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Abstract—This paper presents a novel technique for multi-
hop localization by using mobility (MLM) in mixed line-
of-sight/non-line-of-sight (LOS/NLOS) environments. In MLM,
nodes equipped with ultra-wideband (UWB) radio first move
randomly for collecting time-of-arrival (TOA) measurements and
then apply a modified biased Kalman filter (MBKF) designed
for mitigating NLOS errors. NLOS bias in the measurements
is further mitigated by using the shortest path distance (SPD)
selection. Node positions are initialized by using multidimensional
scaling (MDS) and then estimated by using iterative trilatera-
tion accompanied by an error accumulation management. Our
simulation results demonstrate that the positioning accuracy
of MLM outperforms previous methods in obstructed building
environments with a limited anchor heard (AH).

I. INTRODUCTION

Due to the recent advances in micro electro mechanical
system (MEMS) technologies, wireless sensor networks are
getting closer to being a reality and are currently attracting
significant attention from researchers. In sensor networks,
determining the position of each sensor node is important for
meaningful handling of sensing events or in applications such
as tracking and navigation. Global positioning system (GPS)
can not feasibly be used in many situations such as deployment
inside buildings. Many research efforts, therefore, have been
made for estimating the node positions in large-scale multi-
hop networks.

In [1], an iterative multilateration algorithm is proposed that
uses time-of-arrival (TOA) measurements to localize a large
numbers of nodes while starting with a small number of anchor
nodes, the nodes whose positions are known in advance. A
robust trilateration algorithm using the rigidity of graph theory
for flipping avoidance has been proposed in [2]. Although
trilateration using TOA measurements can accurately estimate
node positions, the accuracy of iterative trilateration depends
not only on the initial positions but also on successfully con-
trolling error propagation. Multi-dimensional scaling (MDS)
has also been applied for localization of sensor networks,
and it appears to provide accurate initial location estimation
based on connectivity [3], [4]. However, that approach has

¶The author was with Shizuoka University when the manuscript was
submitted.

not been applied to networks with non-line-of-sight (NLOS)
links. To deal with NLOS conditions, linear programming
(LP) based approach for mitigating NLOS errors has been
proposed [5]. The LP based approach, however, is only valid
when the number of anchors that a node has in its one-hop
neighborhood, called anchor heard or AH, is at least three.
Hence, the LP approach can not be applied to large-scale
multi-hop networks with AH<3 in NLOS environments.

In this paper, we propose a multi-hop localization scheme
that uses mobility for estimating node positions with AH<3
for large-scale multi-hop networks in mixed line-of-sight
(LOS) /NLOS environments. In the proposed MLM, nodes
equipped with ultra-wideband (UWB) radio randomly move
for collecting TOA measurements and apply a modified biased
Kalman filter (MBKF) to mitigate NLOS errors. Shortest
path distance (SPD) selection method is then used to further
mitigate the NLOS errors. The node positions in our MLM
are initialized by using MDS and estimated by using iterative
trilateration with an effective error accumulation management.
Simulation results indicate that the positioning accuracy of
MLM mostly outperforms the conventional MDS-MAP(P) [3]
and primitive iterative trilateration (PIT) methods in rectangu-
lar and L-shaped node deployments with AH<3, a case which
is left unhandled in the previously reported works in [5], [6].

The contribution of this paper is as follows. As opposed
to traditional single-hop localization, we use multi-hop con-
nectivity while localizing nodes under NLOS environments. It
proposes to use mobility and SPD selection to mitigate NLOS
errors, and to use multi-hop neighborhood for accurate location
estimation. Novel aspect of SPD selection to mitigate NLOS
errors , which is applicable to both static and mobile networks,
is analyzed. Finally, the performance improvement by using
the proposed NLOS error mitigation method is evaluated via
simulations.

The rest of the paper is organized as follows. The MLM is
described in Section II. An evaluation of MLM performance
is presented in Section III. Finally, Section IV indicates the
direction of our future work and concludes the paper.
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Fig. 1. Block diagrams of MLM.

