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Abstract
Today’s viewers of broadcast content are presented with huge amounts of content from broadcast
networks, cable networks, pay-per-view, and more. Streaming video over the internet is begin-
ning to add to this flow. Viewers do not have enough time to watch all of this content, and in
many cases, even after selecting a few programs of interest, they many want to speed up their
viewing of the chosen content, either by summarizing it or by providing tools to rapidly navigate
to the most important parts. New display devices and new viewing environments, for example
using a cell phone to watch content while riding the bus, will also increase the need for new
video summarization and management tools. Video Summarization tools can vary substantially
in their goals. For example, tools may seek to create a set of still-image keyframes, or they may
create a condensed video skim [14]. Even after specifying the format of the summary, there can
be different semantic objectives for the summary. A summary meant to best convey the plot of
a situation comedy could differ substantially from a summary meant to show the funniest few
scenes from the show. Most of these processing goals remain unachieved despite over a decade
of work on video summarization. The fundamental reason for this difficulty is the existence
of the ”semantic gap”, the large separation between computationally easy-to-extract audio and
visual features and semantically meaningful items such as spoken words, visual objects, and el-
ements of narrative structure. Because most video summarization goals are stated in semantic
terms (”the most informative summary,” ”the most exciting plays of the match”), while our com-
putational tools are best at extracting simple features like audio energy and color histograms, we
must find some way to bridge these two domains.
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1 Introduction

Today’s viewers of broadcast content are presented with huge amounts of content
from broadcast networks, cable networks, pay-per-view, and more. Streaming video
over the internet is beginning to add to this flow. Viewers do not have enough time
to watch all of this content, and in many cases, even after selecting a few programs
of interest, they may want to speed up their viewing of the chosen content, either
by summarizing it or by providing tools to rapidly navigate to the most important
parts. New display devices and new viewing environments, for example using a cell
phone to watch content while riding the bus, will also increase the need for new
video summarization and management tools.

Video summarization tools can vary substantially in their goals. For example,
tools may seek to create a set of still-image keyframes, or they may create a con-
densed video skim [14]. Even after specifying the format of the summary, there can
be different semantic objectives for the summary. A summary meant to best convey
the plot of a situation comedy could differ substantially from a summary meant to
show the funniest few scenes from the show.

Most of these processing goals remain unachieved despite over a decade of work
on video summarization. The fundamental reason for this difficulty is the existence
of the “semantic gap,” the large separation between computationally easy-to-extract
audio and visual features and semantically meaningful items such as spoken words,
visual objects, and elements of narrative structure. Because most video summariza-
tion goals are stated in semantic terms (“the most informative summary,” “the most
exciting plays of the match”), while our computational tools are best at extracting
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simple features like audio energy and color histograms, we must find some way to
bridge these two domains.

This chapter presents our approach to bridging the semantic gap by supervised
learning from hand-labeled examples. Our processing goal in this work is to locate
all of the scene change locations in the content in a way that will work across a
broad range of genres, including news, situation comedies, dramas, how-to shows,
and more. We believe that this is a useful and semantically meaningful goal that can
serve as a building block in a variety of higher-level video summarization systems.

The remainder of this section will give a high-level motivation for our design
choices. Section 2 reviews previous work with an emphasis on scene change detec-
tion and on summarization techniques that use supervised learning. Section 3 gives
a high-level overview of our approach to scene change detection. Sections 4 and 5
describe the features and classification algorithm used in our approach. Section 6
describes our experimental results, and Sections 7 and 8 conclude.

1.1 Why supervised learning?

Given sufficient training data, the relationship between input features, such as the
cepstral audio features and color histogram-based video features that we use, and
the output decision (between scene boundaries and non-scene-boundaries) can be
determined by algorithms such as the support vector machine (SVM). This ap-
proach minimizes the degree to which features and thresholds must be hand-tuned,
thus allowing us to quickly and easily add new low-level input features to our sys-
tem. Domain-specific knowledge can be included in the system through appropriate
choice of features.

1.2 Why scene changes?

In broadcast video content, scene changes provide structure that can be useful for
understanding, organizing, and browsing the content. Our primary motivation for
studying scene change detection is to improve the video-browsing capabilities of
consumer electronics devices thus allowing users to more quickly and effectively
manage their content. Therefore, in this paper, the term “scene change” refers to a
semantically meaningful change that will usually, but not always, have an obvious
manifestation in the video and/or audio. Furthermore, we choose a definition of
“scene change” that results in an average of one scene change every few minutes,
which we believe is a useful granularity for content browsing.

