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Abstract—The recently introduced theory of compressive
sensing enables the recovery of sparse or compressible sig-
nals from a small set of nonadaptive, linear measurements.
If properly chosen, the number of measurements can be
much smaller than the number of Nyquist-rate samples.
Interestingly, it has been shown that random projections
are a near-optimal measurement scheme. This has inspired
the design of hardware systems that directly implement
random measurement protocols. However, despite the in-
tense focus of the community on signal recovery, many (if
not most) signal processing problems do not require full
signal recovery. In this paper, we take some first steps in
the direction of solving inference problems—such as de-
tection, classification, or estimation—and filtering problems
using only compressive measurements and without ever
reconstructing the signals involved. We provide theoretical
bounds along with experimental results.

I. INTRODUCTION

A. From DSP to CSP

In recent decades the digital signal processing (DSP)
community has enjoyed enormous success in developing
algorithms for capturing and extracting information from
signals. Capitalizing on the early work of Whitaker,
Nyquist, and Shannon on sampling and representation
of continuous signals, signal processing has moved from
the analog to the digital domain and ridden the wave of
Moore’s law. Digitization has enabled the creation of
sensing and processing systems that are more robust,
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flexible, cheaper and, therefore, more ubiquitous than
their analog counterparts.

As a result of this success, the amount of data gener-
ated by sensing systems has grown from a trickle to a
torrent. We are thus confronted with the challenges of:

1) acquiring signals at ever higher sampling rates,
2) storing the resulting large amounts of data, and
3) processing/analyzing large amounts of data.

Until recently the first challenge was largely ignored by
the signal processing community, with most advances
being made by hardware designers. Meanwhile, the
signal processing community made tremendous progress
on the remaining two challenges, largely via research in
the fields of modeling, compression, and dimensionality
reduction. However, the solutions to these problems typ-
ically rely on having a complete set of digital samples.
Only after the signal is acquired—presumably using a
sensor tailored to the signals of interest—could one
distill the necessary information ultimately required by
the user or the application. This requirement has placed
a growing burden on analog-to-digital converters [1]. As
the required sampling rate is pushed higher, these devices
move inevitably toward a physical barrier, beyond which
their design becomes increasingly difficult and costly [2].

Thus, in recent years, the signal processing community
has also begun to address the challenge of signal acquisi-
tion more directly by leveraging its successes in address-
ing the second two. In particular, compressive sensing
(CS) has emerged as a framework that can significantly
reduce the acquisition cost at a sensor. CS builds on the
work of Candès, Romberg, and Tao [3], and Donoho [4],
who showed that a signal that can be compressed using
classical methods such as transform coding can also be
efficiently acquired via a small set of nonadaptive, linear,
and usually randomized measurements.

A fundamental difference between CS and classical
sampling is the manner in which the two frameworks
deal with signal recovery, i.e., the problem of recovering
the signal from the measurements. In the Shannon-
Nyquist framework, signal recovery is achieved through
sinc interpolation—a linear process that requires little



computation and has a simple interpretation. In CS,
however, signal recovery is achieved using nonlinear
and relatively expensive optimization-based or iterative
algorithms [3–5]. Thus, up to this point, most of the
CS literature has focused on improving the speed and
accuracy of this process [6–9].

However, signal recovery is not actually necessary
in many signal processing applications. Very often we
are only interested in solving an inference problem
(extracting certain information from measurements) or
in filtering out information that is not of interest before
further processing. While one could always attempt to re-
cover the full signal from the compressive measurements
and then solve the inference or filtering problem using
traditional DSP techniques, this approach is typically
suboptimal in terms of both accuracy and efficiency.

This paper takes some initial steps towards a general
framework for what we call compressive signal process-
ing (CSP), an alternative approach in which signal pro-
cessing problems are solved directly in the compressive
measurement domain without first resorting to a full-
scale signal reconstruction. In espousing the potential
of CSP we focus on four fundamental signal processing
problems: detection, classification, estimation, and filter-
ing. The first three enable the extraction of information
from the samples, while the last enables the removal
of irrelevant information and separation of signals into
distinct components. While these choices do not exhaust
the set of canonical signal processing operations, we
believe that they provide a strong initial foundation.

B. Relevance

In what settings is it actually beneficial to take ran-
domized, compressive measurements of a signal in order
to solve an inference problem? One may argue that
prior knowledge of the signal to be acquired or of the
inference task to be solved could lead to a customized
sensing protocol that very efficiently acquires the rel-
evant information. For example, suppose we wish to
acquire a length-N signal that is K-sparse (i.e., has
K nonzero coefficients) in a known transform basis.
If we knew in advance which elements were nonzero,
then the most efficient and direct measurement scheme
would simply project the signal into the appropriate K-
dimensional subspace. As a second example, suppose we
wish to detect a known signal. If we knew in advance
the signal template, then the optimal and most efficient
measurement scheme would simply involve a receiving
filter explicitly matched to the candidate signal.

Clearly, in cases where strong a priori information is
available, customized sensing protocols may be appropri-

ate. However, a key objective of this paper is to illustrate
the agnostic and universal nature of random compressive
measurements as a compact signal representation. These
features enable the design of exceptionally efficient and
flexible compressive sensing hardware that can be used
for the acquisition of a variety of signal classes and
applied to a variety of inference tasks.

As has been demonstrated in the CS literature, for
example, random measurements can be used to acquire
any sparse signal without requiring advance knowledge
of the locations of the nonzero coefficients. Thus, com-
pressive measurements are agnostic in the sense that they
capture the relevant information for the entire class of
possible K-sparse signals. We extend this concept to the
CSP framework and demonstrate that it is possible to
design agnostic measurement schemes that preserve the
necessary structure of large signal classes in a variety of
signal processing settings.

Furthermore, we observe that one can select a random-
ized measurement scheme without any prior knowledge
of the signal class. For instance, in conventional CS it
is not necessary to know the transform basis in which
the signal has a sparse representation when acquiring
the measurements. The only dependence is between the
complexity of the signal class (e.g., the sparsity level
of the signal) and the number of random measure-
ments that must be acquired. Thus, random compressive
measurements are universal in the sense that if one
designs a measurement scheme at random, then with
high probability it will preserve the structure of the signal
class of interest, and thus explicit a priori knowledge
of the signal class is unnecessary. We broaden this
result and demonstrate that random measurements can
universally capture the information relevant for many
CSP applications without any prior knowledge of either
the signal class or the ultimate signal processing task. In
such cases, the requisite number of measurements scales
efficiently with both the complexity of the signal and the
complexity of the task to be performed.

It follows that, in contrast to the task-specific hardware
used in many classical acquisition systems, hardware
designed to use a compressive measurement protocol
can be extremely flexible. Returning to the binary de-
tection scenario, for example, suppose that the signal
template is unknown at the time of acquisition, or that
one has a large number of candidate templates. Then
what information should be collected at the sensor? A
complete set of Nyquist samples would suffice, or a
bank of matched filters could be employed. From a
CSP standpoint, however, the solution is more elegant:
one need only collect a small number of compressive
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Fig. 1. Example CSP application: broadband signal monitoring.

measurements from which many candidate signals can
be tested, many signal models can be posited, and many
other inference tasks can be solved. What one loses in
performance compared to a tailor-made matched filter,
one may gain in simplicity and in the ability to adapt
to future information about the problem at hand. In
this sense, CSP impacts sensors in a similar manner
as DSP impacted analog signal processing: expensive
and inflexible analog components can be replaced by
a universal, flexible, and programmable digital system.

C. Applications
A stylized application to demonstrate the potential and

applicability of the results in this paper is summarized in
Figure 1. The figure schematically presents a wide-band
signal monitoring and processing system that receives
signals from a variety of sources, including various tele-
vision, radio, and cell-phone transmissions, radar signals,
and satellite communication signals. The extremely wide
bandwidth monitored by such a system makes CS a
natural approach for efficient signal acquisition [10].

In many cases, the system user might only be inter-
ested in extracting very small amounts of information
from each signal. This can be efficiently performed using
the tools we describe in the subsequent sections. For
example, the user might be interested in detecting and
classifying some of the signal sources, and in estimating
some parameters, such as the location, of others. Full-
scale signal recovery might be required for only a few
of the signals in the monitored bandwidth.

