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Abstract
This paper describes our recent analysis on the security and privacy of biometric feature
vectors obtained from fingerprint minutiae. A large number of contiguous regions (cuboids)
are selected at random in the minutiae space, and several new features are extracted from the
minutiae inside each such cuboid. Specifically, the features are extracted from the average
minutia coordinate within a cuboid, the standard deviation of the minutiae coordinates, and
the aggregate wall distance, i.e., the sum of distance of each minutia from the boundary of the
cuboids. In terms of matching performance on a public database, the feature vectors provide
an equal error rate of 3% even if the imposter is allowed to use the same local patches as the
genuine user. Performance within a secure biometrics framework is evaluated by applying an
LDPC code to the feature vectors and storing only the syndrome at the access control device,
for use in authentication. The paper concludes with a discussion on methods to analyze
security and privacy of biometric systems that use such local-aggregate-based feature vectors
in a secure biometric recognition framework. This discussion highlights security attacks via
template injection, spoofing, and cancelability compromises and also considers the difficulty
of privacy attacks via template inversion.
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ABSTRACT

This paper describes our recent analysis on the security and privacy
of biometric feature vectors obtained from fingerprint minutiae. A
large number of contiguous regions (cuboids) are selected at ran-
dom in the minutiae space, and several new features are extracted
from the minutiae inside each such cuboid. Specifically, the features
are extracted from the average minutia coordinate within a cuboid,
the standard deviation of the minutiae coordinates, and the aggre-
gate wall distance, i.e., the sum of distance of each minutia from
the boundary of the cuboids. In terms of matching performance on
a public database, the feature vectors provide an equal error rate of
3 % even if the imposter is allowed to use the same local patches
as the genuine user. Performance within a secure biometrics frame-
work is evaluated by applying an LDPC code to the feature vectors
and storing only the syndrome at the access control device, for use in
authentication. The paper concludes with a discussion on methods
to analyze security and privacy of biometric systems that use such
local-aggregate-based feature vectors in a secure biometric recogni-
tion framework. This discussion highlights security attacks via tem-
plate injection, spoofing, and cancelability compromises and also
considers the difficulty of privacy attacks via template inversion.

Index Terms— secure biometrics, fingerprints, binary features,
template inversion

1. INTRODUCTION

With the increasing use of biometric recognition systems in our daily
activities, the privacy and security of biometric templates stored in
these systems is gaining importance. There are many fears about the
possible misuse of stolen templates, e.g., they can be used to cre-
ate spoof biometrics which compromise the system being protected
and may even compromise the privacy of a legitimate user. In order
to eliminate such apprehensions, a number of template protection
techniques have been proposed. These techniques usually transform
the biometric template before storage in such a way that the original
biometric cannot be recovered from the stored information. In some
systems, the stored template can be revoked if it is known to have
been compromised.

In this work, we study the privacy and security of the features
extracted from fingerprint minutiae aggregates. Our overall strategy
is based on extracting a binary vector from a minutiae map, applying
an error correcting code to this vector and storing its syndrome as a
secure biometric [1]. During authentication, the system accepts a
probe biometric and attempts to recover the original biometric with
the help of the syndrome. A cryptographic hash of the recovered
original biometric is compared with a hash of the enrollment biomet-
ric to confirm the success or failure of authentication. The analysis
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presented here also applies to previously proposed secure biometrics
schemes [2, 3, 4] which are functionally similar to the syndrome-
based scheme used herein.