Our work depends on hand-labeled ground truth, so the operational definition
of a scene change depends on the opinion of the humans who label scene changes
in our video corpus. In sitcoms and dramas, scene changes typically correspond
to changes in filming location or to the entrance of a significant new character. For
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news, scene changes correspond to boundaries between news stories. For talk shows,
scene changes correspond to changes from one guest or skit to another. Similar
judgements are made for other genres. In all genres, the transitions between program
content and commercials and the transitions from one commercial to the next are
also considered scene changes.

Detecting these scene changes using simple audio and video features is challeng-
ing because scene changes for different genres, and even scene changes within one
genre, do not necessarily have obvious similarities. In contrast to scene changes,
shot changes, the change from one continuous sequence filmed by a single camera
to another such sequence, is a much-studied problem [7] that can largely be solved
using simple, low-level video features. We will use such a shot-change detector as a
component in our scene change detector, but it is important to note that our semantic
scene change detection task is a distinct and more challenging problem.

2 Previous Work

This section reviews previous work on video summarization, emphasizing work on
scene change detection and previous uses of supervised learning.

Beyond video summarization, semantic video processing has also been used for
video search applications, recent examples of which include “Video Google” [12],
MediaMill [17], and CuVid [3]. Much of the computational infrastructure for video
search and video summarization overlaps, so some of the previous work we review
has been applied to video search as well. However, the generall problem of video
search is beyond the scope of this chapter.

2.1 Types of content

Audiovisual content can vary in narrative structure, in degree of editing, and in other
ways that have major influences on subsequent processing.

One major axis of variation is between scripted content and unscripted content
[18]. Scripted content, such as a situation comedy or news broadcast, tells a story
or otherwise presents information in a structured, typically sequential, way. Ideally,
one would summarize scripted content by understanding the “story” and retaining
only the most important points. In contrast, unscripted content, such as a sporting
event or a surveillance video, has little predetermined structure and can often be
characterized as a small number of interesting events (e.g. goals in sports content
or security breaches in surveillance content) scattered within a background of un-
interesting events. Ideally, unscripted content can be summarized by including only
interesting events and removing uninteresting events.

Another way in which content can vary is in the degree to which it is edited, pro-
duced, and post-processed. Typical broadcast content is captured by professional
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camera and microphone operators and will include shot changes, scene changes, vi-
sual effects, sound effects, mixtures from several source audio tracks (music, char-
acter dialog, laugh tracks, etc.), and audio and visual level adjustments. All of these
processing steps combine to yield a consistent and pleasant audiovisual experience.
In contrast, unedited content, such as surveillance video or home videos, typically
consists of long, uninterupted video shots that may not focus on important elements
of the recorded action. One important consequence of the editing process is that it
adds useful structure (laughter after a funny moment, ominous music during a scary
scene, etc.) that can potentially be exploited by video summarization techniques.

Previous work on video summarization has also varied in its content-specificity.
Some work has been specific to specific sports (such as soccer or basketball). Other
work has been limited to fairly narrow genres, such as news broadcasts or mu-
sic videos. Yet other work has been applied across a number genres. More genre-
specific work has in general been able to exploit additional structure to achieve more
semantically sophisticated processing goals.

2.2 Processing objectives

Once the type or types of content have been specified, the goal of the processing
can be specified [14]. Goals can vary from low-level, such as a list of shot change
locations, to high-level, such as a semantically meaningful summary of the content.
Many high-level systems use lower-level processing techniques as building blocks.

A low- vs. high-level distinction that is important to our work is the difference
between shot changes and scene changes. A shot is a consecutive sequence of frames
captured from a single camera, while a scene is a semantically coherent video se-
quence which usually takes place in a single setting but may consist of several video
shots. There are numerous challenges to reliably detecting shot changes [7], such
as dissolves and wipes as transitions between shots, but clearly scene changes are a
higher-level concept that requires more semantic knowledge to find.

Systems may also vary in the final format in which their results will be presented.
One possible goal is to have a system that improves the interactive browsing expe-
rience by emphasizing important points in the content [11]. Another possible goal
is to prepare a non-interactive summary of the content. Non interactive summaries
may be presented as short “video skims” or as a collection of still keyframes.