The detection, estimation, and classification tools we
develop in this paper enable the system to perform
these tasks much more efficiently in the compressive
domain. Furthermore, the filtering procedure we describe
facilitates the separation of signals after they have been
acquired in the compressive domain so that each signal
can be processed by the appropriate algorithm, depend-
ing on the information sought by the user.

D. Related Work
In this paper we consider a variety of estimation and

decision tasks. The data streaming community, which is

concerned with efficient algorithms for processing large
streams of data, has examined many similar problems
over the past several years. In the data stream setting,
one is typically interested in estimating some function
of the data stream (such as an `p norm, a histogram,
or a linear functional) based on sketches, which in
many cases can be thought of as random projections.
For a concise review of these results, see [11]. Main
differences with our work include: (i) data stream al-
gorithms are typically designed to operate in noise-free
environments on man-made digital signals, whereas we
view compressive measurements as a sensing scheme
that will operate in an inherently noisy environment;
(ii) data stream algorithms typically provide probabilistic
guarantees, while we focus on providing deterministic
guarantees; and (iii) data stream algorithms tend to tailor
the measurement scheme to the task at hand, while we
demonstrate that it is often possible to use the same
measurements for a variety of signal processing tasks.

There have been a number of related thrusts involving
detection and classification using random measurements
in a variety of settings. For example, in [12] sparsity is
leveraged to perform classification with very few random
measurements, while in [13, 14] random measurements
are exploited to perform manifold-based image classifi-
cation. In [15], small numbers of random measurements
have also been noted as capturing sufficient information
to allow robust face recognition. However, the most
directly relevant work has been the discussions of clas-
sification in [16] and detection in [17]. We will contrast
our results to those of [16, 17] below. This paper builds
upon work initially presented in [18, 19].

E. Organization

This paper is organized as follows. Section II provides
the necessary background on dimensionality reduction
and CS. In Sections III, IV, and V we develop algorithms
for signal detection, classification, and estimation with
compressive measurements. In Section VI we explore
the problem of filtering compressive measurements in
the compressive domain. Finally, Section VII concludes
with directions for future work.

II. COMPRESSIVE MEASUREMENTS AND
STABLE EMBEDDINGS

A. Compressive Sensing and Restricted Isometries

In the standard CS framework, we acquire a signal
x ∈ RN via the linear measurements

y = Φx, (1)
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where Φ is an M ×N matrix representing the sampling
system and y ∈ RM is the vector of measurements. For
simplicity, we deal with real-valued rather than quantized
measurements y. Classical sampling theory dictates that,
in order to ensure that there is no loss of information,
the number of samples M should be at least the signal
dimension N . The CS theory, on the other hand, allows
for M � N , as long as the signal x is sparse or
compressible in some basis [3, 4, 20, 21].

To understand how many measurements are required
to enable the recovery of a signal x, we must first
examine the properties of Φ that guarantee satisfactory
performance of the sensing system. In [21], Candès and
Tao introduced the restricted isometry property (RIP) of
a matrix Φ and established its important role in CS. First
define ΣK to be the set of all K-sparse signals, i.e.,

ΣK = {x ∈ RN : ‖x‖0 := |supp(x)| ≤ K},

where supp(x) ⊂ RN denotes the set of indices on which
x is nonzero. We say that a matrix Φ satisfies the RIP of
order K if there exists a constant δ ∈ (0, 1), such that

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22 (2)

holds for all x ∈ ΣK . In other words, Φ is an approxi-
mate isometry for vectors restricted to be K-sparse.

It is clear that if we wish to be able to recover all
K-sparse signals x from the measurements y, then a
necessary condition on Φ is that Φx1 6= Φx2 for any
pair x1, x2 ∈ ΣK with x1 6= x2. Equivalently, we require
‖Φ(x1−x2)‖22 > 0, which is guaranteed if Φ satisfies the
RIP of order 2K with constant δ < 1. Furthermore, the
RIP also ensures that a variety of practical algorithms
can successfully recover any compressible signal from
noisy measurements. The following result (Theorem 1.2
of [22]) makes this precise by bounding the recovery
error of x with respect to the sampling noise and with
respect to the `1-distance from x to its best K-term
approximation denoted xK :

xK = arg min
x′∈ΣK

‖x− x′‖1.

Theorem 1 ([Candès]). Suppose that Φ satisfies the RIP
of order 2K with isometry constant δ <

√
2− 1. Given

measurements of the form y = Φx+ e, where ‖e‖2 ≤ ε,
the solution to

x̂ = arg min
x′∈RN

‖x′‖1 subject to ‖Φx′ − y‖2 ≤ ε (3)

obeys

‖x̂− x‖2 ≤ C0ε+ C1
‖x− xK‖1√

K
, (4)

where

C0 = 4
√

1 + δ

1− (1 +
√

2)δ
, C1 = 2

1− (1−
√

2)δ
1− (1 +

√
2)δ

.

Note that in practice we may wish to acquire signals
that are sparse or compressible with respect to a certain
sparsity basis Ψ, i.e., x = Ψα where Ψ is represented
as a unitary N ×N matrix and α ∈ ΣK . In this case we
would require instead that ΦΨ satisfy the RIP, and the
performance guarantee would be on ‖α̂− α‖2.

Before we discuss how one can actually obtain a
matrix Φ that satisfies the RIP, we observe that we can
restate the RIP in a more general form. Let δ ∈ (0, 1)
and U ,V ⊂ RN be given. We say that a mapping Φ is
a δ-stable embedding of (U ,V) if

(1− δ)‖u− v‖22 ≤ ‖Φu−Φv‖22 ≤ (1 + δ)‖u− v‖22 (5)

for all u ∈ U and v ∈ V . A mapping satisfying this
property is also commonly called bi-Lipschitz. Observe
that for a matrix Φ, satisfying the RIP of order 2K is
equivalent to being a δ-stable embedding of (ΣK ,ΣK) or
of (Σ2K , {0}).1 Furthermore, if the matrix ΦΨ satisfies
the RIP of order 2K then Φ is a δ-stable embedding of
(Ψ(ΣK),Ψ(ΣK)) or (Ψ(Σ2K), {0}), where Ψ(ΣK) =
{Ψα : α ∈ ΣK}.

B. Random Matrix Constructions

We now turn to the more general question of how
to construct linear mappings Φ that satisfy (5) for
particular sets U and V . While it is possible to obtain
deterministic constructions of such operators, at present
the most efficient designs (i.e., those requiring the fewest
number of rows) rely on random matrix constructions.
We construct our random matrices as follows: given M
and N , we generate random M × N matrices Φ by
choosing the entries φij as independent and identically
distributed (i.i.d.) random variables. We impose two con-
ditions on the random distribution. First, we require that
the distribution yields a matrix that is norm-preserving,
which requires that

E(φ2
ij) =

1
M
. (6)

Second, we require that the distribution is a sub-
Gaussian distribution, meaning that there exists a con-
stant C > 0 such that

E
(
eφijt

)
≤ eC

2t2/2 (7)

1In general, if Φ is a δ-stable embedding of (U ,V), this is equivalent
to it being a δ-stable embedding of (Ũ , {0}) where Ũ = {u − v :
u ∈ U , v ∈ V}. This formulation can sometimes be more convenient.
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for all t ∈ R. This says that the moment-generating
function of our distribution is dominated by that of
a Gaussian distribution, which is also equivalent to
requiring that the tails of our distribution decay at least
as fast as the tails of a Gaussian distribution. Examples
of sub-Gaussian distributions include the Gaussian dis-
tribution, the Rademacher distribution, and the uniform
distribution. In general, any distribution with bounded
support is sub-Gaussian. See [23] for more details on
sub-Gaussian random variables.

The key property of sub-Gaussian random variables
that will be of use in this paper is that for any x ∈ RN ,
the random variable ‖Φx‖22 is highly concentrated about
‖x‖22; that is, there exists a constant c > 0 that depends
only on the constant C in (7) such that

Pr
(∣∣∣‖Φx‖22 − ‖x‖22∣∣∣ ≥ δ ‖x‖22) ≤ 2e−cMδ2 , (8)

where the probability is taken over all M ×N matrices
Φ (see Lemma 6.1 of [24] or [25]).