II. MULTI-HOP LOCALIZATION USING MOBILITY (MLM)

A. Problem statement

Let us first introduce some notations and formulate the
problem. Consider that M = MA+Mu nodes are deployed on
a two-dimensional field, where MA is the number of anchor
nodes whose positions are known a-priori and Mu is the
number of nodes to be localized. All nodes have wireless
networking capabilities to construct an ad-hoc network. The
ad-hoc network is considered as a graph, G = (V,E), where
V is a set of nodes, and E is a set of wireless links between
{k, l}, and where k, l ∈ V . We assume that a node is
connected to other nodes within its transmission range R, and
also assume that the set E has both LOS and NLOS links.

The objective of localization in this paper is to estimate the
positions of unlocalized nodes by using TOA measurements.
We assume that the TOA measurements are obtained by using
UWB radio signals [7]. In a TOA measurement, the first arrival
of the transmitted signal for a LOS link can accurately be
obtained by detecting the strongest amplitude at the receiving
node. However, if the direct path of the signal is blocked or
highly attenuated due to obstructions, reflections of the trans-
mitted signal from scatterers may reach the receiving node and
introduce large errors in TOA measurement. We refer to such
links as NLOS links. The E is therefore indexed by LOS links,
Li, i = 1, . . . , mL, and NLOS links, Li, i = mL + 1, . . . , nL.

Generally, TOA measurement between two nodes can be
formulated as

r̂i = di +

{
ni, i = 1, . . . , mL

ni + bi, i = mL + 1, . . . , nL

(1)

where di is the actual distance between the nodes and ni ∼
N (0, σv) and bi ∼ E(λ). TOA measurements r̂i are assumed
to be taken independently and identically distributed (iid). The
noise in TOA measurement for LOS link is modeled as zero-
mean Gaussian distribution N (0, σv) with variance σv . Due
to the fact that the time of arrival of UWB multi-path signal
is modeled as Poisson distribution [8], we model the term
bi, called NLOS error, as an exponentially distributed random
variable E(λ) with mean λi. NLOS bias bi is assumed to be
positive since multi-path signals travel longer than direct signal
path.

Additionally, we put an assumption that NLOS bias bi

is spatial varying. This radio phenomenon can be explained

as follows. Received multipath signals due to scatterers may
overlap constructively or deconstructively [9]. Since the inter-
ference is different depending on the radio propagation paths,
the phase shifts of the amplitudes are varied specific to the
location. Consequently, the TOA measurement in the absence
of direct LOS signal through mobile nodes become a dynamic
(spatial varying).

B. Block diagrams

Figure 1 presents the block diagrams for estimating un-
localized node positions Pi(xi, yi), i = 1, . . . , Mu. First,
TOA measurements r̂j(t) from received signals sj(t) through
wireless links Lj , j = 1, . . . , nL are collected for a certain
period t . When the TOA measurements between two nodes
are mobile, MBKF is then used to obtain the distance with
NLOS error mitigation. Next, SPD selection is conducted to
obtain the multi-hop node distance including the one-hop node
distance d̂j with NLOS error mitigation. The initial node
positions P̂ 0

i (x̂0
i , ŷ

0
i ) are determined by using MDS. Finally,

node positions P̂i(x̂i, ŷi) are obtained by using the iterative
trilateration with the error accumulation management.

In MLM, nodes utilize the mobility for collecting the
TOA measurements. This situation is valid when nodes have
the mobile capabilities. Recently, cooperative mobile ad-hoc
networks and robotic sensor networks have receive much
attention [10], [11]. The MLM uses such mobile or robotic ad-
hoc networks where each node cooperatively moves randomly
for the TOA measurements in ad-hoc manner and stops for the
positioning. It is noted that our work differs from the previous
work [10], [11] since the MLM introduces a novel advantage
of the mobility in localization.