The final consideration is the semantic goal of the output. For sports or surveil-
lance, the goal may be to extract interesting events and ignore typical and uninter-
esting events. For a situation comedy or a drama, the goal may be to summarize
the plot and/or include the most entertaining scenes from the program. For a news
program, the summary might include only the most important points from the main
news stories.

In all cases, the challenge is to relate the low-level features that can be extracted
directly from the content to higher-level semantically meaningful concepts and
structure. Achieving high-level semantic goals on a wide variety of content types
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Fig. 1 Typical summarization system framework. Details and emphasis vary, but most previous
summarization systems take in audiovisual content and extract low-level features. They then find
temporal patterns, typically by clustering on feature similarity or segmenting based on feature
coherence. From these patterns, estimates of semantic structure, such as shot or scene change
locations, are made. Finally, the results are presented in a user-friendly format, such as a set of
informative keyframes or a short video skim.

is an extremely challenging goal that we are not close to achieving. The following
section reviews a variety of past work and describes some of the tradeoffs and design
decisions that they have made in order to make progress on these problems.

2.3 Existing algorithms

This section presents a roughly chronological review of some of the most relevant
video summarization work. Figure 1 shows the high-level schematic framework typ-
ical of these systems. All take in (audio)visual streams and all output some estimate
of semantic structure, though they differ in their precise goals and in their lower-
level design decisions.

Hongjiang Zhang and his collaborators did important early work on video sum-
marization, which they review in [19]. They describe their goal as adding struc-
ture to (initially unstructured) video content. They detect shot boundaries using
compressed-domain features, and they test this shot detection across a range of
content types. Within each shot, they choose one or more keyframes to represent
the shot. Although the primary use of these keyframes is as a summary of the con-
tent, another use is that visual features, such as color, texture, and shape features,
are extracted from the keyframes to enable video search. Camera operations such
as panning and zooming and temporal variations in brightness and color are also
used to characterize shot content. These features, although intended primarily for
video search, are also used to cluster similar shots to improve summarization and
browsing.

Aigrain, Zhang, and Petkovic [2] review additional early work on video summa-
rization and elaborate on some of the techniques described in [19]. They describe
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several still-image processing techniques for extracting shape, texture, etc. that form
the basis for many descriptors used in video summarization. They also make the
important point that shot boundary detection is not sufficient for summarizing long-
duration content because there can be 500 to 1000 shot changes per hour, a number
which is impractical to present as a summary. To deal with long-duration content,
they describe two techniques for doing scene change detection instead of shot de-
tection. One genre-specific technique, which they applied to television news, is to
detect specific semantically-meaningful shot types, such as shots of the news an-
chor, and to use these to impose additional structure. The other technique is to use a
system of rules based on how video content is edited and perceived to attempt to de-
fine scene change boundaries. The former technique had the disadvantage of being
very genre-specific, and the latter technique does not appear to have been evaluated
thoroughly.

Kender and Yeo [6] approach the problem of scene change detection by defin-
ing a continuous-valued “coherence” at each shot change with the intent that scene
change points will have low coherence and non-scene change points will have high
coherence. They define a pairwise shot similarity based on color histograms and then
define “coherence” as a weighted sum of all pairwise similarities between a shot be-
fore a potential scene change location and a shot after the potential scene change
location. Similarities are weighted by temporal proximity, so dissimilar shots that
are close together in time will be strongly indicative of a scene change location,
while dissimilar shots that are well separated in time will not have much effect on
the overall coherence. Kender and Yeo showed reasonable results on situation com-
edy and action movie content.

Sundaram and Chang [13] also confront the problem of scene change detection
for video summarization. They define a “computational scene” to be a continuous
segment of data that exhibits long-term consistency in its underlying low-level fea-
tures. These features are color- and lighting-based for “video scenes” and based on
a characterization of “ambient sound” for “audio scenes.” A computational scene
boundary is said to occur when a video scene boundary coincides with an audio
scene boundary, or in other words when there are coinciding changes (at an ap-
propriate time scale) in the audio features and video features. The hope is that a
“computational scene” will correspond to a semantically meaningful scene. The de-
termination of computational scene boundaries requires analysis of feature varia-
tion over time, and [13] describes two possible ways of doing this. One way is to
perform a time-constrained clustering of shots and then create a transition graph in-
dicating which shot clusters preceded which other shot clusters. The authors found
this technique to be quite sensitive to the clustering algorithm parameters. The sec-
ond proposed way is to define a causal fixed-duration processing window and to use
a coherence measure similar to that of [6]. Sundaram and Chang discuss the appli-
cation of their segmentation techniques to both still keyframe-based summaries and
video skims.