C. Stable Embeddings

We now provide a number of results that we will
use extensively in the sequel to ensure the stability of
our compressive detection, classification, estimation, and
filtering algorithms.

We start with the simple case where we desire a δ-
stable embedding of (U ,V) where U = {ui}|U|i=1 and V =
{vj}|V|j=1 are finite sets of points in RN . In the case where
U = V , this is essentially the Johnson-Lindenstrauss (JL)
lemma [26–28].

Lemma 1. Let U and V be sets of points in RN . Fix
δ, β ∈ (0, 1). Let Φ be an M ×N random matrix with
i.i.d. entries chosen from a distribution satisfying (8). If

M ≥ ln(|U||V|) + ln(2/β)
cδ2

(9)

then with probability exceeding 1 − β, Φ is a δ-stable
embedding of (U ,V).

Proof: To prove the result we apply (8) to the |U||V|
vectors corresponding to all possible ui−vj . By applying
the union bound, we obtain that the probability of (5)
not holding is bounded above by 2|U||V|e−cMδ2 . By
requiring 2|U||V|e−cMδ2 ≤ β and solving for M we
obtain the desired result.

We now consider the case where U = X is a K-
dimensional subspace of RN and V = {0}. Thus, we
wish to obtain a Φ that nearly preserves the norm of any
vector x ∈ X . At first glance, this goal might seem very
different than the setting for Lemma 1, since a subspace
forms an uncountable point set. However, we will see

that the dimension K bounds the complexity of this
space and thus it can be characterized in terms of a finite
number of points. The following lemma is an adaptation
of Lemma 5.1 in [29].2

Lemma 2. Suppose that X is a K-dimensional subspace
of RN . Fix δ, β ∈ (0, 1). Let Φ be an M × N random
matrix with i.i.d. entries chosen from a distribution
satisfying (8). If

M ≥ 2
K ln(42/δ) + ln(2/β)

cδ2
(10)

then with probability exceeding 1 − β, Φ is a δ-stable
embedding of (X , {0}).

Sketch of proof: It suffices to prove the result for
x ∈ X satisfying ‖x‖2 = 1, since Φ is linear. We
consider a finite sampling of points U ⊂ X of unit
norm and with resolution on the order of δ/14; one
can show that it is possible to construct such a U with
|U| ≤ (42/δ)K (see Ch. 15 of [30]). Applying Lemma 1
and setting M to ensure a (δ/

√
2)-stable embedding of

(U , {0}), we can use simple geometric arguments to
conclude that we must have a δ-stable embedding of
({x}, {0}) for every x ∈ X satisfying ‖x‖2 = 1. For
details, see Lemma 5.1 in [29].

We now observe that we can extend this result beyond
a single K-dimensional subspace to all possible K-
dimensional subspaces that are defined with respect to
an orthonormal basis Ψ, i.e., Ψ(ΣK). The proof follows
that of Theorem 5.2 of [29].

Lemma 3. Let Ψ be an orthonormal basis for RN and
fix δ, β ∈ (0, 1). Let Φ be an M×N random matrix with
i.i.d. entries chosen from a distribution satisfying (8). If

M ≥ 2
K ln(42eN/δK) + ln(2/β)

cδ2
(11)

with e denoting the base of the natural logarithm,
then with probability exceeding 1 − β, Φ is a δ-stable
embedding of (Ψ(ΣK), {0}).

Proof: This is a simple generalization of Lemma 2,
which follows from the observation that there are

(
N
K

)
≤

(eN/K)K K-dimensional subspaces aligned with the
coordinate axes of Ψ, and so the size of U increases
to |U| ≤

(
42eN
δK

)K
.

A similar technique has recently been used to demon-
strate that random projections also provide a stable
embedding of nonlinear manifolds [31]: under certain
assumptions on the curvature and volume of a K-
dimensional manifold M ⊂ RN , a random sensing

2The constants in [29] differ from those in Lemma 2, but the proof
is substantially the same, so we provide only a sketch.
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matrix with M = O
(
K log(N)

δ2

)
will with high prob-

ability provide a δ-stable embedding of (M,M). Under
slightly different assumptions onM, a number of similar
embedding results involving random projections have
been established [32–34].

We will make further use of these connections in the
following sections in our analysis of a variety of algo-
rithms for compressive-domain inference and filtering.

D. Stable embeddings in practice

Several hardware architectures have been proposed
that enable the acquisition of compressive measure-
ments in practical settings. Examples include the ran-
dom demodulator [35], random filtering and random
convolution [36–38], and several compressive imaging
architectures [39–41].

We briefly describe the random demodulator as an
example of such a system. Figure 2 depicts the block
diagram of the random demodulator. The four key com-
ponents are a pseudo-random ±1 “chipping sequence”
pc(t) operating at the Nyquist rate or higher, a low pass
filter, represented by an ideal integrator with reset, a low-
rate sample-and-hold, and a quantizer. An input analog
signal x(t) is modulated by the chipping sequence and
integrated. The output of the integrator is sampled and
quantized, and the integrator is reset after each sample.

Mathematically, systems such as these implement a
linear operator that maps the analog input signal to
a discrete output vector followed by a quantizer. It is
possible to relate this operator to a discrete measurement
matrix Φ which maps, for example, the Nyquist-rate
samples of the input signal to the discrete output vector.
The resulting Φ matrices, while randomized, typically
contain some degree of structure. For example, a random
convolution architecture gives rise to a Φ matrix with a
subsampled Toeplitz structure. While theoretical analysis
of these matrices remains a topic of active study in
the CS community, there do exist guarantees of stable
embeddings for such practical architectures [35, 37].

E. Deterministic versus probabilistic guarantees

Throughout this paper, we state a variety of theorems
that begin with the assumption that Φ is a δ-stable
embedding of a pair of sets and then use this assumption
to establish performance guarantees for a particular CSP
algorithm. These guarantees are completely determinis-
tic and hold for any Φ that is a δ-stable embedding.
However, we use random constructions as our main tool
for obtaining stable embeddings. Thus, all of our results
could be modified to be probabilistic statements in which
we fix M and then argue that with high probability,
a random Φ is a δ-stable embedding. Of course, the
concept of “high probability” is somewhat arbitrary.
However, if we fix this probability of error to be an
acceptable constant β, then as we increase M , we are
able to reduce δ to be arbitrarily close to 0. This will
typically improve the accuracy of the guarantees.

As a side comment, it is important to note that in
the case where one is able to generate a new Φ before
acquiring each new signal x, then it is often possible to
drastically reduce the required M . This is because one
may be able to eliminate the requirement that Φ is a sta-
ble embedding for an entire class of candidate signals x,
and instead simply argue that for each x, a new random
matrix Φ with M very small is a δ-stable embedding of
({x}, {0}) (this is a direct consequence of (8)). Thus, if
such a probabilistic “for each” guarantee is acceptable,
it is typically possible to place no assumptions on the
signals being sparse, or indeed having any structure at
all. However, in the remainder of this paper we will
restrict ourselves to the sort of deterministic guarantees
that hold for a class of signals when Φ provides a stable
embedding of that class.

III. DETECTION WITH COMPRESSIVE
MEASUREMENTS

A. Problem Setup and Applications

We begin by examining the simplest of detection prob-
lems. We aim to distinguish between two hypotheses:

H0 : y = Φn
H1 : y = Φ(s+ n)

where s ∈ RN is a known signal, n ∼ N (0, σ2IN ) is
i.i.d. Gaussian noise, and Φ is a known (fixed) measure-
ment matrix. If s is known at the time of the design
of Φ, then it is easy to show that the optimal design
would be to set Φ = sT , which is just the matched filter.
However, as mentioned in the introduction, we are often
interested in universal or agnostic Φ. As an example, if
we design hardware to implement the matched filter for
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a particular s, then we are very limited in what other
signal processing tasks that hardware can perform. Even
if we are only interested in detection, it is possible that
the signal s that we wish to detect may evolve over
time. Thus, we will consider instead the case where
Φ is designed without knowledge of s but is instead a
random matrix. From the results of Section II, this will
imply performance bounds that depend on how many
measurements are acquired and the class S of possible
s that we wish to detect.

