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Abstract

This paper describes our recent analysis on the security and privacy of biometric feature
vectors obtained from fingerprint minutiae. A large number of contiguous regions (cuboids)
are selected at random in the minutiae space, and several new features are extracted from the
minutiae inside each such cuboid. Specifically, the features are extracted from the average
minutia coordinate within a cuboid, the standard deviation of the minutiae coordinates, and
the aggregate wall distance, i.e., the sum of distance of each minutia from the boundary of the
cuboids. In terms of matching performance on a public database, the feature vectors provide
an equal error rate of 3% even if the imposter is allowed to use the same local patches as the
genuine user. Performance within a secure biometrics framework is evaluated by applying an
LDPC code to the feature vectors and storing only the syndrome at the access control device,
for use in authentication. The paper concludes with a discussion on methods to analyze
security and privacy of biometric systems that use such local-aggregate-based feature vectors
in a secure biometric recognition framework. This discussion highlights security attacks via
template injection, spoofing, and cancelability compromises and also considers the difficulty
of privacy attacks via template inversion.
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ABSTRACT presented here also applies to previously proposed secure biometrics

schemes [2, 3, 4] which are functionally similar to the syndrome-
Bhsed scheme used herein.

At this point, it is essential to clarify the meaning of security and
vacy in the context of this work. Security is measured by the num-
r of attempts needed by an imposter to successfully authenticate
s a genuine user. Privacy is measured by the number of attempts
o S . eeded by an attacker to recover the original biometric which, in our
the standar.d deV|at|pn of the mlnutlag coordinates, anq th? a99"€5se, is the fingerprint minutia map. Naturally, security and privacy
gate wall distance, i.., t_he sum of distance Of. each minutia fronEiepends on the way in which the features are extracted and secured
the bo_undary of the cuboids. In terms of m_atchlng performance 98nd the type of side information available to the attacker. In, [1], bi-
a public da}tabas_e, the fegture vectors provide an equal error rate H!iry features were extracted from the number of minutiae present in
3 % even if the imposter is allowed to use the same local patCher%mdomly chosen cuboidal patches in th (', ©) space occupied
as thg genuine user. Perfo.rmance within a secure biometrics framsy the minutia. The present work differs fro'm [1] in three funda-
work is (_avaluated by applying an LDPC code to the fea_ture Vecmr?nental ways which will be detailed in the sequel: First, each cuboid
and stor_lng_only the syndrome at the access co_ntrol d_eV|ce, for use Hbw generates aricher feature set from which a larger number of bits
authentication. The paper. conclude§ with a discussion on metho n be extracted and those with the highest discriminability are used
to analyze security and privacy of biometric systems that use su r matching. Second, the fingerprints belong to a public database

Ipcal-aggregate-ba_sed_ featur_e vectors in a secure biometric_recogla-d therefore are no longer pre-aligned. We adopt a method first
tion framework. This discussion highlights security attacks via tem- roposed by Nandkumar et al. [5] to align the fingerprints during

plate_énject;]ona_?fpocl)fmgf, a_nd cancelall(blllty complrom_lses a_nd aISEnrollment, training and testing. Third, the difficulty of template in-
considers the difficulty of privacy attacks via template inversion. version, i.e., recovering the minutiae map given the binary feature

Index Terms— secure biometrics, fingerprints, binary features, vector and all the random cuboids, is considered for the first time.
template inversion We also discuss the security with respect to different attacks that
can be staged on the proposed system, viz., template injection, spoof
creation, and cancelability attacks.