C. MBKF

Biased Kalman filtering (BKF) for NLOS error mitigation is
originally developed in [12] and the extension is found in [13].
We have developed the following formulae (2–9) of MBKF
that is adopted to the UWB channel model with two major
modifications from the one in [13]; first we use LOS/NLOS
identification [14] to accurately identify LOS/NLOS condi-
tions; second, we add constraint (9) to mitigate the false
estimation of BKF.

The Kalman filter is the optimal state estimation of the
dynamic system. The discrete-time linear dynamic state and



measurement equations are described by

xk+1 = Φxk + wk, (2)

zk = Hxk + vk, (3)

where xk = [xk ẋk]T is the state equation, where xk is the
relative distance between two nodes and ẋk is node velocity,
and zk is the measurement equation, and wk and vk are the
process noise and measurement noise with covariance matrices

Q = σ2
u, Rk = σ2

x with Φ =
[
1 �t
0 1

]
, H = [1 0].

As we discussed in Section II-A, NLOS bias bi for TOA
measurement is dynamic (spatial varying). Then, we can apply
TOA measurement r̂i(ti) to (3).

The measurement update for the state estimate and estima-
tion error covariance is calculated as follows:

Mk = ΦPk−1ΦT + Q, (4)

Kk = MkHT(HMT
k HT + Rk)−1, (5)

Pk = Mk −KkHMk, (6)

x̂k+1 = x̂k + Kk(zk −HΦx̂k). (7)

Next, in order to mitigate NLOS error, the weight in (8)
for diagonal elements of measurement covariance matrix is
applied,

σx =

{
βσv, NLOS link,

σv, LOS link.
(8)

Since the Kalman filter puts more reliability on the state
equation when σx is increased (biased), thus NLOS error in
the TOA measurement is mitigated. However, increasing σx

also increases the possibility to have false estimation. β is
chosen experimentally to have a stable estimation in advance.

A hypothesis test based on sampled standard deviations of
TOA measurements can be used to identify the LOS/NLOS
link [13]. However, we have found that using sampled standard
deviations does not work well, since the LOS/NLOS links
shortly change in obstructed building environments. Therefore,
we use the LOS/NLOS identification using UWB channel pro-
files [14], which nodes can accurately identify the LOS/NLOS
condition by using individual TOA measurement.

In MBKF, to mitigate the false estimation error the con-
straint in (9) is added.

if r̂i(ti) < x̂ti
, then x̂ti

= r̂i(ti). (9)

D. SPD selection

Next, SPD selection is applied to obtain the multi-hop
distance and to mitigate NLOS error. SPD selection is usually
used for calculating the multi-hop distance in routing or
localization [3] and it can be implemented by Warshall-Floyd
algorithm [15]. However, we have found that SPD selection
has a novel property to mitigate the NLOS bias. The property
of SPD selection to mitigate NLOS distance is derived from
a triangle inequality as follows. Assume that node vsrc has
i multiple routes to vdst through nodes v2,1, v2,2, . . . , vp,qi−1

i-th multiple route, for i=1 ,..., p
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Fig. 2. Example multiple routes and notations of SPD selection.

as shown in Fig. 2. The actual intermediate distance corre-
sponds to d1,1 = d(vsrc, vdst), d2,1 = d(vsrc, v2,1), d2,2 =
d(v2,1, vdst), . . . , dp,q = d(vp,qi−1, vdst). Let us first consider
the case p = 2, q2 = 2, i.e., only three nodes vsrc, vdst, v2,1

are deployed and vsrc estimates the distance d1,1 to vdst. Also,
we have the inequality constraint in (10).

d2,1 + d2,2 ≥ d1,1. (10)

(10) is known as the triangle inequality. When NLOS bias
bi,j > 0 with iid is added to each distance with the assumption
that NLOS bias is much larger than Gaussian noise ni,j �
bi,j , we can obtain the following two cases for (10) depending
on bi,{∑q2

j=1 (d2,j + b2,j) ≥ d1,1 + b1,1 > d1,1,

d1,1 + b1,1 >
∑q2

j=1 (d2,j + b2,j) > d1,1.
(11)

From (11), we can derive (12).