B. Theory

To set notation, let

PF = Pr(H1 chosen when H0 true) and
PD = Pr(H1 chosen when H1 true)

denote the false alarm rate and the detection rate,
respectively. The Neyman-Pearson (NP) detector is the
decision rule that maximizes PD subject to the constraint
that PF ≤ α. In order to derive the NP detector, we first
observe that for our hypotheses, H0 and H1, we have
the probability density functions3

f0(y) =
exp

(
− 1

2y
T (σ2ΦΦT )−1y

)
|σ2ΦΦT | 12 (2π)

M
2

and

f1(y) =
exp

(
− 1

2 (y − Φs)T (σ2ΦΦT )−1(y − Φs)
)

|σ2ΦΦT | 12 (2π)
M
2

.

It is easy to show (see [42, 43], for example) that the NP-
optimal decision rule is to compare the ratio f1(y)/f0(y)
to a threshold η, i.e, the likelihood ratio test:

Λ(y) =
f1(y)
f0(y)

H1

≷
H0

η

where η is chosen such that

PF =
∫

Λ(y)>η

f0(y)dy = α.

By taking a logarithm we obtain an equivalent test that
simplifies to

yT (ΦΦT )−1Φs
H1

≷
H0

σ2 log(η)+
1
2
sTΦT (ΦΦT )−1Φs := γ.

3This formulation assumes that rank(Φ) = M so that ΦΦT is
invertible. If the entries of Φ are generated according to a continuous
distribution and M < N , then this will be true with probability 1.
This will also be true with high probability for discrete distributions
with high probability provided that M � N . In the event that Φ is
not full rank, appropriate adjustments can be made.

We now define the compressive detector:

t := yT (ΦΦT )−1Φs. (12)

It can be shown that t is a sufficient statistic for our
detection problem, and thus t contains all of the infor-
mation relevant for distinguishing between H0 and H1.

We must now set γ to achieve the desired perfor-
mance. To simplify notation, we define

PΦT = ΦT (ΦΦT )−1Φ

as the orthogonal projection operator onto R(ΦT ), i.e.,
the row space of Φ. Since PΦT = PTΦT and P 2

ΦT = PΦT ,
we then have that

sTΦT (ΦΦT )−1Φs = ‖PΦT s‖22 . (13)

Using this notation, it is easy to show that

t ∼

{
N (0, σ2 ‖PΦT s‖22) under H0

N (‖PΦT s‖22 , σ2 ‖PΦT s‖22) under H1.

Thus we have

PF =P (t > γ|H0) = Q

(
γ

σ ‖PΦT s‖2

)
PD =P (t > γ|H1) = Q

(
γ − ‖PΦT s‖22
σ ‖PΦT s‖2

)
where

Q(z) =
∫ ∞
z

exp
(
−u2/2

)
du.

To determine the threshold, we set PF = α, and thus

γ = σ ‖PΦT s‖2Q
−1(α)

resulting in

PD(α) = Q
(
Q−1(α)− ‖PΦT s‖2 /σ

)
. (14)

In general, this performance could be either quite good
or quite poor depending on Φ. In particular, the larger
‖PΦT s‖2 is, then the better the performance. Recalling
that PΦT is the orthogonal projection onto the row space
of Φ, we see that ‖PΦT s‖2 is simply the norm of the
component of s that lies in the row space of Φ. This
quantity is clearly at most ‖s‖2, which would yield the
same performance as the traditional matched filter, but
it could also be 0 if s lies in the null space of Φ.
As we will see below, however, in the case where Φ
is random, we can expect that ‖PΦT s‖2 concentrates
around

√
M/N‖s‖2.

Let us now define

SNR := ‖s‖22 /σ
2. (15)

7



We can bound the performance of the compressive
detector as follows.

Theorem 2. Suppose that
√
N/MPΦT provides a δ-

stable embedding of (S, {0}). Then for any s ∈ S, we
can detect s with error rate

PD(α) ≤ Q

(
Q−1(α)−

√
1 + δ

√
M

N

√
SNR

)
(16)

and

PD(α) ≥ Q

(
Q−1(α)−

√
1− δ

√
M

N

√
SNR

)
. (17)

Proof: By our assumption that
√
N/MPΦT pro-

vides a δ-stable embedding of (S, {0}), we know from
(5) that

√
1− δ ‖s‖2 ≤

√
N

M
‖PΦT s‖2 ≤

√
1 + δ ‖s‖2 . (18)

Combining (18) with (14) and recalling the definition of
the SNR from (15), the result follows.

For certain randomized measurement systems, one can
anticipate that

√
N/MPΦT will provide a δ-stable em-

bedding of (S, {0}). As one example, if Φ has orthonor-
mal rows spanning a random subspace (i.e., it represents
a random orthogonal projection), then ΦΦT = I , and so
PΦT = ΦTΦ. It follows that ‖PΦT s‖2 =

∥∥ΦTΦs
∥∥

2
=

‖Φs‖2, and for random orthogonal projections, it is
known [27] that ‖PΦT s‖2 = ‖Φs‖2 satisfies

(1− δ)M
N
‖s‖22 ≤ ‖PΦT s‖22 ≤ (1 + δ)

M

N
‖s‖22 (19)

with probability at least 1− 2e−cMδ2 . This statement is
analogous to (8) but rescaled to account for the unit-norm
rows of Φ. As a second example, if Φ is populated with
i.i.d. zero-mean Gaussian entries (of any fixed variance),
then the orientation of the row space of Φ has random
uniform distribution. Thus, ‖PΦT s‖2 for a Gaussian Φ
has the same distribution as ‖PΦT s‖2 for a random
orthogonal projection. It follows that Gaussian Φ also
satisfy (19) with probability at least 1− 2e−cMδ2 .

The similarity between (19) and (8) immediately
implies that we can generalize Lemmas 1, 2, and 3
to establish δ-stable embedding results for orthogonal
projection matrices PΦT . It follows that, when Φ is
a Gaussian matrix (with entries satisfying (6)) or a
random orthogonal projection (multiplied by

√
N/M ),

the number of measurements required to establish a δ-
stable embedding for

√
N/MPΦT on a particular signal

family S is equivalent to the number of measurements
required to establish a δ-stable embedding for Φ on S.

Theorem 2 tells us in a precise way how much
information we lose by using random projections rather
than the signal samples themselves, not in terms of our
ability to recover the signal as is typically addressed
in CS, but in terms of our ability to solve a detection
problem. Specifically, for typical values of δ,

PD(α) ≈ Q
(
Q−1(α)−

√
M/N

√
SNR

)
, (20)

which increases the miss probability by an amount
determined by the SNR and the ratio M/N .

In order to more clearly illustrate the behavior of
PD(α) as a function of M , we also establish the fol-
lowing corollary of Theorem 2.

Corollary 1. Suppose that
√
N/M · PΦT provides a δ-

stable embedding of (S, {0}). Then for any s ∈ S, we
can detect s with success rate

PD(α) ≥ 1− C2e
−C1M/N , (21)

where C1 and C2 are absolute constants depending only
on α, δ, and the SNR.

Proof: We begin with the following bound from
(13.48) of [44]

Q(z) ≤ e−z
2/2

2
, (22)

which allows us to bound PD as follows. Let C1 =
(1− δ)SNR/2. Then

PD(α) ≥ Q
(
Q−1(α)−

√
2C1M/N

)
= 1−Q

(√
2C1M/N −Q−1(α)

)
≥ 1− 1

2
e−C1M/N−

√
2C1M/NQ−1(α)+(Q−1(α))2/2

≥ 1− 1
2
e−C1M/N−

√
2C1Q

−1(α)+(Q−1(α))2/2.

Thus, if we let

C2 =
1
2
e−Q

−1(α)(Q−1(α)/2−
√

2C1), (23)

we obtain the desired result.
Thus, for a fixed SNR and signal length, the detec-

tion probability approaches 1 exponentially fast as we
increase the number of measurements.

