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Abstract

We study the object localization problem in images given a single hand-drawn example or a
gallery of shapes as the object model. Although many shape matching algorithms have been
proposed for the problem over the decades, chamfer matching remains to be the preferred method
when speed and robustness are considered. In this paper, we significantly improve the accuracy
of chamfer matching while reducing the computational time from linear to sublinear (shown
empirically). Specifically, we incorporate edge orientation information in the matching algorithm
such that the resulting cost function is piecewise smooth and the cost variation is tightly bounded.
Moreover, we present a sublinear time algorithm for exact computation of the directional chamfer
matching score using techniques from 3D distance transforms and directional integral images. In
addition, the smooth cost function allows to be bound the cost distribution of large neighborhoods
and skip the bad hypotheses within. Experiments show that the proposed approach improves the
speed of the original chamfer matching upto an order of 45x, and it is much faster than many
state of art techniques while the accuracy is comparable.
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Abstract

W study the object |ocalization problemin images given
a single hand-drawn example or a gallery of shapes as the
object model. Although many shape matching algorithms
have been proposed for the problem over the decades,
chamfer matching remainsto be the preferred method when
speed and robustness are considered. In this paper, we sig-
nificantly improve the accuracy of chamfer matching while
reducing the computational time from linear to sublinear
(shown empirically). Specifically, we incorporate edge ori-
entation information in the matching algorithm such that
the resulting cost function is piecewise smooth and the cost
variation istightly bounded. Moreover, we present a sublin-
ear time algorithm for exact computation of the directional
chamfer matching score using techniques from 3D distance
transforms and directional integral images. In addition, the
smooth cost function allows to bound the cost distribution
of large neighborhoods and skip the bad hypotheseswithin.
Experiments show that the proposed approach improves the
speed of the original chamfer matching upto an order of
45x, and it is much faster than many state of art techniques
while the accuracy is comparable.

1. Introduction

Humans utilize extensive prior information in the form
of multiple visual cues including color, texture and shape
to recognize objects. Machine vision algorithms attempt to
imitate human perception system by learning similar pri-
ors based on exemplars. However, collecting the required
training datais a tedioustask and significantly limitsthe ef-
fectiveness of these algorithmsin many cases. For instance,
it is much more appealing to search an image collection us-
ing asingle exemplar supplied by a user than learning every
possible object class beforehand. Yet, recognition of objects
in images using only afew exemplars remains to be a very
challenging problem.

The common approach to tackle this problem is to uti-
lize features that exhibit the least variability within ob-
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ject classes and across imaging conditions together with a
similarity measure that models the maximum invariances.
Among the aforementioned visual cues, shape information
largely satisfies invariances; also in many cases only a sin-
gle hand-drawn contour is discriminative enough to recog-
nize and localize an object in acluttered image. Fast and ac-
curate shape matching has numerous applicationsincluding
object recognition and localization, imageretrieval, pose es-
timation, and tracking.

1.1. Related Wor k

An extensive literature exists for shape matching and
here we overview only afew. Several researchers proposed
shape representations and similarity measures invariant to
deformation or articulation of objects[3, 12]. They success-
fully handleintra-class variations and achieved good perfor-
mance in object recognition. However, these methods typ-
ically require clean segmentation of shapes which renders
them unsuitable while dealing with cluttered images.

More recent studies focus on recognition and localiza-
tion of object shapes in cluttered images. In [4], the shape
matching problem is posed as finding the optimal corre-
spondences between feature points which then leads to an
integer quadratic programming problem. In [10], a con-
tour segment network framework is described where shape
matching is formulated asfinding paths on the network sim-
ilar to model outlines. In [8], Ferrari et. al. proposed a
family of scale invariant local shape descriptors (pair-of-
adjacent-segment feature) which areformed by k-connected
near straight contour fragments. These descriptors are later
utilized in a shape matching framework [9] through avoting
scheme on a Hough space. The solution is then iteratively
refined using a point registration algorithm. Zhu et. al. [20]
formulated shape detection as subset selection on a set of
salient contours. The selection problem is approximately
solved using a two-stage linear programming. In[7], a hi-
erarchical object contour representation was proposed to-
gether with a dynamic programming approach for match-
ing. In [15], a multi-stage approach is employed where
coarse detections via matching subsets of contour segments
are pruned by building the entire contour using dynamic



programming.