The remaining paper is organized as follows: section 2 describes
he features extracted, section 3 explains the procedure for selecting

activities, the privacy and security of biometric templates stored ir?peuflc_feature_s. The experlmt_antal result_s are proylded In section
these systems is gaining importance. There are many fears about tﬁe Section 5 discusses the various securl_ty and privacy aspects of
possible misuse of stolen templates, e.g., they can be used to cr £ PFOP.OSGO' scheme and section 6 provides a discussion on non-
ate spoof biometrics which compromise the system being protect guertibility of the template.
and may even compromise the privacy of a legitimate user. In order
to eliminate such apprehensions, a number of template protection 2. FEATURE EXTRACTION
techniques have been proposed. These techniques usually transform o )
the biometric template before storage in such a way that the origindih® motivation for extracting features from aggregate measures cal-
biometric cannot be recovered from the stored information. In somgulated over a contiguous region, such as a cuboid or a sphere, comes
systems, the stored template can be revoked if it is known to hav0m inherent properties of fingerprint minutia. While fingerprint
been compromised. minutia remain stable over many years, their locations on a minutia
In this work, we study the privacy and security of the featuresmap vary slightly at every measurement: They may move slightly or
extracted from fingerprint minutiae aggregates. Our overall strateg§ven disappear owing to differences in pressure applied to the sen-
is based on extracting a binary vector from a minutiae map, applyin§©r or due to misalignment. Moreover, new minutia points may be
an error correcting code to this vector and storing its syndrome as'gSerted because of dust or cuts on the finger. Therefore, feature
secure biometric [1]. During authentication, the system accepts %ector bits based on individual minutia points is unreliable. How-
probe biometric and attempts to recover the original biometric witeVer, when features are based on aggregate measures calcuéated ov
the help of the syndrome. A cryptographic hash of the recovered region, it is possible to account for, and mitigate, the effects of
original biometric is compared with a hash of the enrollment biomet/Minutiae movement, insertion and deletion. In this work, the region

ric to confirm the success or failure of authentication. The analysi& @ cuboid with randomly chosen dimensions along the spatial (
andY’) axes and along the orientatio®) axis. Corresponding to

*This work was performed while A. Nagar was an intern at MERL. each randomly chosen cuboid, we introduce three minutiae-based

This paper describes our recent analysis on the security and priva
of biometric feature vectors obtained from fingerprint minutiae. A
large number of contiguous regions (cuboids) are selected at ral Ti
dom in the minutiae space, and several new features are extract%d
from the minutiae inside each such cuboid. Specifically, the feature,
are extracted from the average minutia coordinate within a cuboi

1. INTRODUCTION

With the increasing use of biometric recognition systems in our dail)}




features, viz. (LAggregate wall distance: Summation of the closest As shown in [6] the two main criteria of feature selection are de-

distance of each minutia from the cuboid boundaryM)utiae Av- pendence among the features (or redundancy) and discriminability
erage: Average coordinate of all the minutiae present in each cuboidor relevance) of each feature. If the features have high correlation
in a given measurement, and (@)nutiae Deviation: Standard de- then some of the features can be discarded in order to accommo-
viation of minutiae coordinates present in each cuboid in a giverate additional unrelated features, thereby improving the matching

measurement. These are elaborated further below. performance. As a first step in eliminating inferior features, those
The aggregate wall distance))(for a cuboid bounded by cuboids that have large overlap with other cuboids are discarded, be-
(Tmin, Tmazs Ymin, Ymazs Omin, Omaz) IS COMputed as: cause these would generate highly correlated features. The following

procedure is used for this as in [1]: (1) Compute the relative overlap,

t ) i.e., the ratio of volume of intersection to the volume of union, for
§ =" min(6s,dy, 60, 7s) (1) all pairs of cuboids. (2) Select the pair having highest relative over-
=1 lap. (3) Discard the cuboid whose maximum relative overlap with

the other cuboids is greater. (4) Repeat steps 2 and 3 until desired
number of nearly non-overlapping cuboids or the desired reduction
in overlap is obtained.
Next, 7 bits are extracted from each of the remaining cuboids

s explained in Section 2. Of these, 3 bits are obtained from the
minutia average, 3 bits fom the minutia deviation and 1 bit from the

ggregate wall distance. Then, replacing the “overlap” criterion in

e above 4 steps by “bit correlation,” the number of usable features
Is reduced. After this step, different cuboids contribute a different
umber of nearly uncorrelated bits to the feature vector.