C. Experiments and Discussion

We first explore how M affects the performance of the
compressive detector. As described above, decreasing M
does cause a degradation in performance. However, as
illustrated in Figure 3, in certain cases (relatively high
SNR; 20 dB in this example) the compressive detector

8
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Fig. 3. Effect of M on PD(α) predicted by (20) (SNR = 20dB).

can perform almost as well as the traditional detector
with a very small fraction of the number of measure-
ments required by traditional detection. Specifically, in
Figure 3 we illustrate the receiver operating character-
istic (ROC) curve, i.e., the relationship between PD and
PF predicted by (20). Observe that as M increases, the
ROC curve approaches the upper-left corner, meaning
that we can achieve very high detection rates while
simultaneously keeping the false alarm rate very low.
As M grows we see that we rapidly reach a regime
where any additional increase in M yields only marginal
improvements in the tradeoff between PD and PF .

Furthermore, the exponential increase in the detection
probability as we take more measurements is illustrated
in Figure 4, which plots the performance predicted by
(20) for a range of SNRs with α = 0.1. However, we
again note that in practice this rate can be significantly
affected by the SNR, which determines the constants in
the bound of (21). These results are consistent with those
obtained in [17], which also established that PD should
approach 1 exponentially fast as M is increased.

Finally, we close by noting that for any given instance
of Φ, its ROC curve may be better or worse than that
predicted by (20). However, with high probability it is
tightly concentrated around the expected performance
curve. Figure 5 illustrates this for the case where s is
fixed and the SNR is 20dB, Φ has i.i.d. Gaussian entries,
M = 0.05N , and N = 1000. The predicted ROC curve
is illustrated along with curves displaying the best and
worst ROC curves obtained over 100 independent draws
of Φ. We see that our performance is never significantly
different from what we expect. Furthermore, we have
also observed that these bounds grow significantly tighter
as we increase N ; so for large problems the difference
between the predicted and actual curves will be insignifi-
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0.7

0.8

0.9
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Fig. 4. Effect of M on PD predicted by (20) at several different SNR
levels (α = 0.1).
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Fig. 5. Concentration of ROC curves for random Φ near the expected
ROC curve (SNR = 20dB, M = 0.05N , N = 1000).

cant. We also note that while some of our theory has been
limited to Φ that are Gaussian or random orthogonal
projections, we observe that in practice this does not
seem to be necessary. We repeated the above experiment
for matrices with independent Rademacher entries and
observed no significant differences in the results.

IV. CLASSIFICATION WITH COMPRESSIVE
MEASUREMENTS

A. Problem Setup and Applications

We can easily generalize the setting of Section III to
the problem of binary classification. Specifically, if we
wish to distinguish between Φ(s0 + n) and Φ(s1 + n),
then it is equivalent to be able to distinguish Φ(s0 +n)−
Φs0 = Φn and Φ(s1 − s0 + n). Thus, the conclusions
for the case of binary classification are identical to those
discussed in Section III.
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More generally suppose that we would like to distin-
guish between the hypotheses:

H̃i : y = Φ(si + n),

for i = 1, 2, . . . , R, where each si ∈ S is one of our
known signals and as before, n ∼ N (0, σ2IN ) is i.i.d.
Gaussian noise and Φ is a known M ×N matrix.

It is straightforward to show (see [42, 43], for ex-
ample), in the case where each hypothesis is equally
likely, that the classifier with minimum probability of
error selects the H̃i that minimizes

ti := (y − Φsi)T (ΦΦT )−1(y − Φsi). (24)

If the rows of Φ are orthogonal and have equal norm,
then this reduces to identifying which Φsi is closest to
y. The (ΦΦT )−1 term arises when the rows of Φ are not
orthogonal because the noise is no longer uncorrelated.

As an alternative illustration of the classifier behavior,
let us suppose that y = Φx for some x ∈ RN . Then,
starting with (24), we have

ti = (y − Φsi)T (ΦΦT )−1(y − Φsi)

= (Φx− Φsi)T (ΦΦT )−1(Φx− Φsi)

= (x− si)TΦT (ΦΦT )−1Φ(x− si)
= ‖PΦT x− PΦT si‖22 (25)

where (25) follows from the same argument as (13).
Thus, we can equivalently think of the classifier as
simply projecting x and each candidate signal si onto
the row space of Φ and then classifying according to the
nearest neighbor in this space.

B. Theory

While in general it is difficult to find analytical expres-
sions for the probability of error even in non-compressive
classification settings, we can provide a bound for the
performance of the compressive classifier as follows.

Theorem 3. Suppose that
√
N/MPΦT provides a δ-

stable embedding of (S,S), and let R = |S|. Let

d = min
i,j
‖si − sj‖2 (26)

denote the minimum separation among the si. For
some i∗ ∈ {1, 2, . . . , R}, let y = Φ(si∗ + n), where
n ∼ N (0, σ2IN ) is i.i.d. Gaussian noise. Then with
probability at least

1−
(
R− 1

2

)
e−d

2(1−δ)M/8σ2N , (27)

the signal can be correctly classified, i.e.,

i∗ = arg min
i∈{1,2,...,R}

ti. (28)

Proof: Let j 6= i∗. We will argue that tj > ti∗ with
high probability. From (25) we have that

ti∗ = ‖PΦT n‖22
and

tj = ‖PΦT (si∗ − sj + n)‖22
= ‖PΦT (si∗ − sj) + PΦT n‖22
= ‖τ + PΦT n‖22

where we have defined τ = PΦT (si∗ − sj) to simplify
notation. Let us define Pτ = ττT / ‖τ‖22 as the orthog-
onal projection onto the 1-dimensional span of τ , and
Pτ⊥ = (IN − Pτ ). Then we have

ti∗ = ‖PτPΦT n‖22 + ‖Pτ⊥PΦT n‖22
and

tj = ‖Pτ (τ + PΦT n)‖22 + ‖Pτ⊥(τ + PΦT n)‖22
= ‖τ + PτPΦT n‖22 + ‖Pτ⊥PΦT n‖22 .

Thus, tj ≤ ti∗ if and only if

‖τ + PτPΦT n‖22 ≤ ‖PτPΦT n‖22 ,

or equivalently, if∥∥∥∥ τT

‖τ‖2
(τ + PτPΦT n)

∥∥∥∥2

2

≤
∥∥∥∥ τT

‖τ‖2
PτPΦT n

∥∥∥∥2

2

,

or equivalently, if∣∣∣∣‖τ‖2 +
τT

‖τ‖2
PΦT n

∣∣∣∣ ≤ ∣∣∣∣ τT‖τ‖2PΦT n

∣∣∣∣ ,
or equivalently, if

τT

‖τ‖2
PΦT n ≤ −

‖τ‖2
2

.

The quantity τT

‖τ‖2
PΦT n is a scalar, zero-mean Gaus-

sian random variable with variance
τT

‖τ‖2
PΦT (σ2IN )PTΦT

τ

‖τ‖2
=
τTPΦT τσ2

‖τ‖22
= σ2.

Because
√
N/MPΦT provides a δ-stable embedding of

(S,S), and by our assumption that ‖si∗ − sj‖2 ≥ d, we
have that ‖τ‖22 ≥ d2(1− δ)M/N . Thus, using also (22),
we have

P (tj ≤ ti∗) = P

(
τT

‖τ‖2
PΦT n ≤ −

‖τ‖2
2

)
= Q

(
‖τ‖2
2σ

)
≤ 1

2
e−‖τ‖

2
2/8σ

2

≤ 1
2
e−d

2(1−δ)M/8σ2N .
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Fig. 6. Effect of M on PE (the probability of error of a compressive
domain classifier) for R = 3 signals at several different SNR levels,
where SNR = 10 log10(d2/σ2).

Finally, because ti∗ is compared to R − 1 other candi-
dates, we use a union bound to conclude that (28) holds
with probability exceeding that given in (27).

We see from the above that, within the M -dimensional
measurement subspace (as mapped to by PΦT ), we will
have a compaction of distances between points in S by a
factor of approximately

√
M/N . However, the variance

of the additive noise in this subspace is unchanged. In
other words, the noise present in the test statistics does
not decrease, but the relative sizes of the test statistics
do. Hence, just as in detection (see equation (20)), the
probability of error of our classifier will increase upon
projection to a lower-dimensional space in a way that
depends on the SNR and the number of measurements.
However, it is again important to note that in a high-SNR
regime, we may be able to successfully distinguish be-
tween the different classes with very few measurements.