These algorithms provided impressive results for match-
ing shapesin cluttered images. However, they share a com-
mon drawback, high computational complexity, that makes
them unsuitable for time critical applications. Although
proposed decades ago, chamfer matching [1] remainsto be
the preferred method when speed and accuracy are consid-
ered as discussed in [18]. There exist severa new variants
of chamfer matching mainly to improve the cost function
using orientation information [11, 16]. We discuss more
about these approachesin comparison to our formulationin
the following sections.

1.2. Contributions

In this paper, we greatly improve the accuracy of cham-
fer matching while significantly reducing its computational
cost. We propose an aternative approach for incorporat-
ing edge orientation and solve the matching problem in an
orientation augmented space. This formulation plays an
active role in defining edge correspondences which result
in more robust matching in highly cluttered environments.
The resulting cost function is smooth and the cost variation
istightly bounded.

The best computational complexity for existing cham-
fer matching algorithmsis linear in the number of template
edge points, even without the orientation term. We optimize
the directional matching cost in three stages: (1) We present
a linear representation of the template edges. (2) We then
describe a three dimensional distance transform represen-
tation. (3) Finally, we present a directional integral image
representation over distance transforms. Using these inter-
mediate structures, exact computation of the matching score
can be performed in sublinear time in the number of edge
points. In the presence of many shape templates, the mem-
ory requirement also reduces drastically. In addition, the
smooth cost function allows to bound the cost distribution
of large neighborhoods and skip the bad hypotheseswithin.

2. Chamfer Matching

Chamfer matching (CM) [1] is a popular technique to
find the best alignment between two edge maps. Let U =
{u;} and V' = {v; } bethe sets of template and query image
edge maps respectively. The chamfer distance between U
and V is given by the average of distances between each
point u; € U andits nearest edgein V'

1 .
dem(U,V) = - u%:U glér‘l/ [u; — vjl. (1)
wheren = |U|.
Let W be awarping function defined on the image plane
parameterized with s. For instance, if it isa 2D Euclidean
transformation, s € SE(2),s = (0, ts, t,), wheret, and

t, arethetrandationsalong « and y axis respectively and 0
is the in-plane rotation angle. Its action on image pointsis
given viathe transformation
[ cos(f) —sin(0) ty
Wi(x;s) = ( sin(f)  cos(6) X+ ty ) 2
The best alignment parameter § € SE(2) between the
two edge mapsis then given by

seSE(2

§ = arg mir% )dCM(W(U5 s),V) ©)

where W (U;s) = {W(u;,s)}.

Chamfer matching provides a fairly smooth measure of
fitness, and can tolerate small rotations, misalignments, oc-
clusions, and deformations. The matching cost can be com-
puted efficiently viaadistance transformimage DTy (x) =
miny, ey [x — v;| which specifies the distance from each
pixel to the nearest edge pixel in V. The distance transform
can be computed in two passes over theimage[6] and using
which the cost function (1) can be evaluated in linear time
O(n) Viadcj\,y(U, V) = % ZuiEU DT\/(uq;).

3. Directional Chamfer Matching

Chamfer matching becomes less reliable in the presence
of background clutter. To improve robustness, several vari-
ants of chamfer matching have been introduced by incorpo-
rating edge orientation information into the matching cost.
In[5, 11], thetemplate and query image edges are quantized
into discrete orientation channels and individual matching
scores across channels are summed. Although this method
alleviates the problem of cluttered scenes, the cost function
is very sensitive to the number of orientation channels and
becomes discontinuous in channel boundaries. In [16], the
chamfer distance is augmented with an additional cost for
orientation mismatch which is given by the average differ-
ence in orientations between template edges and their near-
est edge points in the query image. The method is called
oriented chamfer matching and throughout the paper we use
the abbreviation OCM.