d1,1 + b1,1 ≥ min(
q2∑

j=1

(d2,j + b2,j), d1,1 + b1,1) > d1,1. (12)

Therefore, node vsrc can mitigate the NLOS error for d1,1 by
using SPD selection. (10) can be extended to the

∑qi

j=1 dp,j ≥
d1,1, for arbitrary p. (12) then produces the general case that
the number of nodes is more than three as in (13).

d1,1 + b1,1 ≥ min(
q1∑

j=1

(d1,j + b1,j),
q2∑

j=1

(d2,j + b2,j),

. . . ,

qp∑
j=1

(dp,j + bp,j)) > d1,1. (13)

It is worth noting that (13) means that SPD selection can
mitigate the NLOS error for d1,1 without the false NLOS
mitigation and anchor nodes. The distance estimated by using
the SPD selection is used for MDS and iterative trilateration in
MLM. Since the SPD selection is independent of variance of
NLOS bias, it can be applied both static and mobile networks.



E. MDS

The position of each node is initialized by using a classical
MDS. To cope with the large-scale multi-hop networks, we use
the merging method proposed in [3]. First, all nodes construct
the distance matrix by using the SPD selection d̂{k,l} between
the all pairs of nodes (k, l) within two-hops. Nodes estimate
the node positions within two-hops by using the classical MDS
and obtain the local coordinates. These local coordinates are
iteratively merged into one set of coordinates.

The classical MDS is operated as follows. First, the squared
distance matrix, D(2)

i = {d̂2
{k,l}} is generated. The scalar

product matrix, Bi is constructed by applying double centering
as Bi = − 1

2JiD
(2)
i Ji, where Ji = In − 1

n11T and 1 is an n
by 1 vector of ones and n is the length of Di. A singular value
decomposition is conducted as Bi = UiViUT

i . A coordinate
matrix is then given by Xi = UiΛ

1/2
i . P 0

i (x0
i , y

0
i ) is obtained

by extracting the first and second columns of Xi.

F. Iterative trilateration

Finally, when there are at least three anchor nodes within
one-hop, the node conducts the trilateration for the unlocalized
node position based on the anchor nodes. Once an unlocalized
node position is estimated, it is configured as a pseudo-anchor
node, and it conducts the trilateration for other unlocalized
nodes iteratively. The estimated position (x̂i, ŷi) for unlocal-
ized node i using trilateration is given by minimizing the cost
function in (14),

M1
A∑

j=1

{
d̂j −

√
(x̂i − xj)2 + (ŷi − yj)2

}2

, (14)

where (xj , yj) are anchor node positions and d̂j is the esti-
mated distance from the unlocalized node i to anchor nodes j
for j = 1, . . . , M1

A within one-hop. Although trilateration can
accurately estimate node positions based on anchor nodes, it
suffers from error accumulation.

In order to avoid the error accumulation, we introduce the
error accumulation management, which limits the iterative tri-
lateration by only using the pseudo anchor nodes with a certain
number of iterations γ. In the experiment, we experimentally
determine γ = 2 to avoid large error accumulations. Let N(v)
denote the set of the one-hop nodes of v ∈ V and SA is
the set of anchor nodes and UN is the set of unlocalized
nodes. The pseudo-code for iterative trilateration with the error
accumulation management is described in Algorithm 1.

Algorithm 1 Pseudo-code for iterative trilateration

1: for unlocalized node v ∈ UN , L(v) = 0 do
2: NA(v) = N(v) ∩ SA, κ = |NA(v)|
3: if (κ ≥ 3&&

Pκ L(NA(v))
κ ≤ γ) then

4: Conduct trilateration for v using (14)
5: � Configure v as pseudo anchor node
6: SA ← SA + {v}, UN ← UN − {v}
7: L(v)←

Pκ L(NA(v))
κ + 1

(a) Rectangular building (b) L-shaped building

Fig. 3. Obstruction deployments for (a) rectangular of 100 (height) × 20
(width) (m) and (b) L-shaped of 100 (height) × 120 (width) (m) buildings.

