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1BABSTRACT 

 

In this paper, we present our work using ultrasonic sensing 

of speech for digit recognition. First, a set of spectral 

ultrasonic features are developed and tuned in order to 

achieve optimal performance for the digit recognition task. 

Using these features, we demonstrate an overall accuracy of 

33.00% on a digit recognition task using HMMs with 

recordings from 6 speakers. The results indicate that 

ultrasonic sensing of speech is viable, but that further work 

is needed to achieve word accuracies that match those of 

audio. Finally, experimental results are presented which 

demonstrate that fusing information from ultrasound and 

audio sources show marginal improvements over audio-only 

performances.  

Index Terms— ultrasound, digit recognition, fusion 

 

1. INTRODUCTION 

 

Ultrasound Doppler sensing of speech offers a new a 

exciting paradigm for sensing speech. A pure tone in the 

ultrasound range is emitted by a transmitter 

facing the speaker, and the reflected wave captured by a 

receiver. The reflected wave undergoes frequency 

"Doppler" shifts and amplitude envelope modulations 

proportional to lip and facial mouth movements. By 

analyzing the received ultrasound signal we hope to decode 

the underlying sounds associated with speech. 

Ultrasound sensing of speech is important in cases 

where the speaker needs a "silent speech interface", i.e., 

when speech needs to be uttered in an inaudible 

way. These cases arise when the speaker is in a public space 

and does not wish to be heard speaking aloud, or when 

public etiquette dictates that the speaker not annoy those 

around him/her. Additionally, ultrasound sensing of speech 

is important as an additional modality to audio itself, by 

providing additional features to a recognizer that encode 

information about the movement of the articulators. Since 

the ultrasound signal is not corrupted by additive noise in 

the audible range it is expected that the ultrasonic signal will 

be robust in low SNR's. 

All previous work involving ultrasonic sensing of 

speech have either not addressed speech recognition, used 

unrealistic settings, or otherwise lack reproducibility due to 

the use of non-standard recognition architectures. in [2][3], 

Ultrasonic Doppler sensing of speech is employed for 

speaker recognition and voice activity detection. a more 

exhaustive analysis of ultrasonic sensing for speech 

recognition was done in [4]. However, this work used a 

segmental landmark-based recognizer instead of a more 

standard frame-based HMM framework. Additionally, in [4] 

an artificial constraint on the number of digits in the 

utterance was imposed using a fixed-length loop grammar. 

In this work, we sought to perform ultrasonic sensing 

of digits using the standard AURORA HTK architecture 

[5][6], in which the ultrasonic features are used to train 

standard left-to-right digit HMMs. This framework allows 

for more direct comparison with audio, and enables 

reproducibility of our results on a common platform used by 

many other researchers. Additionally, we imposed no 

constraint on the number or digits in each utterance (as is 

done in AURORA). 

Another motivation for our work is to explore the 

performance of ultrasonic sensing of speech when the 

sensor is located at 16inches from the speaker. In previous 

work [4], the sensor was at 6-8 inches from the face. In 

many applications, such as when the sensor is affixed to a 

car dashboard, computer screen, or kiosk, a distance of 16 

inches is a more realistic distance setting than 6-8 inches. 

The outline of our paper is as follows: in section 2, a 

brief description of the ultrasound board we used is 

provided. Section 3 provides details of our ultrasonic 

features and tuning experiments. In section 4, the data set 

we use for recognition and evaluation is provided. In section 

5, results from ultrasound-only experiments are shown and 

discussed. in section 6, results from our fusion experiments 

with audio are shown and discussed. Finally, we offer 

conclusions and suggestions for future work in section 6. 

 

2. ULTRASOUND BOARD DESCRIPTION 

 

The basic building blocks of the ultrasound 

board used in this work are depicted in Fig 1. the board is 

identical to the one used in [4][7]. The main advantage of 

this hardware over those used in prior work is that it enables 

synchronized two-channel output of audio and ultrasound 



signals. The microphone is responsible for the audio 

capture. The ultrasound transmitter emits a 40 kHz carrier 

tone and the receiver captures the reflected and modulated 

carrier. The ADC in the board delivers ultrasound samples 

at 24 kHz rate, hence the carrier gets aliased to 8 kHz. 

Audio signal is sampled at 16 kHz in synchrony with 

ultrasound. An example spectrogram of recorded ultrasound 

signal and a time-slice of the spectrogram are shown in Fig. 

2. It is clear from this figure that information is concentrated 

around the carrier. After modulation, the information in 

speech would be encoded in the frequency shifts and 

envelope amplitude variation of the carrier. 