At this point, it is essential to clarify the meaning of security and
privacy in the context of this work. Security is measured by the num-
ber of attempts needed by an imposter to successfully authenticate
as a genuine user. Privacy is measured by the number of attempts
needed by an attacker to recover the original biometric which, in our
case, is the fingerprint minutia map. Naturally, security and privacy
depends on the way in which the features are extracted and secured
and the type of side information available to the attacker. In, [1], bi-
nary features were extracted from the number of minutiae present in
randomly chosen cuboidal patches in the (X, Y , Θ) space occupied
by the minutia. The present work differs from [1] in three funda-
mental ways which will be detailed in the sequel: First, each cuboid
now generates a richer feature set from which a larger number of bits
can be extracted and those with the highest discriminability are used
for matching. Second, the fingerprints belong to a public database
and therefore are no longer pre-aligned. We adopt a method first
proposed by Nandkumar et al. [5] to align the fingerprints during
enrollment, training and testing. Third, the difficulty of template in-
version, i.e., recovering the minutiae map given the binary feature
vector and all the random cuboids, is considered for the first time.
We also discuss the security with respect to different attacks that
can be staged on the proposed system, viz., template injection, spoof
creation, and cancelability attacks.

The remaining paper is organized as follows: section 2 describes
the features extracted, section 3 explains the procedure for selecting
specific features. The experimental results are provided in section
4. Section 5 discusses the various security and privacy aspects of
the proposed scheme and section 6 provides a discussion on non-
invertibility of the template.

2. FEATURE EXTRACTION

The motivation for extracting features from aggregate measures cal-
culated over a contiguous region, such as a cuboid or a sphere, comes
from inherent properties of fingerprint minutia. While fingerprint
minutia remain stable over many years, their locations on a minutia
map vary slightly at every measurement: They may move slightly or
even disappear owing to differences in pressure applied to the sen-
sor or due to misalignment. Moreover, new minutia points may be
inserted because of dust or cuts on the finger. Therefore, feature
vector bits based on individual minutia points is unreliable. How-
ever, when features are based on aggregate measures calculated over
a region, it is possible to account for, and mitigate, the effects of
minutiae movement, insertion and deletion. In this work, the region
is a cuboid with randomly chosen dimensions along the spatial (X
andY ) axes and along the orientation (Θ) axis. Corresponding to
each randomly chosen cuboid, we introduce three minutiae-based



features, viz. (1)Aggregate wall distance: Summation of the closest
distance of each minutia from the cuboid boundary, (2)Minutiae Av-
erage: Average coordinate of all the minutiae present in each cuboid
in a given measurement, and (3)Minutiae Deviation: Standard de-
viation of minutiae coordinates present in each cuboid in a given
measurement. These are elaborated further below.

The aggregate wall distance (δ) for a cuboid bounded by
(xmin, xmax, ymin, ymax, θmin, θmax) is computed as:

δ =
t

∑

i=1

min(δx, δy, δθ, τδ) (1)

wheret is the number of minutiae in the given cuboid,τδ is a thresh-
old used for wall distance, andδx, δy, andδθ are given bymin(|xi−
xmin|, |xi −xmax|), min(|yi −ymin|, |yi −ymax|), andmin(|θi −
θmin|, |θi − θmax|), respectively. If all the minutiae are at distance
atleastτδ from the cuboid boundary, the aggregate wall distance is
τδ times the number of minutiae in the cuboid. The thresholdτδ de-
emphasizes the contribution of the minutiae close to boundary that
are likely to shift out of the cuboid in the subsequent impressions
due to imperfect alignment.

Both minutiae average and minutia deviation features consist of
three components each corresponding to theX, Y , andΘ axes coor-
dinates. Standard formulas are used for computing the average and
the standard deviation for theX andY coordinates whereas forΘ
coordinate, the meanµθ and the standard deviationσθ are computed
as follows:
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whereθi is the angle corresponding to theith minutia. If there is
no minutia in a particular cuboid, the average features assume the
value corresponding to the center of the cuboid whereas the devia-
tion features are set to zero. The deviation features are also set to
zero if there is only a single minutia in the cuboid. The extracted
features are binarized using the median value of a given feature cal-
culated over all enrolled fingerprints. Using the median value as the
threshold ensures that each bit has equal probability of being 1 or 0.