Having obtained uncorrelated feature bits, it is necessary to con-

wheret is the number of minutiae in the given cuboid,is a thresh-
old used for wall distance, ardd, J,,, anddy are given bymin(|z; —
), min(|y; — Yominl, |9i — Ymaz|), andmin(|0; —
Ominl, |0: — Omaz|), respectively. If all the minutiae are at distance
atleastrs from the cuboid boundary, the aggregate wall distance i
75 times the number of minutiae in the cuboid. The threshglde-
emphasizes the contribution of the minutiae close to boundary th
are likely to shift out of the cuboid in the subsequent impression
due to imperfect alignment.

Both minutiae average and minutia deviation features consist a

three components each corresponding taXhé&”, and© axes coor-

dinates. Standard formulas are used for computing the average aﬁi&ier the user-specific discriminability of each extracted bit. For this
the standard deviation for th& andY coordinates whereas fé purpose, we compute the discriminability of each feature for each

; I of the enrolled fingerprints. The discriminability of each hif)(is
coordinate, the megmy and the standard deviatien are computed computed agl; = I; — G whereG; is the fraction of times when

xmin‘y |xz — Tmazx

as follows: the " bit disagrees for the genuine matches @nis$ the fraction of
1< 1< u times when the™ bit disagrees for the impostor matches. The bits
Hs =3 Z sinf;, pe = n Z cosb;, pg = arctan (—S) retained after this discriminability-based rejection are finally used in
i=1 i=1 He the LDPC based secure recognition system.
; 4. EXPERIMENTS
1 . 2
90T\ -1 z; [min(|0; — prg], 360 — [0 — pro])] The FVC2002 Database-2 [7] was used in our experiments. This

publicly available database contains 100 different users with 8 finger

. . ) A . impressions per user. Each fingerprint is captured using an optical
wher(_eei 1S _the ang"? correspon_dlng to th¢’ minutia. If there is fingerprint scanner and digitized at 569 dpi. Fig 1 shows two im-
no minutia in a pgmcular cuboid, the average features assume t. ftessions from a fingerprint. In our experiments, the firstimpression
v_alue corresponding to the center of the .CUbO'd whereas the devi t each user is enrolled, the next 6 impressions are used for training
tion features are set to zero. The deviation features are also set Ad the last impression is used for testing. Prior to feature extraction,

fzer? if there E onlly 3 sm_glethlnutlz.m thel CUb?'d' _Thefexttracte e fingerprints are aligned using high curvature points as described
eatures are binarized using the median vaiue or a given feature cay [5]. Points along fingerprint ridges, that have high ridge curva-

tcﬁrlatehd l(éverr] allrenrt(k)]II?d fmﬁirifﬂms' US'Tg:hg nt:iﬁ;jlar; \éalilrj]e ?S trh%re are extracted and stored along with the template. During au-
eshold ensures that eac as equai probabiiity ot being 1 0 entication, similar points are extracted from the query fingerprint

and matched with the stored set to align the fingerprints. The high
3. SELECTION OF DISCRIMINABLE FEATURES curvature points do not reveal any significant information about the