Hanjalic, Lagendijk, and Biemond [4] present another approach for using pair-
wise shot similarity in a segmentation algorithm. (Their motivating application is
video search and retrieval, but their segmentation technique could be applied to sum-
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marization.) They place a threshold on the maximum dissimilarity within a scene
instead of simply calculating weighted sums of coherence values. They apply their
technique to two full-length movies.

Truong, Venkatesh, and Dorai [15] build on previous coherence-based scene
change detectors by detecting features derived from an understanding of standard
video editing and production techniques. These features include “tempo,” based
on shot length and motion activity and meant to differentiate fast-paced, energetic
scenes from slow scenes, and “high impact colors,” which finds unusual colors
which may be indicative of some recurring theme in the content. Truong et al. pro-
vide a thorough evaluation of their techniques on ten full-length movies from a
variety of genres.

Wei, Dimitrova, and Chang [16] present another approach to incorporating high-
level semantic knowledge into a content analysis algorithm. Unlike other previous
work described to this point, Wei et al. are not explicitly trying to segment the video
content. Instead, their goal is to classify video segments according to “mood,” for
example, anger, fear, joy, etc. To do this, they extract color-histogram-based features
and shot pace features and use labeled ground truth to train an SVM to classify eight
different mood types, achieving roughly 80% accuracy across fifteen full-length
films.

Adams, Venkatesh, Bui, and Dorai [1] impose a “three-act” structure on video
content in which the three acts correspond to the setup, confrontation, and resolu-
tion of the story, and each act has a specified internal structure. They formulate a
probabilistic model that relates this structure to lower level tempo features based on
shot length, motion activity, and audio magnitude. They then use labeled training
data to estimate the parameters of their probabilistic model. Finally, they use their
model to make maximum a posteriori (MAP) estimates of the act boundaries. In
subsequent, complementary work, Moncrieff and Venkatesh [9] suggest that a scene
video content can be characterized as either an action scene, which emphasizes vi-
sual information, or a plot development scene, which emphasizes audio information.
They detect changes in the scene type by looking for changes in the values of low-
level audio features.

The most commercially successful application of video summarization to date is
the work of Otsuka et al. [11]. In this work, the goal is to find highlights in sports
content. The system uses labeled training data of highlights and non-highlights to
learn a Gaussian mixture model (GMM) of the audio features for each of those
two classes. These GMMs are used to classify the content’s audio, and a graph of
the “excitement level” as a function of time is presented to the user in a browsing
interface that allows skipping forward and backward directly to exciting parts of the
content. This work applies only to sports content, but it has been able to achieve a
useful level of accuracy on this task because there is a reasonably straightforward
relationship between exciting moments in sports content (which tend to cause cheers
from the crowd and excited commentator speech) and low-level audio features.

In summary, researchers have been working on scene change detection for over
a decade. Older work largely used changes in the distributions of low-level fea-
tures as an indication of a scene change location. This is intuitively appealing and
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reasonably successful, but it can be difficult to fine-tune the parameters of these
systems to maximize performance. Newer work has begun to avoid the problem
of hand-tuning by using labeled training data to learn the parameters of classifiers
or generative models. It is difficult to directly compare the performance of differ-
ent approaches because they are tested on different data and have no agreed-upon
method of labeling ground truth. The large semantic gap between low-level features
and high-level structure means that video segmentation remains a difficult and so
far unsolved problem, but we believe that this use of training data is an important
step in the right direction.

3 Our Approach

Our approach is to define several low-level audio and video features and to use
labeled training data to train an SVM scene boundary classifier with those features
as input. Like recent work such as [1, 11, 16], we use a training step so that we can
avoid hand-tuning algorithm parameters. Unlike previous work, we use training data
that both spans a wide variety of genres and is explicitly labeled with scene change
locations. Because the training data implicitly defines what it means to be a scene
change, we can learn a classifier that works on scene changes in a drama, which will
often correspond to changes in time or filming location, and also on scene changes
in news programs, which will often correspond to transitions between news stories.
Given enough training data and a rich enough feature set, an SVM classifier should
be able to correctly classify either of these types of scene changes. We feel that this
is a powerful and conceptually simple path toward bridging the semantic gap.