3. SELECTION OF DISCRIMINABLE FEATURES

There are two advantages of randomly generating the cuboids. The
first advantage is cancelability: If the template is compromised, a
new set of randomly generated features can be used to create a com-
pletely new binary template. The second advantage is a large choice
of features from which to perform feature selection. Appropriate
selection of features is required in order to eliminate features that
may be too correlated or too noisy. In order to ensure that most of
the cuboids occupy the printed region in a fingerprint, each cuboid
is centered at a randomly selected minutiae from the database. The
remaining three parameters of cuboids i.e., the dimensions along the
X, Y , andΘ directions were randomly generated. Prior to this, all
the fingerprints in the database are shifted such that center of the
bounding rectangle coincides with the center of the fingerprint im-
age.

As shown in [6] the two main criteria of feature selection are de-
pendence among the features (or redundancy) and discriminability
(or relevance) of each feature. If the features have high correlation
then some of the features can be discarded in order to accommo-
date additional unrelated features, thereby improving the matching
performance. As a first step in eliminating inferior features, those
cuboids that have large overlap with other cuboids are discarded, be-
cause these would generate highly correlated features. The following
procedure is used for this as in [1]: (1) Compute the relative overlap,
i.e., the ratio of volume of intersection to the volume of union, for
all pairs of cuboids. (2) Select the pair having highest relative over-
lap. (3) Discard the cuboid whose maximum relative overlap with
the other cuboids is greater. (4) Repeat steps 2 and 3 until desired
number of nearly non-overlapping cuboids or the desired reduction
in overlap is obtained.

Next, 7 bits are extracted from each of the remaining cuboids
as explained in Section 2. Of these, 3 bits are obtained from the
minutia average, 3 bits fom the minutia deviation and 1 bit from the
aggregate wall distance. Then, replacing the “overlap” criterion in
the above 4 steps by “bit correlation,” the number of usable features
is reduced. After this step, different cuboids contribute a different
number of nearly uncorrelated bits to the feature vector.

Having obtained uncorrelated feature bits, it is necessary to con-
sider the user-specific discriminability of each extracted bit. For this
purpose, we compute the discriminability of each feature for each
of the enrolled fingerprints. The discriminability of each bit (di) is
computed asdi = Ii − Gi whereGi is the fraction of times when
theith bit disagrees for the genuine matches andIi is the fraction of
times when theith bit disagrees for the impostor matches. The bits
retained after this discriminability-based rejection are finally used in
the LDPC based secure recognition system.

4. EXPERIMENTS

The FVC2002 Database-2 [7] was used in our experiments. This
publicly available database contains 100 different users with 8 finger
impressions per user. Each fingerprint is captured using an optical
fingerprint scanner and digitized at 569 dpi. Fig 1 shows two im-
pressions from a fingerprint. In our experiments, the first impression
of each user is enrolled, the next 6 impressions are used for training
and the last impression is used for testing. Prior to feature extraction,
the fingerprints are aligned using high curvature points as described
in [5]. Points along fingerprint ridges, that have high ridge curva-
ture are extracted and stored along with the template. During au-
thentication, similar points are extracted from the query fingerprint
and matched with the stored set to align the fingerprints. The high
curvature points do not reveal any significant information about the
minutiae. Initially, 750 random cuboids are generated, of which 250
are eliminated based on high overlap as explained above. Then, with
seven binary features per remaining cuboid, a long feature vector of
length500 × 7 = 3, 500 bits is generated. Out of these3, 500 bits,
2000 are eliminated based on high correlation as described above.

Now, the set of six training impressions per finger is matched
with the corresponding enrolled impression to evaluate the discrim-
inability of each binary feature bit. In order to compute the impostor
scores for training, second impressions of 20 different users are used.
The discriminability is computed separately for each user in order to
take into account the difference in the fingerprint area printed and
the distribution and quality of minutiae. Finally, a set of 300 bits
are selected based on high discriminability and are used to evaluate
the security-robustness tradeoff of the binary features. Normalized
Hamming Distance (NHD) is used as a distortion measure between



(a) (b)

Fig. 1. Example fingerprints from FVC2002 DB-2 corresponding to
the same finger . Two cuboids containingt1 andt2 minutiae intersect
to create three fragments each havingr1, r2 andr3 minutiae.