Instead of an explicit formulation of the orientation mis-
match, we generalize the chamfer distance to points in R?
for matching directional edge pixels. Each edge point x is
augmented with a direction term ¢(x) and the directional
chamfer matching (DCM) scoreis given by

dpoar(U,V) = = 37 min fus—v,[+ No(u) - o(v;)
@

u; €U
where )\ is a weighting factor between location and ori-
entation terms. Note that the directions ¢(x) are com-
puted at modulo 7, and the orientation error gives the
minimum circular difference between the two directions

min{|¢(x1) — ¢(x2)|, [|¢(x1) — ¢(x2)| — |}
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Figure 1. Matching costs per edge point for (a) Oriented chamfer
matching [16]; (b) Directional chamfer matching. DCM jointly
minimizes location and orientation errors whereas in [16] the |o-
cation error is augmented with the orientation error of the nearest
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Figure 2. Linear representation. (8) Edge image. The image con-

tains 1242 edge points. (b) Linear representation of the edge im-

age. The image contains 60 line segments.

In Figure 1, we present a comparison of the proposed
cost function with [16]. It can be easily verified that the
proposed matching cost is a piecewise smooth function of
both the trandation ¢, t,, and the rotation ¢ of the template
edges. Therefore, matching is more robust against clutter,
missing edges and small misalignments.

4. Search Optimization

To the best of our knowledge, the lowest computational
complexity for the existing chamfer matching algorithmsis
linear in the number of template edge points, even without
the directional term. In this section, we present a sublin-
ear time agorithm for exact computation of the 3D chamfer
matching score (4).

4.1. Linear Representation

The edge map of a scene does not follow an unstruc-
tured binary pattern. Instead, the object contours comply
with certain continuity constraints which can be retained by
concatenating line segments of variouslengths, orientations
and trandations. Here, we represent an edge image with
a collection of m-line segments. Compared with a set of
points which has cardinality n, its linear representation is
more concise. It requires only O(m) memory to store an
edge map wherem << n.

We use avariant of RANSAC algorithm to compute the
linear representation of an edge map. The outline of the al-
gorithm is as follows. The algorithm initialy hypothesizes
avariety of lines by selecting a small subset of points and
their directions. The support of alineis given by the set of

@) (b) (© (d) (€)
Figure 3. Computation of the integral distance transform tensor.
(a) The input edge map. (b) Edges are quantized into discrete ori-
entation channels. (c) Two dimensional distance transform of each
orientation channel. (d) The three dimensional distance transform
DT3 is updated based on the orientation cost. (€) DT'3 tensor
isintegrated along the discrete edge orientations and integral dis-
tance transform tensor, 7 DT'3, is computed.

points which satisfy the line equation within a small resid-
ual and form a continuous structure. The line segment with
the largest support is retained and the procedure is iterated
with the reduced set until the support becomes smaller than
afew points.

The agorithm only retains points with certain structure
and support, therefore the noise is filtered. In addition, the
directions recovered through the line fitting procedure are
more precise compared to those computed using local oper-
ators such as image gradients. An example of linear repre-
sentation is given in Figure 2 where a set of 1242 pointsis
modeled with 60 line segments.

4.2. Three-Dimensional Distance Transform

The matching score given in (4) requires finding the
minimum cost match over location and orientation terms
for each template edge point. Therefore the computational
complexity of the brute-force algorithm is quadratic in the
number of template and query image edge points. Here we
present a three-dimensional distance transform representa-
tion (DT'3) to compute the matching cost in linear time. We
note that, a similar structure was also used in [14] for fast
evaluation of Hausdorff distances.