Early work on scene segmentation emphasized that there should be low “coher-
ence” across scene changes. In our system, we use Bhattacharyya shape and distance
(described in detail below) as two of our features. These features measure the differ-
ence in lower-level feature distributions across a potential scene change, similar to
what previous “coherence” features did, but we do not explicitly require local min-
ima or maxima of these features to occur at scene boundaries. We allow the training
process to determine what values will occur. We have chosen this and other features
because of their intuitive appeal and because of the use of similar features in previ-
ous work, but once we have our training set labeled, we are free to experiment with
many different possible features.

Our features are all defined on a local window around the current time point, so
our scene change detection can be performed in a single pass by computing features
in a sliding window. All of our audio and video features are computationally simple;
some of the audio features are already in use on an embedded system as described in
[11], and the MPEG-7 Scalable Color feature that we use was designed for compu-
tational simplicity. This computational simplicity should make it easy to apply our
classifier in real time.
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Fig. 2 Schematic overview of audio and video feature streams: (a) MFCC spectral coefficients
are computed from the raw waveform. High level semantic labels are computed from the MFCC
coefficients. (b) Video shot changes and scalable color histograms are both computed from the raw
stream of video frames.

4 Feature Description

We use a discriminative Gausssian-kernel SVM framework [5] for detecting video
scene changes. During the training phase, the classifier requires input vectors for
scene changes as well as non-scene changes, and constructs the optimal (possibly
non-linear) decision boundary separating the vectors in the input space. Our goal is
to find good features for distinguishing scene boundaries from non-scene boundaries
in diverse video content. Because of our finite amount of training and test data,
we also require that our input vectors to the SVM be relatively low-dimensional.
Finally, we base our choice of features on the fact that certain feature streams are
readily available, computationally efficient, and amenable to our product platform.

Video and audio feature streams are shown in Fig. 2. For audio, we start with
an MPEG video source and extract a single-channel audio stream at 44.1 KHz.
We compute 12 Mel-frequency cepstral coefficients (MFCCs) over 20 ms frames.
Based on the low-level MFCC features, we classify each second of audio into one of
four semantic classes: {music, speech, laughter, silence} using maximum likelihood
estimation over Gaussian Mixture Models (GMMs) [10]. The mixture models for
each semantic class were estimated from separate data. These semantic labels help
us to detect, for example, the brief snippets of music that accompany scene changes
in some content or the laughter that often comes at the end of a scene in a sitcom. In
addition to the semantic audio classes, we also use Bhattacharyya shape and distance
parameters (described below) as features.
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For Video, we use the MPEG-7 Scalable Color descriptor [8] for each frame. We
also extract video frames (at 30 fps) and record the frame number of all shot cuts in
the video. We use a basic hard shot cut detector [7].

Using the above audio and video features, we define an SVM input vector Xi

for scene(+) and non-scene(-) boundaries as follows: Xi = {x1,x2,x3, . . .x13,x14}. In
our experiments, our best-performing feature vector contained 14 dimensions, but
we experimented with various features and subsets of varying dimensionality.

The input vectors Xi describe the local information about a particular time po-
sition t (in seconds) within the video. We compute an Xi at the hand-labeled time
positions for scenes and (randomly selected) non-scenes. The first 9 components of
Xi are histograms of semantic labels as explored in recent work [10], the next two
components represent the difference between the audio distribution before and after
a particular time t. The next component is based on video shot cut counts, and the
final two components represent the difference between the color distribution before
and after a particular time t. The components are defined as follows:

1. Pre-histogram: variables x1,x2,x3
The pre-histogram tallies the number of semantic labels in the set {music, speech,
laughter, silence} within a window of [t −WL, t], where WL is a chosen window
size. The histogram is normalized to sum to 1. We discard one dimension from
the 4D histogram because it is fully determined by the remaining three histogram
values.

2. Mid-histogram: variables x4,x5,x6
The mid-histogram is similar to the pre-histogram and tallies semantic labels
within [t − WL

2 , t + WL
2 ].

3. Post-histogram: variables x7,x8,x9
The post-histogram tallies labels within [t, t +WL].

4. Audio Bhattacharyya Shape+Distance: variables x10,x11
We calculate the Bhattacharyya shape and Mahalanobis distance between single
Gaussian models estimated from the low level MFCC coefficients for region [t −
WL, t] and region [t, t +WL].