Word Length Synd. Length Rate FAR (%) GAR (%)
300 240 0.2 0.01 69
300 255 0.15 0.13 85
300 285 0.05 1.05 95

Table 1. Performance of a secure biometric system using a LDPC
(syndrome) code operating on the 300 most discriminable bits.

two feature vectors. The Receiver Operating Characteristic (ROC)
curves corresponding to the various individual features and the fi-
nal set of features selected using the discriminability are shown in
figure 2. As clear from the results, the matching performance is sig-
nificantly improved by incorporating the average and variance based
minutiae features. When an imposter knows the discriminable fea-
ture bits, the equal error rate (EER) was found to be 3 %. Under
normal operational circumstances, when an imposter does not know
the discriminable feature bits for the victim, the EER was found to
be 2 % as shown in the plots.

Lastly, three different irregular LDPC codes with rate0.2, 0.15,
and0.05 were used to evaluate the security-robustness tradeoff of a
secure biometric system built around the feature extraction described
earlier. In this case, given the syndrome of the LDPC code, and the
probe biometric, the access control device attempts to recover the en-
rollment biometric using Belief Propagation (BP). Table 1 shows the
corresponding results for this system, in which only the syndrome is
stored on the access control device, not the enrollment feature vec-
tor. The three FAR-FRR data points thus obtained are superimposed
on Fig. 2(a). Note that, given only the syndrome as a secure biomet-
ric, an attacker can conceivably generate a feature vector which is
not identical to the enrolment feature vector, but produces the same
syndrome. To prevent access control in attacks of this kind, a cryp-
tographic hash of the enrolment feature vector is stored on the de-
vice. The feature vector obtained after BP decoding is hashed and
compared with the hash of the enrolment feature vector. Access is
granted only if the hashes match.

5. SECURITY ANALYSIS

We now discuss the security of the proposed system in terms of the
following attacks:
1. Template Injection: Given the stored syndrome how difficult is
it to guess a binary template which can be used for successful au-
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Fig. 2. (a) ROC curves for 300-bit features extracted from individual
properties (average, deviation, wall distance), and 300-bit features
extracted from the most discriminable combination of features. Im-
poster side information refers to knowledge of the cuboids used to
generate the victim’s feature set (b) Normalized hamming distance
(NHD) for genuine and impostor matches for the case when the im-
postor does or does not know the side information.

thentication? One strategy is to obtain all the binary vectors that
produce the syndrome stored in the database. There are2k such vec-
tors wherek is the dimension of the ECC employed. Using Gaussian
Elimination to convert the parity check matrix of the LDPC code to
its systematic form, it is straightforward to obtain a vector that would
produce the given syndrome. The remaining2k − 1 vectors can also
be obtained using the corresponding generator matrix. The attacker
can then compute the cryptographic hash values of these vectors and
compare it with the hash of the enrollment feature vector, which is
available on the device. Thus the complexity of this attack is at most
k-bits. For an LDPC codek is given by the difference between the
length of the template and that of syndrome.
2. Spoof Attack: How difficult is it to obtain a fake fingerprint
or minutia map that authenticates successfully? To create a spoof
biometric, it is necessary to know a fingerprint close enough to the
original fingerprint. One way to do this is to try different finger-
prints from a database until there is a false accept. If the system has
a false accept ratef then, on average, it would require≈ 1/f dif-
ferent fingerprints to obtain a false accept. IfC(f) is the number of
binary computations required to test1/f different fingerprints then,



in terms of guessing a binary vector, this amounts to approximately
≈ (log

2
C(f) bits of security. Since a spoof biometric can be used

to construct a binary feature template, the true complexity of a tem-
plate injection attack is approximatelymin(k, log