III. PERFORMANCE EVALUATION

A. Simulation setting

The performance of MLM in mixed LOS/NLOS environ-
ments is evaluate by using Matlab simulator. We evaluated
two obstruction deployments as shown in Fig. 3. Figure 3(a)
is the rectangular building based on the floor map presented in
the UWB channel measurements [16] and Fig. 3(b) is the L-
shaped building that is made by patching the two rectangular
buildings. Nodes are randomly deployed inside the buildings.

We use the UWB radio propagation models for both LOS
and NLOS defined in IEEE 802.15.4a channel modeling sub-
committee [8]. The radio coverage of each node is determined
by using the path loss model of the office indoor environ-
ment [8]. The receiver sensitivity is set as −95 (dbm). We
assume that the coverage of TOA measurement is identical
to the radio coverage. LOS measurement variance σv is set
to σv = 0.25 (m). For the NLOS measurement noise, we
use the multi-path delay parameter specified in [17]. The
interarrival times of the received impulse clusters are modeled
by a Poisson distribution [17] and the multi-path cluster arrival
rate is specified by Λ(1/ns) [17]. Therefore, mean value of
NLOS bias λ is computed as (1/Λ) ∗ c = 2.49 (m), where c
is the speed of the light.

The measurement update interval of MBKF is set to 0.1 (s).
β = 12, and σ2

u = 0.1 are chosen. The nodes move along with
random way point (RWP), which the velocity vmn is randomly
chosen from 0 < vmn ≤ 2 (m/s). The observation time to
collect the TOA measurements is 20 (s).

For the metric of localization performance, we use the root
mean squared error (RMSE) defined as

RMSE =

√√√√ 1
Mu

Mu∑
i=1

(x̂i − xi)2 + (ŷi − yi)2, (15)

where (xi, yi) represents the actual position of node i, and
(x̂i, ŷi) is the estimated position. Simulation trials are con-
ducted 40 times with random seeds and these are averaged.

We compared the MLM performance with the following
methods:
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1) MDS-MAP(P) [3]: two-hop local maps generated by ap-
plying classical MDS are iteratively merged to estimate
all node positions.

2) Lower bound (LB) of MDS-MAP(P): two-hop local
maps constructed by using the distance information with
the assumption that all links are LOS regardless of the
obstructions is applied to MDS-MAP(P). This assump-
tion is impossible for NLOS environments, however,
we use the case as the best achievable performance
benchmark of the method.

3) Primitive iterative trilateration (PIT): Trilaterations are
iteratively applied to estimate node positions. For PIT,
initial positions are randomly determined by using a
uniform distribution over the deployment field.

4) LB of PIT: PIT is conducted by using the distance
information with the assumption that all links are LOS.
Initial positions are randomly determined by using a
uniform distribution over the deployment field.

We do not compare the performance with the local and global
refinement steps described in [3] since the refinement steps
can be applied to MLM and other localization techniques after
determining the initial positions.

B. Simulation results

1) Rectangular node deployment: Figure 4 shows the av-
erage RMSE when the number of nodes is varied and ratio of
anchor nodes (RA) is 10%. The number of nodes is increased
from 20 to 100. AH is plotted against each connectivity that
shows the average number of one-hop nodes. MLM (mobile)
corresponds to the case when all nodes are mobile for TOA
measurements such that MBKF and SPD selection are applied
to mitigate NLOS errors. MLM (static), on the other hand,
corresponds to the case when all nodes are stationary and
only SPD selection is used to mitigate NLOS error. The
RMSE of MLM (mobile) outperforms MDS-MAP(P). On the
other hand, the performance of MLM (static) is similar to
that of MDS-MAP(P). For example, MLM (static) and MLM
(mobile) have 4% and 27.8% better accuracy than MDS-
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MAP(P), respectively when the connectivity is 18.2. Although
PIT and LB of PIT show fine accuracy for the connectivity of
4.7 and 9.4, the percentage of localized nodes is quite low.
For instance, the percentage of localized nodes for PIT is
11.8, 64, and 99.2% for the connectivity of 4.7, 9.4 and 13.7,
respectively, while that of MLM is 100% for the connectivity
of 4.7.

