentation of the SGP, we first describe
the streaming iteration loop in Sec. IV-A, followed by more
detailed discussion of the signal estimation and refinement
algorithm in Sec. IV-B.

A. Streaming iteration

The SGP operates by estimating the signal on a sliding
window of length N over the streaming signal using M
measurements. After each iteration, a new measurement is
incorporated at the end of the measurement window and the
oldest measurement is removed from the beginning. Similarly,
R new signal samples (to be estimated) are included in the
signal window and the oldest R are removed from the window
and committed to the output.

In every ith iteration, SGP maintains a working signal
estimate of length N , denoted x̂i, a working measurement
matrix of dimension M ×N , denoted Âi, and a measurement
vector of length M , denoted yi. The iteration is presented

Algorithm 1 Streaming iteration for SGP
1: Increase iteration count: i← i + 1
2: Refine working estimate:

x̃i ← Refine(x̂i−1,yi−1,Ai−1),
where Refine(·) is described in Algorithm 2.

3: Update the weighted average of all the samples in the
window and commit the estimate for the oldest samples:

xi ←
[
xi−1
{R+1,...,N}

0R

]
+ Wx̃i,

0R is a vector with R zeros, W is the diagonal weight
matrix.

x̂Ri+j = xi
j , j = 1, . . . , R

where x̂n is the streaming signal estimate at the output.
4: Slide working estimate window (circular shift in time):

x̂i ←

[
x̃i
{R+1,...,N}
x̃i
{1,...,R}

]
5: Slide working measurement window:

yi ←
[

yi
{2,...,M}
yi+M

]
6: Slide working measurement matrix:

Ai ←
[

Ai−1
{2,...,M},{R+1,...,N} 0[M−1×R]

a(i+M−1),{iR,...,iR+N−1}

]
,

where 0[m×n] denotes m× n zero matrix.

in Algorithm 1, where we use the subscript (·)m notation to
denote the mth element of a vector and (·){m1,...,m2} to denote
a range of elements. Non-boldface letters denote the streaming
signals. At each iteration, the working signal estimate from the
previous iteration x̂i−1 is refined using a sequence of steps
(step 2, with details shown in Algorithm 2) almost identical
to a single CoSaMP iteration.

Any sample of xn is included in M working snapshots of
the system, i.e., M SGP iterations, and the SGP computes its
estimate at every iteration. The final estimate of each sample
can significantly improved using this estimate history: the
final value for the estimate of any outgoing signal sample is
computed as the weighted average over the M intermediate
estimates. The weighted average is maintained in the vector
xi, where W is a diagonal weight matrix of choice (step 3).
The oldest R samples in the current snapshot are finalized,
committed to the output and removed from the vector.

At the end of each streaming loop iteration the system
snapshot is updated by incorporating one new measurement
(step 5), sliding the measurement system snapshot (step 6)
and circularly shifting the working signal estimate (step 4).
While the shifts in steps 3, 5, and 6 are linear, the shift in
step 4 is circular because it maintains the signal support, as
estimated in the frequency domain.

B. Signal Estimation and Refinement

The signal estimation and refinement step 2 of the recovery
algorithm, summarized in Algorithm 2, is inspired by CoSaMP



[4]. Both CoSaMP and SGP refine the signal estimate using
the unexplained residual to identify a candidate support for the
signal estimate (steps 1–3 in Alg. 2), inverting the measure-
ments in that support to obtain a new signal estimate (step
4), and truncating the signal estimate to have the required
sparsity (step 5). The main differences with the standard
CoSaMP iteration is (a) incorporating a virtual window in
the signal estimation to improve the signal smoothness, even
if the sampling system cannot impose a real window on the
signal, and (b) reducing the number of support coefficients
added to the candidate support in step 3, in order to control
the computation cost for on-line performance.

To introduce the virtual smoothing window we consider the
signal x actually measured versus the windowed signal Vx
we would desire to measure, where V is a diagonal matrix.
By rewriting the measurement system snapshot as

y = Ax = AV−1Vx ≡ AV−1F−1s, (13)

we can introduce the virtual window by substituting A with
AV−1, as long as the diagonal of V has no zero values.

The Refinement algorithm comprises the following steps:
1) Residual and proxy computation. Steps 1 and 2 in

Alg. 2 compute the unexplained residual in the current working
snapshot and form a proxy to estimate the DFT coefficients
that best explain the residual.

2) Support identification and merger: Step 3 identifies
the T largest coefficients (in magnitude) in the proxy merges
their support set with the size-K support set of the DFT
coefficients of the current signal estimate.

3) Signal estimation: Step 4 updates the DFT coefficients
estimate by solving a least squares problem over the merged
support. Note that the candidate signal support differs by at
most 2T coefficients from the support in the previous iteration.
Thus, a direct computation requires only 2T rank-one updates.

4) Truncation: Step 5 truncates the estimate of DFT coef-
ficients and maintains its K largest coefficients. The signal is
estimated using the inverse DFT of the truncated estimate s̃.