C. Experiments and Discussion

In Figure 6 we display experimental results for classi-
fication among R = 3 test signals of length N = 1000.
The signals s1, s2, and s3 are drawn according to a
Gaussian distribution with mean 0 and variance 1 and
then fixed. For each value of M , a single Gaussian Φ is
drawn and then PE is computed by averaging the results
over 106 realizations of the noise vector n. The error
rates are very similar in spirit to those for detection (see
Figure 4). The results agree with Theorem 3, in which
we demonstrate that just as was the case for detection, as
M increases the probability of error decays expoentially
fast. This also agrees with the related results of [16].

V. ESTIMATION WITH COMPRESSIVE
MEASUREMENTS

A. Problem Setup and Applications

While many signal processing problems can be re-
duced to a detection or classification problem, in some
cases we cannot reduce our task to selecting among a
finite set of hypotheses. Rather, we might be interested
in estimating some function of the data. In this section
we will focus on estimating a linear function of the data
from compressive measurements.

Suppose that we observe y = Φs and wish to estimate
〈`, s〉 from the measurements y, where ` ∈ RN is a
fixed test vector. In the case where Φ is a random
matrix, a natural estimator is essentially the same as the
compressive detector. Specifically, suppose we have a
set L of |L| linear functions we would like to estimate
from y. Example applications include computing the
coefficients of a basis or frame representation of the
signal, estimating the signal energy in a particular linear
subspace, parametric modeling, and so on. One potential
estimator for this scenario, which is essentially a simple
generalization of the compressive detector in (12), is
given by

N

M
yT (ΦΦT )−1Φ`i, (29)

for i = 1, 2, . . . , |L|. While this approach, which we
shall refer to as the orthogonalized estimator, has certain
advantages, it is also enlightening to consider an even
simpler estimator, given by

〈y,Φ`i〉 . (30)

We shall refer to this approach as the direct estimator
since it eliminates the orthogonalization step by directly
correlating the compressive measurements with Φ`i. We
will provide a more detailed experimental comparison
of these two approaches below, but in the proof of
Theorem 4 we focus only on the direct estimator.

B. Theory

We now provide bounds on the performance of our
simple estimator.4 This bound is a generalization of
Lemma 2.1 of [22] to the case where 〈`, s〉 6= 0.

Theorem 4. Suppose that ` ∈ L and s ∈ S and that Φ
is a δ-stable embedding of (L,S ∪ −S), then

|〈Φ`,Φs〉 − 〈`, s〉| ≤ δ‖`‖2‖s‖2. (31)

4Note that the same guarantee can be established for the orthogo-
nalized estimator under the assumption that

√
N/MPΦT is a δ-stable

embedding of (L,S ∪ −S).
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Proof: We first assume that ‖`‖2 = ‖s‖2 = 1. Since

‖`± s‖22 = ‖`‖22 + ‖s‖22 ± 2〈`, s〉 = 2± 2〈`, s〉

and since Φ is a δ-stable embedding of both (L,S) and
(L,−S), we have that

1− δ ≤ ‖Φ`± Φs‖22
2± 2〈`, s〉

≤ 1 + δ.

From the parallelogram identity we obtain

〈Φ`,Φs〉 =
1
4

∣∣‖Φ`+ Φs‖22 − ‖Φ`− Φs‖22
∣∣

≤ (1 + 〈`, s〉)(1 + δ)− (1− 〈`, s〉)(1− δ)
2

= 〈`, s〉+ δ.

Similarly, one can show that 〈Φ`,Φs〉 ≥ 〈`, s〉−δ. Thus

−δ ≤ 〈Φ`,Φs〉 − 〈`, s〉 ≤ δ.

From the bilinearity of the inner product the result
follows for `, s with arbitrary norm.

One way of interpreting our result is that the angle
between two vectors can be estimated accurately; this is
formalized as follows.

Corollary 2. Suppose that ` ∈ L and s ∈ S and that
Φ is a δ-stable embedding of (L ∪ {0},S ∪−S ∪ {0}).
Then

|cos ](Φ`,Φs)− cos ](`, s)| ≤ 2δ,

where ](·, ·) denotes the angle between two vectors.

Proof: Using the standard relationship between in-
ner products and angles, we have

cos ](`, s) =
〈`, s〉
‖`‖2 ‖s‖2

and
cos ](Φ`,Φs) =

〈Φ`,Φs〉
‖Φ`‖2 ‖Φs‖2

.

Thus, from (31) we have∣∣∣∣ 〈Φ`,Φs〉‖`‖2 ‖s‖2
− cos ](`, s)

∣∣∣∣ ≤ δ. (32)

Now, using (5), we can show that

(1− δ)
‖Φ`‖2 ‖Φs‖2

≤ 1
‖`‖2 ‖s‖2

≤ (1 + δ)
‖Φ`‖2 ‖Φs‖2

,

from which we infer that∣∣∣∣ 〈Φ`,Φs〉‖`‖2 ‖s‖2
− 〈Φ`,Φs〉
‖Φ`‖2 ‖Φs‖2

∣∣∣∣ ≤ δ 〈Φ`,Φs〉
‖Φ`‖2 ‖Φs‖2

≤ δ.
(33)

Therefore, combining (32) and (33) using the triangle
inequality, the desired result follows.

While Theorem 4 suggests that the absolute error
in estimating 〈`, s〉 must scale with ‖`‖2‖s‖2, this is
probably the best we can expect. If the ‖`‖2‖s‖2 terms
were omitted on the right hand side of (31), one could
estimate 〈`, s〉 with arbitrary accuracy using the follow-
ing strategy: (i) choose a large positive constant Cbig,
(ii) estimate the inner product 〈Cbig`, Cbigs〉, obtaining
an accuracy δ, and then (iii) divide the estimate by C2

big

to estimate 〈`, s〉 with accuracy δ
C2

big
. Similarly, it is not

possible to replace the right hand side of (31) with an
expression proportional merely to 〈`, s〉, as this would
imply that 〈Φ`,Φs〉 = 〈`, s〉 exactly when 〈`, s〉 = 0,
and unfortunately this is not the case. (Were this possible,
one could exploit this fact to immediately identify the
non-zero locations in a sparse signal by letting `i = ei,
the ith canonical basis vector, for i = 1, 2, . . . , N .)

C. Experiments and Discussion

In Figure 7 we display the average estimation
error for the orthogonalized and direct estimators,
i.e.,

∣∣(N/M)sTΦT (ΦΦT )−1Φ`− 〈`, s〉
∣∣ /‖s‖2‖`‖2 and

|〈Φ`,Φs〉 − 〈`, s〉| /‖s‖2‖`‖2 respectively. The signal s
is a length N = 1000 vector with entries distributed
according to a Gaussian distribution with mean 1 and
unit variance. We choose ` = [ 1

N
1
N · · ·

1
N ]T to compute

the mean of s. The result displayed is the mean error
averaged over 104 different draws of Gaussian Φ with s
fixed. Note that we obtain nearly identical results for
other candidate `, including ` both highly correlated
with s and ` nearly orthogonal to s. In all cases, as M
increases, the error decays because the random matrices
Φ become δ-stable embeddings of {s} for smaller values
of δ. Note that for small values of M , there is very
little difference between the orthogonalized and direct
estimators. The orthogonalized estimator only provides
notable improvement when M is large, in which case
the computational difference is significant. In this case
one must weigh the relative importance of speed versus
accuracy in order to judge which approach is best, so
the proper choice will ultimately be dependent on the
application.

In the case where |L| = 1, Theorem 4 is a deter-
ministic version of Theorem 4.5 of [45] and Lemma
3.1 of [46], which both show that for certain random
constructions of Φ, with probability at least 1− β,

|〈Φ`,Φs〉 − 〈`, s〉| ≤ δ ‖`‖2 ‖s‖2 . (34)

In [45] β = 2δ2/M while in [46] more sophisticated
methods are used to achieve a bound on β of the
form β ≤ 2e−cMδ2 as in (8). Our result extends these
results to a wider class of random matrices. Furthermore,
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our approach generalizes naturally to simultaneously
estimating multiple linear functions of the data.