This representation is a three dimensional image tensor
where the first two dimensions are the locations on the im-
age plane and the third dimension is the quantized edge
orientations. The orientations are quantized into ¢ discrete
channels ® = {¢;} evenly in [0 =) range. Each element
of the tensor encodesthe minimum distance to an edge point
in the joint location and orientation space:

DT3y(x, ¢(x)) = min [x — vj[ + A$(x) = &(v;)]. (5)

where $(x) is the nearest quantization level in orientation
spaceto ¢(x) in P.



We present an algorithm to compute D73 tensor in O(q)
passes over the image by solving two dynamic programs
consecutively. Equation (5) can be rewritten as

DT3y (x, ¢(x)) = min (D

$i €D TV{Q%} + >\|¢A7(X) — ¢z|) (6)

where DT: is the two dimensional distance transform

Vidi}
of the edge pointsin V' having orientation ¢;.

Initially, we compute ¢ two dimensional distance trans-
forms DT, which requires O(q) passes over the image
using the stanéard distance transform algorithm [6]. Sub-
sequently, the DT'3y, tensor (6) is computed by solving a
second dynamic program for each location separately. The
tensor isinitialized with the two dimensional distance trans-
forms DT3y (x, ¢;) = DTy, (x) and is updated with a
forward recursion

{DT3v(x, i), ™
DT3v (X, di—1) + Adi_1 — ¢i}

DT3y(x, ¢;) = min

and a backward recursion

{DT3y(x,;), 8
DT 3y (X, biz1) + Adiz1 — &4}

DT3y(x, ¢;) = min

for each location x. Unlike the standard distance transform
algorithm, a special condition is needed for handling the
circular orientation distance. The forward and backward re-
cursions do not terminate after afull cycle, i = 1...q or
i = q...1respectively, but the costs are continued to be up-
datedin acircular form until the cost for atensor entry isnot
changed. Note that, at most one and ahalf cyclesare needed
for each of the forward and backward recursions, therefore
the worst computational cost is O(q) passes over theimage.
Using the three dimensional distance transform representa-
tion DT'3y the directional chamfer matching score of any
template U can be computed in linear time via

dpen(U,V) = — Z DT3v (ui, (w;)).  (9)

u; €U

4.3. Distance Transform I ntegral

Let Ly = {l}s, e, }j=1...m. be the linear representation
of template edge points U where s; and e; are the start
and end locations of the j-th line respectively. For easein
notation, we sometimes refer to a line with only its index
lj = ls,.e;)- We assume that the line segments only have

directions among the ¢ discrete channels ®, which is en-
forced while computing the linear representation. Although
it might be argued that the discreet line directionsintroduce
quantization artifacts, in fact the linear representation given
inFigure 2bisgenerated using only ¢ = 60 directionsand it

is difficult to observe the difference from the original edge
image (Figure 2a).

All the points on a line segment are associated with the
same orientation which is the direction of the line q@(lj).
Hence the directional chamfer matching score (9) can be
rearranged as

dpe (U, V):% > ) DT3By (wi, (). (10)

l;€Ly u;€lj

In this formulation, the i-th orientation channel of the
DT3y tensor, DT'3y (x, (j)l) isonly evaluated for summing
over the points of line segments having direction ¢;.

Integral images are intermediate image representations
used for fast calculation of region sums [19] and linear
sums [2]. Here we present a tensor of integral distance
transform representation (1 D'T'3y/) to evaluate the summa-
tion of costs over any line segment in O(1) operations. For
each orientation channel 7, we compute the one-directional
integral along ¢; (Figure 3).