Note that, similar to CoSaMP, the SGP can incorporate fur-
ther modifications, such as model-based CS [7] and saturation-
aware CS [9] in the refinement algorithm.

V. NUMERICAL EXPERIMENTS

In this section we present some experimental results which
demonstrate the performance of the SGP algorithm for various
frequency-sparse signals. We also compare its performance
with the standard CoSaMP algorithm operating on the entire
signal at once.

On-Grid frequencies: This experiment examines the per-
formance on signals consisting of sinusoids with frequencies
exactly selected from the frequency grid. We compose the
signal by selecting 10 uniformly random frequencies from
the grid locations defined by an N -point DFT, where N is
the length of the sliding window, and draw their amplitude
from a normal distribution. The signals are acquired using a
simple random demodulator using compression ratio R, with
measurements corrupted by random normally distributed noise

Algorithm 2 Signal Refinement function: Refine(x̂, y, A)
Note: Update for sparse s = DFT (Vx):

ŷ = Âx = ÂV−1Vx ≡ ÂV−1F−1s.
1: Calculate residual:

r = y −Ax̂,

2: Compute proxy:
p =

(
AV−1F−1

)∗
r,

where F denotes the DFT matrix, V is the virtual window
and (·)∗ denotes the conjugate transpose.

3: Identify and merge support:
Ω = supp (FVx̂) ∪ supp (p|T ) ,

where supp (·) denotes the support index set of a vector,
and p|T denotes truncation of the vector p to its T largest
in magnitude coefficients.

4: Estimate DFT coefficients over the merged support:

b =
(
ÂV−1F−1

∣∣∣
Ω

)†
ŷ

5: Truncate DFT coefficients and compute the new estimate:
s̃← b|K

6: Output:
x̃← V−1F−1s̃.

at 35dB SNR. We execute the SGP simulations for M = 100,
N = 100R, K = T = 12 and different values of R over 1500
measurements, i.e., 1500R signal samples. We also compare
CoSaMP to estimate the sparse DFT coefficients of the entire
signal using the complete measurement set. Figure 4(a) plots
the signal-to-reconstruction error ratio for different values of
R, averaged over 50 simulations. Since the signal is perfectly
sparse in the frequency domain, both SGP and CoSaMP
estimate the signal with good accuracy in the presence of
noise. As expected, in this simulation CoSaMP, being an off-
line algorithm, performs better because it can see the whole
measurement set.

Off-grid frequencies: In this experiment the streaming
signal consists of 4 sinusoids with frequencies that do not lie
on the N -point DFT grid. As with the previous simulation,
the frequencies of the 4 sinusoids are randomly selected form
a uniform distribution and their amplitude from a standard
normal distribution. We execute the SGP simulations for
M = 120, N = 120R, K = T = 15 and different values of R
over 1500 measurements (1500R samples). We use a Kaiser
window (with β = 5) as the virtual window in Algorithm 2.
Similarly, CoSaMP is used to estimate the DFT coefficients
of the windowed sequence (using similar Kaiser window on
the whole signal). The signal-to-reconstruction error ratio for
different values of R, averaged over 50 simulations, is also
presented in Fig. 4(a). Note that windowing makes the DFT
coefficients of signal sparser but the samples near the end-
points cannot be reconstructed reliably. This is one reason for
the degradation in the reconstruction performance of CoSaMP.
On the other hand, the SGP averages the reconstructed samples
over multiple sliding windows, which improves performance.
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Fig. 4. Comparison between the performance of the SGP and CoSaMP.

Linear frequency sweeps: In this experiment, the frequen-
cies of the streaming signal vary with time. The streaming
signal consists of 4 sinusoids whose frequencies drift by ±s
cycles over 1500R samples, which is the duration of our test
signal. An example of such signal with s = 5 is shown
on the top of Fig. 5. Since the frequency of the signal is
varying slowly, the DFT of the signal over a small portion is
sparse (as shown in STFT) but the DFT of the entire signal
is fairly spread out. We tested SGP and CoSaMP for this
signal with three different values of s ∈ [2, 5, 10] and
compression ratio R. The performance results are presented
in Fig. 4(b). Since the SGP works on small sliding windows,
every snapshot of the time-varying signal has sparse DFT, and
the overlapping sliding window provides it with the ability
to track the changing frequencies. On the other hand, since
CoSaMP operates working on the entire signal, which is fairly
wideband, its sparse approximation in the frequency domain
is not as accurate.

Crest nearly periodic: The streaming signal in this exper-
iment come from the time-series of pixels from a high-speed
video of an oscillating Crest toothbrush, an example is shown
on the bottom of Fig. 5. The period is roughly 16 samples
and fluctuates over time due to variations in the movement
of the brush. We used M = 190, K = 20, T = 10 and
executed the SGP on 10000 samples in the presence of 35
db normally distributed noise. Similarly, CoSaMP was used to
estimate 10000 samples at once using 10000/R measurements,
for different values of R. The results are shown in Fig. 4(c).
SGP outperforms CoSaMP in this case as well because of its
ability to adapt to local frequency variations. Further results
on high-speed video signals are available in [5].
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