Specifically, it is straightforward to extend our analysis
beyond the estimation of scalar-valued linear functions
to more general linear operators. Any finite-dimensional
linear operator on a signal x ∈ RN can be represented
as a matrix multiplication Lx, where L has size Z ×N
for some Z. Decomposing L in terms of its rows, this
computation can be expressed as

Lx =


`T1
`T2
...
`TZ

x =


〈`1, x〉
〈`2, x〉

...
〈`Z , x〉

 .
From this point, the bound (31) can be applied to each
component of the resulting vector. It is also interesting
to note that by setting L = I , then we can observe that

‖ΦTΦx− x‖∞ ≤ δ‖x‖2.

This could be used to establish deterministic bounds
on the performance of the thresholding signal recovery
algorithm described in [46], which simply thresholds
ΦT y to keep only the K largest elements.

We can also consider more general estimation prob-
lems in the context of parameterized signal models.
Suppose, for instance, that a K-dimensional parameter
θ controls the generation of a signal s = sθ, and
we denote by Θ the K-dimensional space to which
the parameter θ belongs. Common examples of such
articulations include the angle and orientation of an edge
in an image (K = 2), or the start and end frequencies
and times of a linear radar chirp (K = 4). In cases such
as these, the set of possible signals of interest

M := {sθ : θ ∈ Θ} ⊂ RN

forms a nonlinear K-dimensional manifold. The actual
position of a given signal on the manifold reveals the
value of the underlying parameter θ. It is now under-
stood [47] that, because random projections can provide
δ-stable embeddings of nonlinear manifolds using M =
O
(
K logN
δ2

)
measurements [31], the task of estimating

position on a manifold can also be addressed in the
compressive domain. Recovery bounds on ‖θ− θ̂‖2 akin
to (4) can be established; see [47] for more details.

VI. FILTERING WITH COMPRESSIVE
MEASUREMENTS

A. Problem Setup and Applications

In practice, it is often the case that the signal we
wish to acquire is contaminated with interference. The
universal nature of compressive measurements, while
often advantageous, can also increase our susceptibility
to interference and significantly affect the performance
of algorithms such as those described in Sections III–
V. It is therefore desirable to remove unwanted signal
components from the compressive measurements before
they are processed further.

More formally, suppose that the signal x ∈ RN
consists of two components:

x = xS + xI ,

where xS represents the signal of interest and xI rep-
resents an unwanted signal that we would like to reject.
We refer to xI as interference in the remainder of
this section, although it might be the signal of interest
for a different system module. Supposing we acquire
measurements of both components simultaneously

y = Φ(xS + xI), (35)

our goal is to remove the contribution of xI from the
measurements y while preserving the information about
xS . In this section, we will assume that xS ∈ SS and
that xI ∈ SI . In our discussion, we will further assume
that Φ is a δ-stable embedding of (S̃S ,SI), where S̃S is
a set with a simple relationship to SS and SI .

While one could consider more general interference
models, we restrict our attention to the case where either
the interfering signal or the signal of interest lives in a
known subspace. For example, suppose we have obtained
measurements of a radio signal that has been corrupted
by narrow band interference such as a TV or radio
station operating at a known carrier frequency. In this
case we can project the compressive measurements into
a subspace orthogonal to the interference, and hence
eliminate the contribution of the interference to the
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measurements. We further demonstrate that provided that
the signal of interest is orthogonal to the set of possible
interference signals, the projection operator maintains a
stable embedding for the set of signals of interest. Thus,
the projected measurements retain sufficient information
to enable the use of efficient compressive-domain algo-
rithms for further processing.

B. Theory

We first consider the case where SI is a KI -
dimensional subspace, and we place no restrictions on
the set SS . We will later see that by symmetry the
methods we develop for this case will have implications
for the setting where SS is a KS-dimensional subspace
and where SI is a more general set.

We filter out the interference by constructing a linear
operator P that operates on the measurements y. The
design of P is based solely on the measurement matrix
Φ and knowledge of the subspace SI . Our goal is to
construct a P that maps ΦxI to zero for any xI ∈ SI .
To simplify notation, we assume that ΨI is an N ×KI

matrix whose columns form an orthonormal basis for the
KI -dimensional subspace SI , and we define the M×KI

matrix Ω = ΦΨI . Letting Ω† := (ΩTΩ)−1ΩT denote the
Moore-Penrose pseudoinverse of Ω, we define

PΩ = ΩΩ† (36)

and
PΩ⊥ = I − PΩ = I − ΩΩ†. (37)

The resulting PΩ⊥ is our desired operator P : it is
an orthogonal projection operator onto the orthogonal
complement of R(Ω), and its nullspace equals R(Ω).

Using Theorem 4, we now show that the fact that Φ is
a stable embedding allows us to argue that PΩ⊥ preserves
the structure of S̃S = PS⊥I SS (where S⊥I denotes the
orthogonal complement of SI and PS⊥I denotes the
orthogonal projection onto S⊥I ), while simultaneously
cancelling out signals from SI .5 Additionally, PΩ pre-
serves the structure in SI while nearly cancelling out
signals from S̃S .

Theorem 5. Suppose that Φ is a δ-stable embedding of
(S̃S ∪{0},SI), where SI is a KI -dimensional subspace
of RN with orthonormal basis ΨI . Set Ω = ΦΨI and
define PΩ and PΩ⊥ as in (36) and (37). For any x ∈

5Note that we do not claim that PΩ⊥ preserves the structure of SS ,
but rather the structure of S̃S . This is because we do not restrict SS

to be orthogonal to the subspace SI which we cancel. Clearly, we
cannot preserve the structure of the component of SS that lies within
SI while simultaneously eliminating interference from SI .

SS⊕SI we can write x = x̃S + x̃I , where x̃S ∈ S̃S and
x̃I ∈ SI . Then

PΩ⊥Φx = PΩ⊥Φx̃S (38)

and
PΩΦx = Φx̃I + PΩΦx̃S . (39)

Furthermore,

1− δ

1− δ
≤ ‖PΩ⊥Φx̃S‖22

‖x̃S‖22
≤ 1 + δ (40)

and
‖PΩΦx̃S‖22
‖x̃S‖22

≤ δ2 1 + δ

(1− δ)2
. (41)

Proof: We begin by observing that since S̃S and SI
are orthogonal, the decomposition x = x̃S+x̃I is unique.
Furthermore, since x̃I ∈ SI , we have that Φx̃I ∈ R(Ω)
and hence by the design of PΩ⊥ , PΩ⊥Φx̃I = 0 and
PΩΦx̃I = Φx̃I , which establishes (38) and (39).

In order to establish (40) and (41), we decompose Φx̃S
as Φx̃S = PΩΦx̃S+PΩ⊥Φx̃S . Since PΩ is an orthogonal
projection we can write

‖Φx̃S‖22 = ‖PΩΦx̃S‖22 + ‖PΩ⊥Φx̃S‖22. (42)

Furthermore, note that PTΩ = PΩ and P 2
Ω = PΩ, so that

〈PΩΦx̃S ,Φx̃S〉 = ‖PΩΦx̃S‖22. (43)

Since PΩ is a projection onto R(Ω) there exists a z ∈ SI
such that PΩΦx̃S = Φz. Since x̃S ∈ S̃S , we have that
〈x̃S , z〉 = 0, and since SI is a subspace, SI = SI ∪−SI ,
and so we may apply Theorem 4 to obtain

|〈PΩΦx̃S ,Φx̃S〉| = |〈Φz,Φx̃S〉| ≤ δ‖z‖2‖x̃S‖2.

Since 0 ∈ SI and Φ is a δ-stable embedding of (S̃S ∪
{0},SI), we have that

‖z‖2‖x̃S‖2 ≤
‖Φz‖2‖Φx̃S‖2

1− δ
.

Recalling that Φz = PΩΦx̃S , we obtain

|〈PΩΦx̃S ,Φx̃S〉|
‖PΩΦx̃S‖2‖Φx̃S‖2

≤ δ

1− δ
.

Combining this with (43), we obtain

‖PΩΦx̃S‖2 ≤
δ

1− δ
‖Φx̃S‖2.