It is worth mentioning that the value of AH is less than
three in Fig 4, which can not be handled by the approach
reported in previous work [5], [6]. The results demonstrate that
using mobility for localization is beneficial and, as a result,
the MLM is a more robust solution for the mixed LOS/NLOS
environments.

Due to space limitation, we do not show the detailed
results of MBKF in this paper. We, however, have found
that MBKF sufficiently mitigates the NLOS error even in the
situations where nodes have the LOS/NLOS radio coverage
inside the obstructed buildings. Such an operational environ-
ment introduces LOS/NLOS transitions for short periods and
disconnections of ad-hoc networks with the random motion.

Figures 5 shows the average RMSE when the number of
nodes varies and RA is 15%. The RMSE of MLM (static)
is improved as compared to the results of Fig. 4 and it
outperforms the MDS-MAP(P). That is so, because the MLM
conducts the iterative trilateration using SPD selection based
on the anchor nodes. The RMSE of MLM (mobile) sufficiently
outperformed MDS-MAP(P) and it is much closer to the LB of
MDS-MAP(P). For example, MLM (static) and MLM (mobile)
have 13.8% and 40.2% better accuracy than MDS-MAP(P),
respectively, when the connectivity is 16.9.

2) L-shaped node deployment: Figure 6 shows the average
RMSE when the number of nodes varies and RA is fixed
at 10%. The number of nodes is increased from 50 to 170.
Both MLM (static) and MLM (mobile) outperforms the MDS-
MAP(P) in terms of RMSE. For example, MLM (static) and
MLM (mobile) have 17.9% and 26.5% better accuracy than
MDS-MAP(P) respectively when the connectivity is 16.9.
Notably, the RMSE of MLM (mobile) is much closer or
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at some cases better than that of the LB of MDS-MAP(P).
This is because MDS-MAP(P) has poor performance in the
non-convex networks than convex networks [3]. MLM uses
iterative trilateration with the error accumulation management
based on anchor nodes after initialization by using MDS,
hence, it is more robust for the non-convex networks. Again, it
should be noted that MLM is still with AH<3, which previous
related work [5], [6] does not cope with this case.

Figure 7 shows the average RMSE when the number of
nodes is varied and RA is 15%. Remarkably, the RMSE of
MLM (mobile) is better than that of the LB of MDS-MAP(P)
in most cases. The RMSE of MLM (static) is also approaching
the LB of MDS-MAP(P). MLM (static) and MLM (mobile)
have 27.3% and 39.9% better accuracy than MDS-MAP(P),
respectively when the connectivity is 16.9.

IV. CONCLUSION

The key aspect of the MLM is to exploit mobility to
make the TOA measurement dynamic during the localization
in a multi-hop ad-hoc network. We have shown that TOA
measurements with mobility enhance localization performance

in NLOS environments. We have also shown that SPD selec-
tion has the useful property of mitigating NLOS errors. Our
simulation results demonstrate that the proposed combined
positioning approach with MDS initialization and iterative
trilateration with the error accumulation management mostly
provides the superior performance than the previous methods
when AH<3.

Due to the hardware limitations, TOA measurement capabil-
ity may not be available for all nodes. Our future work focuses
on extending our current research to also use received signal
strength (RSS) for localization in combination with mobility
while using a suitable filtering technique such as a particle
filter. An experiment for validation with real sensor nodes is
also future work.

REFERENCES

[1] A. Savvides, H. Park, and M. B. Strivastava, “The N-Hop Multilateration
Primitive for Node Localization Problems,” Kluwer Mobile Networks and
Applications (MONET), vol. 8, no. 4, pp. 443–451, Aug. 2003.

[2] D. Moore, J. Leonard, D. Rus, and S. Teller, “Robust Distributed Network
Localization with Noisy Range Measurements,” Proc. ACM Sensys, pp.
50–61, Nov. 2004.