minutiae. Initially, 750 random cuboids are generated, of which 250
There are two advantages of randomly generating the cuboids. Tlae eliminated based on high overlap as explained above. Then, with
first advantage is cancelability: If the template is compromised, &even binary features per remaining cuboid, a long feature vector of
new set of randomly generated features can be used to create a caength500 x 7 = 3, 500 bits is generated. Out of the8e500 bits,
pletely new binary template. The second advantage is a large choi@®00 are eliminated based on high correlation as described above.
of features from which to perform feature selection. Appropriate  Now, the set of six training impressions per finger is matched
selection of features is required in order to eliminate features thawith the corresponding enrolled impression to evaluate the discrim-
may be too correlated or too noisy. In order to ensure that most dhability of each binary feature bit. In order to compute the impostor
the cuboids occupy the printed region in a fingerprint, each cuboidcores for training, second impressions of 20 different userssack u
is centered at a randomly selected minutiae from the database. Th&e discriminability is computed separately for each user in order to
remaining three parameters of cuboids i.e., the dimensions along thake into account the difference in the fingerprint area printed and
X, Y, and®© directions were randomly generated. Prior to this, allthe distribution and quality of minutiae. Finally, a set of 300 bits
the fingerprints in the database are shifted such that center of thare selected based on high discriminability and are used to evaluate
bounding rectangle coincides with the center of the fingerprint imthe security-robustness tradeoff of the binary features. Normalized
age. Hamming Distance (NHD) is used as a distortion measure between
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Fig. 1. Example fingerprints from FVC2002 DB-2 corresponding to 04
the same finger . Two cuboids conta_liningandtg min_utia_e intersect Genuine NHD
to create three fragments each haviigr, andrs minutiae. 0-35¢ 7
0.3t Impostor NHD ]
Word Length | Synd. Length| Rate | FAR (%) | GAR (%) (no side info)
300 240 0.2 0.01 69 2025 .
300 255 0.15 0.13 85 s
300 285 0.05| 1.05 95 8 °? Impostor NHD)
& o5 With side info |
Table 1. Performance of a secure biometric system using a LDPC 3?’0“.‘ victim's
. . - . iscriminable
(syndrome) code operating on the 300 most discriminable bits. 0.1 features |
two feature vectors. The Receiver Operating Characteristic (ROC) 0.05f 1
curves corresponding to the various individual features and the fi- .
nal set of features selected using the discriminability are shown in 0 02 04 06 0.8
figure 2. As clear from the results, the matching performance is sig- Normalized Hamming Distance (NHD)
nificantly improved by incorporating the average and variance based ()

minutiae features. When an imposter knows the discriminable fea-

ture bits, the equal error rate (EER) was found to be 3 %. Undefig 2. (a) ROC curves for 300-bit features extracted from individual
normal operational circumstances, when an imposter does not knayoperties (average, deviation, wall distance), and 300-bit features
the discriminable feature bits for the victim, the EER was found t0gytracted from the most discriminable combination of features. Im-
be 2 % as shown in the plots. _ poster side information refers to knowledge of the cuboids used to
Lastly, three different irregular LDPC codes with rate, 0.15,  generate the victim’s feature set (b) Normalized hamming distance

and0.05 were used to evaluate the SeCUrity'rObUStneSS tradeoff of Q\IHD) for genuine and impostor matches for the case when the im-
secure biometric system built around the feature extraction describgghstor does or does not know the side information.

earlier. In this case, given the syndrome of the LDPC code, and the

probe biometric, the access control device attempts to recovertheen- =~ . . .

roliment biometric using Belief Propagation (BP). Table 1 shows thdhentication? One strategy is to obtain all the binary vectors that
corresponding results for this system, in which only the syndrome iroduce the syndrome stored in the database. Theg atech vec-
stored on the access control device, not the enrollment feature vel2's Wherek is the dimension of the ECC employed. Using Gaussian
tor. The three FAR-FRR data points thus obtained are superimposé&dimination to convert the parity check matrix of the LDPC code to
on Fig. 2(a). Note that, given only the syndrome as a secure biomelts systematlcform, it is straightforward tp obtain a vector that would
ric, an attacker can conceivably generate a feature vector which [Foduce the given syndrome. The remairiig- 1 vectors can also

not identical to the enrolment feature vector, but produces the sanf OPtained using the corresponding generator matrix. The attacker
syndrome. To prevent access control in attacks of this kind, a crypcan then compute the cryptographic hash values of these vectors and
tographic hash of the enrolment feature vector is stored on the d&ompare it with the hash of the enroliment feature vector, which is
vice. The feature vector obtained after BP decoding is hashed arfiyailable on the device. Thus the complexity of this attack is at most