Since x̃S ∈ S̃S , ‖Φx̃S‖2 ≤
√

1 + δ‖x̃S‖2, and thus we
obtain (41). Since we trivially have that ‖PΩΦx̃S‖2 ≥ 0,
we can combine this with (42) to obtain(

1−
(

δ

1− δ

)2
)
‖Φx̃S‖22 ≤ ‖PΩ⊥Φx̃S‖22 ≤ ‖Φx̃S‖22.
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Again, since x̃S ∈ S̃S , we have that(
1−

(
δ

1− δ

)2
)

(1− δ) ≤ ‖PΩ⊥Φx̃S‖22
‖x̃S‖22

≤ 1 + δ,

which simplifies to yield (40).

Corollary 3. Suppose that Φ is a δ-stable embedding of
(S̃S ∪{0},SI), where SI is a KI -dimensional subspace
of RN with orthonormal basis ΨI . Set Ω = ΦΨI and
define PΩ and PΩ⊥ as in (36) and (37). Then PΩ⊥Φ is
a δ/(1− δ)-stable embedding of (S̃S , {0}) and PΩΦ is
a δ-stable embedding of (SI , {0}).

Proof: This follows from Theorem 5 by picking x ∈
S̃S , in which case x = x̃S , or picking x ∈ SI , in which
case x = x̃I .

Theorem 5 and Corollary 3 have a number of practical
benefits. For example, if we are interested in solving an
inference problem based only on the signal xS , then we
can use PΩ or PΩ⊥ to filter out the interference and then
apply the compressive domain inference techniques de-
veloped above. The performance of these techniques will
be significantly improved by eliminating the interference
due to xI . Furthermore, this result also has implications
for the problem of signal recovery, as demonstrated by
the following corollary.

Corollary 4. Suppose that Ψ is an orthonormal ba-
sis for RN and that Φ is a δ-stable embedding of
(Ψ(Σ2KS

),R(ΨI)), where ΨI is an N ×KI submatrix
of Ψ. Set Ω = ΦΨI and define PΩ and PΩ⊥ as in (36)
and (37). Then PΩ⊥Φ is a δ/(1 − δ)-stable embedding
of (PR(ΨI)⊥Ψ(Σ2KS

), {0}).

Proof: This follows from the observation that
PR(ΨI)⊥Ψ(Σ2KS

) ⊂ Ψ(Σ2KS
) and then applying

Corollary 3.
We emphasize that in the above Corollary,

PR(ΨI)⊥Ψ(Σ2KS
) will simply be the original family of

sparse signals but with zeros in positions indexed by
ΨI . One can easily verify that if δ ≤ (

√
2 − 1)/

√
2,

then δ/(1 − δ) ≤
√

2 − 1, and thus Corollary 4 is
sufficient to ensure that the conditions for Theorem 1
are satisfied. We therefore conclude that under a slightly
more restrictive bound on the required RIP constant,
we can directly recover a sparse signal of interest xS
that is orthogonal to the interfering xI without actually
recovering xI . Note that in addition to filtering out
true interference, this framework is also relevant to the
problem of signal recovery when the support is partially
known, in which case the known support defines a
subspace that can be thought of as interference to be
rejected prior to recovering the remaining signal. Thus,

our approach provides an alternative method for solving
and analyzing the problem of CS recovery with partially
known support considered in [48]. Furthermore, this
result can also be useful in analyzing iterative recovery
algorithms (in which the signal coefficients identified in
previous iterations are treated as interference) or in the
case where we wish to recover a slowly varying signal
as it evolves in time, as in [49].

This cancel-then-recover approach to signal recovery
has a number of advantages. Observe that if we attempt
to first recover x and then cancel xI , then we require
the RIP of order 2(KS +KI) to ensure that the recover-
then-cancel approach will be successful. In contrast,
filtering out xI followed by recovery of xS requires the
RIP of order only 2KS + KI . In certain cases (when
KI is significantly larger than KS), this results in a
substantial decrease in the required number of measure-
ments. Furthermore, since all recovery algorithms have
computational complexity that is at least linear in the
sparsity of the recovered signal, this can also result in
substantial computational savings for signal recovery.

C. Experiments and Discussion

In this section we evaluate the performance of
the cancel-then-recover approach suggested by Corol-
lary 4. Rather than `1-minimization we use the iterative
CoSaMP greedy algorithm [7] since it more naturally
naturally lends itself towards a simple modification
described below. More specifically, we evaluate three
interference cancellation approaches:

1) Cancel-then-recover: This is the approach advo-
cated in this paper. We cancel out the contribution
of xI to the measurements y and directly recover
xS using the CoSaMP algorithm.

2) Modified recovery: Since we know the support
of xI , rather than cancelling out the contribution
from xI to the measurements, we modify a greedy
algorithm such as CoSaMP to exploit the fact that
part of the support of x is known in advance. This
modification is made simply by forcing CoSaMP
to always keep the elements of J in the active set
at each iteration. After recovering x̂, we then set
x̂n = 0 for n ∈ J to filter out the interference.

3) Recover-then-cancel: In this approach, we ignore
that we know the support of xI and try to recover
the signal x using the standard CoSaMP algorithm,
and then set x̂n = 0 for n ∈ J as before.

In our experiments, we set N = 1000, M = 200,
and KS = 10. We then considered values of KI from
1 to 100. We choose SS and SI by selecting random,
non-overlapping sets of indices, so in this experiment,
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Fig. 8. SNR of xS recovered using the three different cancellation ap-
proaches for different ratios of KI to KS compared to the performance
of an oracle.

SS and SI are orthogonal (although they need not be
in general, since S̃S will always be orthogonal to SI ).
For each value of KI , we generated 2000 test signals
where the coefficients were selected according to a
Gaussian distribution and then contaminated with an
N -dimensional Gaussian noise vector. For comparison,
we also considered an oracle decoder that is given the
support of both xI and xS and solves the least-squares
problem restricted to the known support set.

We considered a range of signal-to-noise ratios
(SNRs) and signal-to-interference ratios (SIRs). Figure 8
shows the results for the case where xS and xI are
normalized to have equal energy (an SIR of 0dB) and
where the variance of the noise is selected so that the
SNR is 15dB. Our results were consistent for a wide
range of SNR and SIR values, and we omit the plots
due to space limitations.

Our results show that the cancel-then-recover ap-
proach performs significantly better than both of the
other methods as KI grows larger than KS , in fact,
the cancel-then-recover approach to performs almost as
well as the oracle decoder for the entire range of KI .
We also note that while the modified recovery method
did perform slightly better than the recover-then-cancel
approach, the improvement is relatively minor.

We observe similar results in Figure 9 for the recov-
ery time (which includes the cost of computing P in
the cancel-then-recover approach), with the cancel-then-
recover approach performing significantly faster than the
other approaches as KI grows larger than KS .

We also note that in the case where Φ admits a
fast transform-based implementation (as is often the
case for the constructions described in Section II-D) the
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Fig. 9. Recovery time for the three different cancellation approaches
for different ratios of KI to KS .

projections PΩ and PΩ⊥ can leverage the structure of
Φ in order to ease the computational cost of applying
PΩ and PΩ⊥ . For example, Φ may consist of random
rows of a Discrete Fourier Transform or a permuted
Hadamard Transform matrix. In such a scenario, there
are fast transform-based implementations of Φ and ΦT .
By observing that

PΩ = ΦΨI(ΨT
I ΦTΦΨI)−1ΨT

I ΦT

we see that one can use the conjugate gradient method
or Richardson iteration to efficiently compute PΩy and
by extension PΩ⊥y [7].

VII. CONCLUSIONS

In this paper, we have taken some first steps towards
a theory of compressive signal processing (CSP) by
showing that compressive measurements can be effective
for a variety of detection, classification, estimation, and
filtering problems. We have provided theoretical bounds
backed up by experimental results that indicate that in
many applications it can be more efficient and accurate to
extract information directly from a signal’s compressive
measurements than first recover the signal and then
extract the information. It is important to reemphasize
that our techniques are universal and agnostic to the
signal structure and provide deterministic guarantees for
a wide variety of signal classes.

In the future we hope to provide a more detailed
analysis of the classification setting and consider more
general models, as well as consider detection, classifi-
cation, and estimation settings that utilize more specific
models, such as sparsity or manifold structure.
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