Let x( betheintersection of an image boundary with the
line passing through x and having the direction ¢;. Each
entry of 7 DT'3y, tensor is given by

> DT3y(xj, ). (11)

xJel[xU,x]

IDT3y(x, ;) =

The I1DT3y tensor can be computed in one pass over
the DT'3y tensor. Using this representation, the directional
chamfer matching score of any template U can be computed
in O(m) operationsvia

dpen(UV) =+ S [IDT3y(e;, bl e) -
Us; 0 €LY
IDT3y (s, 0(lis, 0;)))]- (12)

The O(m) complexity is only an upper bound on the
number of computations. For object detection or local-
ization we would like to retain only the hypotheses where
the matching costs are less than the detection threshold or
equivalently for localization less than the best hypothesis.
We order the template lines with respect to their supports
and start the summation from the line with the largest sup-
port. A hypothesisis eliminated during the summation if
the cost is larger than the detection threshold or current best
hypothesis. The supports of the line segments show expo-
nential decay, therefore for majority of the hypotheses only
afew arithmetic operations are performed. We empirically
show that the number of evaluated line segmentsis sublin-
ear in the number of template pointsn.

4.4. Optimized Region Search

The proposed DCM cost function (4) is smooth. More-
over, the variation of the matching cost is bounded and only



changes smoothly in the spatial domain. We utilize this fact
to significantly reduce the amount of hypotheses evaluated
from animage. Let § € R? be the trangation of the model
U intheimage plane. The DCM cost variation due to trans-
lation then becomes

dDCM(U+5, V)
= % ZuieUmianEV [u; +6 — vj| + Alp(w;) — @(v;)]
< % Yuser miny,ev [ — V5] + 18] + Ap(ws) — d(v;))|

= |(5| +dDCJ\4(U, V) (13)

Therefore, the variation of the DCM cost is bounded by the
spatia trandation |dDCJ\4(U—‘r(5, V) —dDCM(U, V)| < |(5|
If the targeting matching cost is e and the cost of the current
hypothesisis v, i.e. € < 1, there can not be a detection
within the |¢» — €| pixel range of the current hypothesis and
we can skip the evaluation of the hypotheses within this re-
gion.

5. Experiments

We conducted three sets of experiments on challenging
synthetic and real datasets. Note that, in all our experiments
we emphasize the speed and the improved accuracy of our
approach compared to chamfer matching. Althoughthe per-
formance of proposed approach is comparable with state of
art methods, it can also be utilized to quickly retrieve accu-
rateinitial hypotheseswhich can then be refined using more
expensive point registration algorithms. In al our experi-
ments we used ¢ = 60 orientation channels and 6 degrees
error in orientation correspondsto 1 pixel distance.

5.1. Object Detection and L ocalization

In the first experiment, we performed object detection
and localization on the ETHZ shape class dataset [10]. The
dataset contains 255 images where each image contains one
or more objectsfrom five different classes: applelogos, bot-
tles, giraffes, mugs, and swans. The objects in the dataset
have large variations in appearance, viewpoint, size, and
non-rigid deformation. We followed the experimental setup
proposed in [10, 9] in which a single hand-drawn shape for
each class was used to detect and localize its instances in
the dataset.

Our detection system is based on scanning using a slid-
ing window, i.e., weretain all the hypotheseswhere the cost
functionislessthan the detection threshold. Toillustrate the
speed of the algorithm, we densely sampled the hypothesis
space and searched the images at 8 different scales and 3
different aspect ratios. The ratio between two consecutive
scales was 1.2 and the aspect ratio was 1.1. We performed
non-maxima suppression by retaining only the lowest cost
hypothesis among the ones which had significant overlap.

In Figure 4, we report fal se positive per image vs. detec-
tion rate. The curve is generated via altering the detection

Algorithm | DCM | OCM | CM
Time (us) | 0.40 | 51.50 | 17.59
Table 1. Hypothesis evaluation time comparison. The evaluation
time is averaged over the 5 hand-drawing shapes used to detect
object in the ETHZ dataset

threshold for the matching cost. We compared our approach
with the oriented chamfer matching [16] and two recent
studies proposed by Ferrari et. al. [10, 9]. Our approach
is significantly superior to the oriented chamfer matching
at al the false positive rates and comparable to [9] where
our results are better for two classes (giraffes and bottles)
and dightly worse for the swans class while for two other
classes, the numbers are almost identical. As shown in
the detection examples (Figure 4), object localization is ex-
tremely accurate. We note that in [20] and [15], dlightly
better performances were reported on this dataset. Asthese
results were presented in different formats we could not in-
clude themin our graphs.