2
C(f)). Here, it

is assumed that the feature extraction procedure, i.e., configuration
of the cuboids and the various thresholds are known to the attacker.
3. Cancelability Attack: How difficult is it to guess a stored bio-
metric template given that the attacker already has access to another
template created from the same biometric? If compromised, the
stored syndrome is replaced with another syndrome of the template
generated using a different set of cuboids. Cancelability pertains to
the difficulty in guessing the new template given information about
another template generated from the same biometric. As the above
attacks related to template injection and spoof allow reconstruction
of any biometric template given a syndrome, cancelability attack is
at most as hard as template injection, spoof and also template in-
vertibility. Thus, the complexity of a cancelability attack is at most
min(k, log

2
C(f)). Note that, the attacker can take advantage of the

correlation among the new set of features and the old set in order to
reduce this complexity. E.g., if the attacker has a spoof biometric
for an earlier template, the same spoof might compromise the new
template with minor modifications. Therefore, the features used for
the new template must be sufficiently uncorrelated with the earlier
template.
4. Template Inversion: How difficult is it to guess the enrolled
fingerprint or the original minutia map? This attack will be elabo-
rated upon in the next section. Note that, template inversion can lead
to all the aforementioned attacks and evenother systems using the
same biometric and possibly different feature set can also be com-
promised.

6. MEASURING TEMPLATE NON-INVERTIBILITY

Non-invertibility refers to the difficulty in guessing the minutiae con-
figuration of the original fingerprint given the binary template. Let
ti, i = 1, ..., n be the number of minutiae in each of then cuboids
for a given fingerprint impression. Further, consider the fragments
of each cuboid obtained due to intersection with other cuboids and
let ri, i = 1, ..., m, m ≫ n be the number of minutiae in each of
thesem non-intersecting fragments belonging to all then cuboids.
Figure 1 shows the cuboids and fragments in two fingerprints from
same finger. The association betweenti’s andri’s is captured by the
coefficientsIij (3). Since the feature bits in the proposed algorithm
are extracted by thresholding theti’s, access to the final template
and the configuration of the cuboids allows the attacker to set up the
following set of inequalities:

w1(I11r1 + I12r2 + ... + I1mrm) < τ ′

1

w2(I21r1 + I22r2 + ... + I2mrm) < τ ′

2

...

wn(In1r1 + In2r2 + ... + Inmrm) < τ ′

n

ri ≥ 0, i = 1, ..., m (2)

wherewi is the average wall distance for the minutiae in theith

cuboid and

Iij =







1 if fragmentj belongs to cuboidi andbi = 0
−1 if fragmentj belongs to cuboidi andbi = 1

0 otherwise
(3)

wherebi is the bit corresponding to the aggregate wall distance in

theith cuboid andτ ′

i = τi

τ ′

i =

{

−τi if bi = 0
τi if bi = 1

(4)

whereτi is the corresponding median wall distance threshold. Note
that, sincem ≫ n, this system of equations is heavily underdeter-
mined. The above problem can be transformed to a linear system of
inequalities by replacing all thewi’s by τδ (see (1)) and then solving
2 for a integer-valued solution forri. If there are unsatisfied con-
straints, some of those can be satisfied by appropriately selecting the
correspondingwi.

For every possible solution of theri, the feature bits correspond-
ing to the minutiae average and minutiae deviation can be used to
obtain estimates for the mean and variance of each of theX, Y and
Θ coordinates of minutiae by solving another similar set of inequal-
ities. Note that, solving for mean and variance of minutiae would
have additional constraints due to the position and size of each frag-
ment. Finally, given the mean and variance in each fragment, minu-
tiae can be appropriately placed to obtain an estimate of the original
template. This attack is extremely difficult and moreover, it will not
reproduce the original biometric. However, it is likely that the ob-
tained minutiae distribution is closer to the original as compared to
the one obtained via a spoof attack. A less complex but less pre-
cise way to obtain the original biometric is to tessellate the feature
space into equal sized fragments which can be associated with each
cuboid instead of explicitly computing the intersection regions of a
large number of cuboids. Then, slack variables can be introduced in
the set of equations 2 to take into account the difference in the space
covered by cuboid and the associated fragments.
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