Dshape =
1
2 ln

|
Ci+C j

2 |

|Ci|
1
2 |C j|

1
2

(1)

Dmahal =
1
8 (µi −µ j)

T (
Ci +C j

2 )−1(µi −µ j) (2)

The covariance matrices Ci and C j and the means µi and µ j represent the (diag-
onal) covariance and mean of the MFCC vectors before and after a time position
t.
Bhattacharyya shape and Mahalanobis distance are sensitive to changes in the
distributions of the MFCCs, so these features provide much lower-level cues
about changes. For example, a scene change accompanied by a change from a
male speaker to a female speaker would generate a large MFCC Mahalanobis
distance even though the semantic histograms would show that both scenes con-
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Fig. 3 SVM Classifier Framework.

tained primarily speech. (Our speech class is trained on both male and female
speech.)

5. Average Shot Count: variable x12
The final component is twice the average number of shot cuts present in the video
within a window [t −WL, t +WL].

6. Color Bhattacharyya Shape+Distance: variables x13,x14
This feature is based on the MPEG-7 Scalable Color Descriptor [8] which is de-
rived from a color histogram defined in the Hue-Saturation-Value color space.
It uses a Haar transform encoding thus allowing scalable representation as well
as scalable computation for increasing or decreasing the accuracy of the match-
ing and extraction. It is exceptionally compact and easy to compute. We use the
coarsest level, 16 parameters per frame, in the interest of computational sim-
plicity. As for the audio Bhattacharyya descriptor, we compute the scalable color
descriptor over a window before the point of interest and a window after the point
of interest, and after computing diagonal Gaussians, carry out the Bhattacharyya
shape and distance comparisons described above. One minor differency is that
we have 30 descriptors per second because the video is at 30fps, while we have
92 audio feature vectors per second.

Since we use a kernel-based SVM with a smoothing bandwidth that is equal
along all dimensions, we normalize all of the variables in Xi have approximately
the same variance. After experimenting with different window sizes, we found that
a window length of WL = 14 seconds provided enough data to estimate the Bhat-
tacharyya distances and semantic histograms and yielded good results.

5 SVM Classifier Framework

An SVM [5] is a supervised learning algorithm that attempts to find the maximum
margin hyperplane separating two classes of data. Given data points {X0,X1, . . .XN}
and class labels {y0,y1 . . .yN},yi ∈ {−1,1}, the SVM constructs a decision bound-
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ary for the two classes that should generalize well to future data. For this reason, the
SVM has been used as a robust tool for classification in complex, noisy domains.
In our case, the two classes are scene(+) versus non-scene(-) boundaries. The data
points Xi are up to 14D vectors as described in Section 4. We expect that an SVM
using our 14D feature input vector will be easily implementable on our product
platform.

One advantage of the SVM framework is that the data X can be transformed
to a higher dimensional feature space via a kernel function. Data may be linearly
separable in this space by a hyperplane that is actually a non-linear boundary in the
original input space. In our implementation, we found a radial basis kernel worked
well:

K(Xi,X j) = e−γD2(Xi,X j) (3)

We use L2 distance although various distance functions are possible. We fixed the
value of the kernel bandwidth γ = 2.0, but could adjust this value for less smooth-
ing if more training data were available. With limited training samples, we would
like a smooth boundary to account for noise. Noise is introduced in various ways
such as inaccuracies in the audio or video feature streams (misclassified semantic
labels, missed/false shot cuts, alignment of streams), and in incorrect hand-labeled
boundaries.

We used over 7.5 hours of diverse content to generate training and test samples
for the classifier. This amounted to 530 scene(+) sample points. For non-scene(-)
samples, we automatically generated twice as many random non-scene boundaries
chosen at time positions outside a specific WL of scene(+) positions. Fig. 3 shows a
block diagram of the overall SVM framework.

6 Experiments

In our experiments, we tested (1) the ability of our framework to compare different
sets of features in terms of ROC performance; and (2) the ability of our framework
to detect scene changes over a wide variety of broadcast genres. We used the OSU
SVM Toolbox (http://sourceforge.net/projects/svm/), and results
are based on 5-fold cross-validation.

In order to generate ROC curves, we varied the SVM cost penalty for misclas-
sifying a scene(+) boundary versus misclassifying a non-scene(-) boundary. Based
on the cost ratio, the SVM produces a different separating hyperplane, yielding a
performance result with different true and false positive rates. The true positive rate
is the fraction of scene changes correctly detected by our system. The false positive
rate is the fraction of non-scene boundaries that were classified incorrectly as scene
boundaries. Ideally, we wish to achieve high true positive rates and low false pos-
itive rates. In classifying a new video piece, it may be necessary to achieve a false
positive rate of 5% and as high a true positive rate as possible. In other cases, we can
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lower the false positive rate by other means such as pre-processing, only choosing
select candidate locations to test for scene changes.