[3] Y. Shang, W. Ruml, Y. Zhang, and M. Fromherz, “Localization from
Connectivity in Sensor Networks,” IEEE Transactions on Parallel and
Distributed Systems, vol. 15, pp. 961–974, Nov. 2004.

[4] J. Costa, N. Patwari, and A.O. Hero III, “Distributed Weighted-
Multidimensional Scaling for Node Localization in Sensor Networks,”
ACM Transactions on Sensor Networks (TOSN), pp. 39–64, Feb. 2006.

[5] S. Venkatesho and R. M. Buehrer, “A Linear Programming Approach
to NLOS Error Mitigation in Sensor Networks,” Proc. ACM IPSN, pp.
301–308, Apr. 2006.

[6] P. Chen, “A Non-Line-of-Sight Error Mitigation Algorithm in Location
Estimation,” Proc. IEEE WCNC, vol. 1, pp. 316–320, Nov. 1999.

[7] S. Gezici, Z. Tian, G. B. Giannakis, H. Kobayashi, A. F. Molisch, H.
V. Poor, and Z. Sahinoglu, “Localization Via Ultra-wideband Radios: A
Look at Positioning Aspects for Future Sensor Networks,” IEEE Signal
Processing Magazine, vol. 22, no. 7, pp. 70–84, Jul. 2005.

[8] A. F. Molisch, B. Kannan, D. Cassioli, C. C. Chong, S. Emami, A. Fort,
J. Karedal, J. Kunisch, H. Schantz, U. Schuster, and K. Siwiak, “IEEE
802.15.4a channel model - final report,” IEEE 802.15-04-0662-00-004a,
Nov. 2004.

[9] J. D. Parsons, “The Mobile Radio Propagation Channel,” John Wiley &
Sons, 2000.

[10] L. Hu and D. Evans, “Localization for Mobile Sensor Networks,” Proc.
ACM Mobicom, pp. 45–57, 2004.

[11] B. Priyantha, H. Balakrishnan, E. Demaine, and S. Teller, “Mobile-
Assisted Localization in Wireless Sensor Networks,” Proc. IEEE Infocom,
pp. 172–183, Mar. 2005.

[12] N. J. Thomas, D. G. M. Cruickshank, and D. I. Laurenson, “A Robust
Location Estimator Architecture with Biased Kalman Filtering of TOA
Data for Wireless Systems,” Proc. IEEE 6th Int. Sypm. on Spread-
Spectrum Tech. & Appli., vol. 1, pp. 296–300, Sep. 2000.

[13] B. L. Le, K. Ahmed, and H. Tsuji, “Mobile Location Estimator with
NLOS Mitigation Using Kalman Filtering,” Proc. IEEE WCNC, vol. 3,
pp. 1969–1973, Mar. 2003.

[14] I. Guvenc, C. C. Chong, and F. Watanabe, “NLOS Identification and
Weighted Least Squares Localization for UWB Systems Using Multipath
Channel Statistics,” EURASIP Journal on Advances in Signal Processing,
Jan. 2008.

[15] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, “Introduction
to Algorithms,” The MIT Press, 2001.

[16] B. Kannan, K. C. Wee, S. Xu, C. L. Chuan, F. Chin, C. Y. Huat,
C. C. Choy, T. T. Thiang, P. Xiaoming, M. Ong, and S. Krishnan,
“Characterization of Ultra-Wideband Channels: Large-Scale Parameters
for Indoor & Outdoor Office Environments,” IEEE 802.15-04-0383-00-
004a, Jul. 2004.

[17] B. Kannan, K. C. Wee, S. Xu, C. L. Chuan, F. Chin, C. Y. Huat, C.
C. Choy, T. T. Thiang, P. Xiaoming, M. Ong, and S. Krishnan, “UWB
Channel Characterization in Indoor Office Environments,” IEEE P802.15-
15-04-0439-00-004a, Aug. 2004.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