In Table 1, we present the mean evaluation time of
matching costs per hypothesis. The average number of
pointsin the shape templateswere 1610, computed over five
classes. Similarly, on average our linear representation in-
cluded 39 lines per class. The number of lines per classis
only an upper bound on the number of computations. Since
the algorithmretrieves only the hypotheseshaving asmaller
cost than the detection threshold, the summation was termi-
nated for a hypothesis as the cost reached this value. On av-
erage only 14 lines were evaluated per hypothesis. The re-
sults indicate that the proposed method improves the speed
of chamfer matching by 43x and of the oriented chamfer
matching by 127x. Note that, the speed up is more signif-
icant for larger size templates since our cost computation
is insensitive to the template size whereas the cost of the
original chamfer matching increases linearly.

On average, we evaluated 1.05 million hypotheses per
image which took 0.42 seconds. Using the bounding tech-
nique presented in Section 4.4, we further reduced the aver-
age processing time per image to 0.39 seconds where ap-
proximately 91% of the hypotheses were skipped. Note
that, while using the bounding function we needed to com-
pute the full cost function (summation over al lines) for
each evaluated hypothesis. Therefore, the speedups is not
proportional.

5.2. Human Pose Estimation

In the second experiment, we utilized the derived shape
matching framework for human pose estimation which isa
very challenging task dueto large variationsin appearances
of human poses. As proposed in [13], we matched agallery
of human shapes with known poses to the given observa-
tion. Dueto articulation, the size of the pose gallery needed
for accurate pose estimation is quite large. Hence, it be-
comes increasingly important to have an efficient matching
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Figure 4. ROC curve and severa localization results on the ETHZ shape dataset. The images are searched using a single hand-drawn shape
shown on the side. The proposed approach achieved performance comparable to [9].

a gorithm which can cope with background clutter.

The experiments were also performed on the HumanEva
dataset [17] which containsvideo sequences of multiple hu-
man subjects performing various activities captured from
different viewing directions. The ground truth locations of
human joints at each image were extracted using the at-
tached markers. Shape gallery templates were acquired in
two steps. First, we computed the human silhouettes via
HumanEva background subtraction code. Then, using the
Canny edges around the extracted silhouette outlines, we
obtained the shape templates. We included all the images
from an action sequence (about 1,000 - 2,000) to the shape
gallery whichisthen used to estimate human posesin differ-
ent sequences. As we extracted Canny edges directly from
the test images, they included significant amount of back-
ground clutter. The best shape template together with its
scale and location is then retrieved via the matching frame-

work. We quantitatively evaluated the mean absolute error
between the marker locations of the ground truth and the es-
timated pose on the image plane. The results are presented
in Table 2 where we observe significantly improved accu-
racy compared to chamfer matching and the oriented cham-
fer matching. The proposed approach can evaluate more
than 1.1 million hypotheses per second whereas chamfer
matching and the oriented chamfer matching can evaluate
31000 and 14000 hypotheses per second respectively. Sev-
eral pose estimation examplesare given in Figure 5.

5.3. Synthetic Experiments

In the last experiment, we estimated the 3D pose of sev-
eral industrial parts using synthetic data. The 3D CAD
models of the objects were given in advance. We decom-
posed the 3D rotation matrix into in-plane and out-of-plane
rotations, and generated a gallery of shape templates from



Algorithm | Walking | Jogging | Boxing | Avg.
DCM 7.3 125 9.7 9.8
OCM 15.0 15.3 136 | 146

CM 9.3 13.6 106 | 11.2

Table 2. Pose estimation errors on three action sequences. Errors
are measured as the mean absolute pixel distance from the ground
truth marker locations.