 
3. ULTRASOUND FEATURE EXTRACTION 

AND PARAMETER TUNING 

 

An appropriate set of ultrasound features were developed 

before recognition experiments were performed. The 

features are cepstral in nature, and their parameters were 

chosen after a round of tuning experiments designed to 

optimize recognition accuracy on a development set 

consisting of two speakers who spoke at a distance of 

16inches from the board.  

Before feature extraction is performed, the ultrasound 

signal is first pre-processed: the signal is zero-meaned, then 

passed through a MA filter that averages three consecutive 

samples to suppress the 8khz carrier. Finally, the MA'd 

signal is passed through a difference operator. The 

frequency response of this processing is shown in Fig 3. A 

spectrogram of the pre-processed signal is shown in Fig 4. 

Frames of 50 msec are extracted from the pre-processed 

signal via a Hamming window. Then a 2048-pt FFT is 

performed per frame. The FFT bins corresponding to the 7-

Khz frequency range are extracted, the logarithm of their 

magnitudes taken, and finally, a DCT is applied to compact 

energy in the first few coefficients and de-correlate the 

signal. Tuning experiments revealed that the first 38 DCT 

coefficients along with energy offered a reasonable set of 

static features. Finally, velocity and acceleration coefficients 

are appended yielding a final vector length of 117 features.  

The results of our tuning experiments to fix the 

frequency range of interest are shown in Table I. From this 

we note that 7 kHz to 9.5 kHz is about optimal. 

We also need to tune the ultrasound gain and 

ultrasound power. The former refers to the sensitivity of the 

ultrasound receiver and the latter to the strength of the tone 

the transmitter emits. For tuning gain, we fixed power at 3 

and noted the performance variation with varying gain. The 

 
Fig. 1. Picture of the Ultrasound Board 

 
Fig. 4. Spectrogram and one time-slice of it of the 

preprocessed ultrasound in the frequency range of 

interest for utterance “one”. 

 
Fig. 2. Spectral Information in the Ultrasound Signal 

 
Fig. 3. Frequency Response of the Ultrasound 

Preprocessing Filter 



results are in Table II. From this, we fixed gain value at 5. 

For tuning power, we fixed gain at 5 and noted the 

performance variation with varying power. The results are 

in Table III. From this we fixed the power value at 3. 

 

4. DESCRIPTION OF DATASET 

 

We recorded 40 utterances from 6 male speakers each. The 

ultrasound board is capable of recording both audio and 

ultrasound signal in synchrony. Each utterance had all 10 

digits in the set {ZERO, ONE, …, NINE} in random order 

and without repetition. Since speed appeared to affect the 

ultrasound performance, for each speaker, 20 utterances 

were uttered slowly with pauses in-between of more-or-less 

equal duration, while the other 20 were uttered quite fast in 

3-3-4 format. The final ultrasound board settings we used 

after tuning are: distance of the board from the speaker=16 

in., ultrasound gain = 5, ultrasound power = 3. 

Also, to simulate different audio noise conditions, we 

artificially add noise recorded in a Mercedes car to the 

audio signal. To corrupt a given audio signal, a random 

segment of the same length as the audio signal is extracted 

from the car noise. Then, depending on the SNR level, the 

noise segment is scaled and added to the audio signal. This 

was achieved using the FaNT software that is popular for 

this purpose [6]. 

 

5. EXPERIMENTS WITH ULTRASOUND 

DATA 

We first investigate the performance of ultrasound features 

for speaker-independent digit recognition. Our setup is 

similar to the AURORA experimental framework [5] using 

HTK [6]. Since we only have a limited amount of data – 6 

speakers – we used leave-one-out strategy for evaluation, 

i.e., we evaluate all 40 utterances from each speaker using 

models trained using all the remaining 5 speakers, and then 

state the average over all the 6 speakers as the final digit 

recognition accuracy. All digit models are 16-state HMMs 

with one Gaussian per state. Only one mixture was used due 

to limited amount of data. 

Our results are shown in Table 4. Using ultrasound-

only features we observed a mean speaker-independent digit 

recognition accuracy of 33%. While this is low compared to 

the audio-only performance of 94.79%, even this high a 

performance is still surprising and very encouraging. Our 

results compare favorably to the results of [4] which 

indicated WER of 70.5% using ultrasound alone, even 

though [4] was constraining the recognition to exactly 10 

digit strings. 