compared with the hash of the enrolment feature vector. Access f&PitS: For an LDPC codé is given by the difference between the
granted only if the hashes match. length of the template an(_j t_hat qf s_yndrome: _ _
2. Spoof Attack: How difficult is it to obtain a fake fingerprint

or minutia map that authenticates successfully? To create a spoof
5. SECURITY ANALYSIS biometric, it is necessary to know a fingerprint close enough to the
original fingerprint. One way to do this is to try different finger-
We now discuss the security of the proposed system in terms of therints from a database until there is a false accept. If the system has
following attacks: a false accept ratg¢ then, on average, it would require 1/ f dif-
1. Template Injection: Given the stored syndrome how difficult is ferent fingerprints to obtain a false acceptCiff) is the number of
it to guess a binary template which can be used for successful abinary computations required to testf different fingerprints then,



in terms of guessing a binary vector, this amounts to approximatelthe:*" cuboid andr! = 7;
~ (log, C(f) bits of security. Since a spoof biometric can be used {
T = 4)

to construct a binary feature template, the true complexity of a tem-
plate injection attack is approximatetlyin(k, log, C(f)). Here, it

is assumed that the feature extraction procedure, i.e., configuratiaherer; is the corresponding median wall distance threshold. Note
of the cuboids and the various thresholds are known to the attackethat, sincem > n, this system of equations is heavily underdeter-
3. Cancelability Attack: How difficult is it to guess a stored bio- mined. The above problem can be transformed to a linear system of
metric template given that the attacker already has access to anothgequalities by replacing all the,’s by 75 (see (1)) and then solving
template created from the same biometric? If compromised, the for a integer-valued solution for;. If there are unsatisfied con-
stored syndrome is replaced with another syndrome of the templatgraints, some of those can be satisfied by appropriately selecting the
generated using a different set of cuboids. Cancelability pertains teorresponding;.

the difficulty in guessing the new template given information about  For every possible solution of the, the feature bits correspond-
another template generated from the same biometric. As the aboyiey to the minutiae average and minutiae deviation can be used to
attacks related to template injection and spoof allow reconstructioBbtain estimates for the mean and variance of each aktHé and

of any biometric template given a syndrome, cancelability attack i$9 coordinates of minutiae by solving another similar set of inequal-
at most as hard as template injection, spoof and also template ifties. Note that, solving for mean and variance of minutiae would
vertibility. Thus, the complexity of a cancelability attack is at most have additional constraints due to the position and size of each frag-
min(k, log, C(f)). Note that, the attacker can take advantage of thenent. Finally, given the mean and variance in each fragment, minu-
correlation among the new set of features and the old set in order tae can be appropriately placed to obtain an estimate of the original
reduce this complexity. E.g., if the attacker has a spoof biometrigemplate. This attack is extremely difficult and moreover, it will not
for an earlier template, the same spoof might compromise the neveproduce the original biometric. However, it is likely that the ob-
template with minor modifications. Therefore, the features used forained minutiae distribution is closer to the original as compared to
the new template must be sufficiently uncorrelated with the earliethe one obtained via a spoof attack. A less complex but less pre-
template. cise way to obtain the original biometric is to tessellate the feature
4. Template Inversion: How difficult is it to guess the enrolled space into equal sized fragments which can be associated with each
fingerprint or the original minutia map? This attack will be elabo- cuboid instead of explicitly computing the intersection regions of a
rated upon in the next section. Note that, template inversion can ledgrge number of cuboids. Then, slack variables can be introduced in
to all the aforementioned attacks and ewtiner systems using the the set of equations 2 to take into account the difference in the space
same biometric and possibly different feature set can also be congovered by cuboid and the associated fragments.

promised.

if b, =0
ifb, =1

—T;
Ti
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+ IQme) < Té

’11}1(1117”1 —|— 1127”2 +
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wn(Inlrl + I?’LQTQ + ...+ Inmrm) < Tr/L
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