Figure 5. Human pose estimation results. First row: Walking se-
quence. Second row: Jogging and boxing sequences. Estimated
poses and contours are overlayed onto the images.

the uniformly sampled out-of-planerotations (300 poses for
each object) viarendering the 3D CAD model and detecting
the depth edges (edges due to depth discontinuities). Two
samples among the 300 shape templates for each object are
shown in thefirst row of Figure 6.

We also generated a synthetic test set with asimilar pro-
cedure. We randomly generated 3D pose parameters for
each object and simultaneously inserted all the objects in
the scene. A few of the generated test images are shown
in the second row of Figure 6. As seen in the images, the
objects have large overlaps, therefore a significant amount
of the edges are occluded. Moreover, the images were cor-
rupted with noise via adding uniformly sampled line seg-
ments and a small fraction of the detected edges were also
removed. The test set included 500 images.

We retrieved the best gallery pose together with in-plane
rotation and translation parameters via the proposed shape
matching algorithm. Several pose estimation resultsfor five
different objectsare shownin thethird row of Figure 6. Full
3D pose of the objects were then recovered for a known
depth using the estimated in-plane transformation parame-
ters together with the out-of-plane rotation parameters that
generated the gallery templates. An estimate was labeled as
correct if the three estimated angles were within 10 degrees
and the position was within 5 mm. of the ground truth pose.
As seen in Table 3, on average, our approach reduces esti-
mation errors by 75% compared to chamfer matching and
40% compared to orientated chamfer matching. In this ex-

Algorithm | Circuit | Ellipse | T-Nut | Knob | Wheel | Avg.
DCM 0.03 0.05 | 0.11 | 0.04 | 0.08 | 0.06
OCM 0.05 014 | 017 | 004 | 017 | 011

CM 0.11 026 | 034 | 026 | 022 | 0.24

Table 3. Miss rates for synthetic 3D pose estimation experiment.
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periment, we were able to estimate the 3D pose of an object
in .71 seconds via the proposed approach whereas the same
process took 29.1 and 65.3 seconds via chamfer matching
and the oriented chamfer matching respectively.

5.4. Empirical Evidence for Sublinear Complexity

When the template shapes are scaled, sublinear com-
plexity trivially holds. In this case, as the number of edge
points, n, increases the cardinality of the linear representa-
tion, m, remains constant which implies constant complex-
ity for matching. We also provide empirical evidence that
the matching complexity is asublinear function of the num-
ber of template pointsin a more general setup. Aswe dis-
cussed before, the O(m) complexity isonly an upper bound
on the number of evaluations, and on average we need to
evaluate only afraction of those lines to find the minimum
cost match. Empirically, we evaluate m lineswhich fit 20%
- 30% of the template points and most of the energy is con-
centrated in only afew lines. In Figure 7, we plot the num-
ber of template points, n, versus the fraction of evaluated
lines to points, 2, where m is selected as the number of
linesthat fit 30% of template points. The curveis generated
using 1000 shape images from the MPEG-7 dataset. We
observe that as the number of template points increases the
fraction of evaluated lines decreases, which providesempir-
ical evidence that the algorithm is sublinear in the number
of template points (< O(n)). Note that, there is no bias
factor involved since n vs. m curve passes through zero.

6. Conclusion

We presented a novel approach for improving the ac-
curacy of chamfer matching while significant reducing its
computational cost. We proposed an alternative approach
for incorporating the edge orientation in the cost function
and solved the matching problem in the orientation aug-
mented space. The novel cost function is smooth and can
be computed in sublinear time in the size of the shape
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Figure 6. 3D pose estimation. First row: Samples from the shape gallery. Second row: Query images. Third row: Pose estimation results.

template. We demonstrated the superior performance of
the algorithm on three challenging applications where we
achieved speedups up to an order of 45x while drastically
reducing the matching errors.
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