 

6. FUSION OF ULTRASOUND AND AUDIO 

INFORMATION 

 

We also investigated the effect of fusion of information 

from ultrasound and audio signals on speech recognition 

performance over a variety of noise conditions. To achieve 

this, we use a asynchronous decision fusion technique [1] to 

fuse the scores from the two models: independent models 

are trained for audio and ultrasound; n-best lists are 

generated from audio and rescored using both audio and 

ultrasound; then the hypothesis with the highest weighted 

combination is chosen. We chose this technique for fusion 

because of the observed asynchronicity between audio and 

ultrasound signal (events in ultrasound signal precede those 

in audio by hundreds of milliseconds). 

An example of variation in digit accuracy with varying 

alpha is shown in Table V using models trained using clean 

data and evaluated with noisy data with SNR=5dB. From 

Table IV 

Ultrasound- and audio- only performances (accuracy %) 

Mode Fast speech Slow speech Both 

Audio 93.67 78.92 94.79 

Ultrasound 37.75 18.17 33.00 

 

Table I 

Tuning Frequency Range 

for Ultrasound Feature Extraction 

Freq range Fast speech Slow speech 

4.0-12.0 39.33 53.33 

5.5-9.0 39.33 68.00 

6.0-9.5 43.33 60.00 

6.5-9.5 34.67 70.67 

7.0-10.0 42.00 72.00 

7.0-9.5 44.00 80.00 

7.0-9.0 42.00 77.86 

7.5-9.0 36.67 76.67 

7.5-8.5 32.67 60.00 

 

Table II 

Tuning Ultrasound Gain 

(with Ultrasound Power fixed at 3) 

Gain Fast speech Slow speech 

4 24.67 37.33 

5 43.33 54.00 

6 30.00 30.00 

 
Table III 

Tuning Ultrasound Power 

(with Ultrasound Gain fixed at 5) 

Power Fast speech Slow speech 

2 30.67 43.33 

3 35.33 57.14 

4 39.33 20.67 

5 38.67 19.33 

 



this, we see that there is a 2.71% absolute improvement in 

accuracy at α=0.5 as compared to using audio alone (α=0.0). 

Table VI shows the performance after fusion for 

evaluation data at various SNRs. The clean-train condition 

indicates that the corresponding audio models are trained 

using only clean audio. This should provide an estimate of 

performance in unseen noise conditions. Multiconditioned-

train condition indicates that the models are trained with 

training data from all those SNRs. From table 5 we see that 

average performance gain by adding ultrasound in clean 

train condition is 0.46% absolute, and for multiconditioned 

training is 0.09% absolute. In both these conditions, we see 

that addition of ultrasound information to audio improves 

performance only marginally. Our results differ markedly 

from those in [4] where much stronger performance gains 

are obtained by using ultrasound in low SNR conditions (6-

15% absolute improvement for SNR levels of 10dB and 

0db). It is unclear whether the performance gains reported 

there are due to better feature extraction, lower distance of 

the speaker to the board, the artificial constraint on the 

number of digits in the utterance imposed using a fixed-

length loop grammar, or a better fusion technique. 

 

7. CONCLUSIONS AND FUTURE WORK 

 

In this work, we have explored the use of ultrasound 

Doppler sensing of speech for speech recognition. Some 

details of the parameter tuning experiments and the feature 

extraction technique were mentioned. Significant variation 

in performance with utterance speed was noted. This 

deserves further exploration in the future to normalize 

performance across different utterance speeds and hence to 

increase the overall performance. A WER of 33% was 

observed on digit recognition using ultrasound alone. A 

marginal improvement in digit accuracy was shown by 

fusing information in ultrasound signal with that of audio. 

Further work on more efficient fusion of the two 

information sources is also necessary before ultrasonic 

sensing can be considered in practical multimodal speech 

recognition systems. Finally, other aspects that require 

attention are the variation of ultrasound performance with 

changes in pose (the angle between the ultrasound board 

and the face of the speaker), distance of the speaker from 

the board and Doppler noise due to wind effects. 
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Table V 

Variation of Digit Accuracy with Combination Weight 

α. Clean Train – Noisy (SNR=5 dB) test and using 

audio 10-best list. 

α Accuracy % 

0.0 60.67 

0.1 60.58 

0.2 60.96 

0.3 61.42 

0.4 61.46 

0.5 61.33 

0.6 61.08 

0.7 60.67 

0.8 60.75 

0.9 60.96 

1.0 60.75 

 

Table VI 

Performances of fusion experiments (accuracy %). 

SNR 

(Noisy 

Test) 

With Clean 

Train 

With Multiconditioned 

Train 

AU-only Fusion AU-only Fusion 

Clean 94.79 95.25 94.58 94.67 

10dB 77.21 78.04 90.21 91.00 

5dB 60.67 61.46 86.21 87.12 

0dB 36.75 36.75 74.08 76.04 

 