As shown in the top-most curve of Figure 4(a), using our full-featured 14D input
vectors described in Section 4 (with concatenated histograms, Bhattacharyya mea-
sures, and shot counts) to describe scene vs. non-scene boundaries, our algorithm
scores 70% true positive rate at a false positive rate of 5%. Allowing a higher false
positive rate of 20%, the algorithm achieves a 90% detection rate. The remaining
curves in Figure 4(a) show performance for various subsets of our full feature set.
One notable result is that the shot count feature, which in our experience gives the
worst performance of any individual feature, is still performing well above chance.
Also notable is that all feature subsets perform worse than the full feature vector.
This suggests that 14D is not too high-dimensional for the amount of training data
that we use and that we could potentially improve performance further by adding
new features. In generating these and all other ROC curves in this chapter, we av-
eraged results from 10 runs, each time using a different set of randomly generated
non-scene boundaries.

Figure 4(b) shows results for only within-program scene changes, i.e. exclud-
ing transitions from the main program to a commercial and excluding transitions
between commercials. Most programs have a consistent style, even across scene
changes, so scene changes within a program are typically more subtle than scene
changes involving commercial transitions. Not surprisingly, then our overall perfor-
mance drops substantially to a 55% true positive rate at 5% false positive and an
85% true positive rate at 20% false positive. The most notable pattern to this per-
formance degradation is that our shot counts feature appears to be nearly useless
for within-program scene changes. Shot counts by themselves are at close to chance
performance, and shot counts in combination with other features perform about as
well as those other features without shot counts included.

Figure 5 (a) and (b) show a genre-wise breakup with two different combinations
of features. A comparison of Figure 5(a) and Figure 5(b) reveals that while almost
all genres benefit from the addition of video features, sitcoms perform almost the
same with and without video features. This may be because the laugh track and
short, recurring musical themes provide most of the necessary information about
scene change location. In general, however, it seems that audio and video are able
to complement each other to improve performance in most cases. How-to videos
and news videos had the worst performance, which is not surprising given that a
scene change in these genres may consist of only a change in topic without any
corresponding change in location or on-screen personalities.

7 Future directions

There are a number of possible future directions for this work. At the most concrete
level, we would like to experiment with additional feature types, such as motion ac-
tivity and possibly higher-level audio features. The strength of the supervised learn-
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ing approach is that it will do the best it can with whatever input features are used.
However, other than by using some expert knowledge in combination with extensive
trial and error, it is not usually clear what input features are best. A more principled
approach to choosing input features would be a major improvement.

Our supervised learning approach has led to some limitations. It is sometimes the
case that to improve the performance on one genre, the SVM decision rule would
have to worsen the performance on another genre. In cases like this, the tradeoff
between genres will be made based on the amount of training data from each genre
in combination with any user-defined weighting of this training data. Given enough
training data and rich enough features, we believe that such tradeoffs can be man-
aged successfully, but this issue must be settled empirically. Another approach to
this genre tradeoff problem is to automatically determine the content’s genre first
and then to apply a genre-specific scene change detector. We have avoided this ap-
proach so far because we suspect that automatic genre determination will be difficult
to do reliably and that the increased complexity of such a system is not worthwhile
at present.

8 Conclusion

In this chapter, we reviewed previous work on video scene segmentation and pre-
sented our SVM kernel-based classifier framework that is useful for comparing sets
of features for scene change detection. The framework works over a wide class of
broadcast content such as sitcoms, news, dramas, how-to’s, music videos, and talk
shows.
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(a) Overall performance, all scene changes including commercials
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Fig. 4 Overall ROC results: All curves in each panel are generated with a single classifier, and
in both plots the horizontal axis is false positive rate and the vertical axis is true positive rate.
(a) and (b) show performance averaged across all genres with and without commercial transitions
included, respectively.
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(a) Audio features alone by genre
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(b) Combined audio and video features by genre

Fig. 5 Genre-specific ROC results: All curves in each panel are generated with a single classifier,
and in both plots the horizontal axis is false positive rate and the vertical axis is true positive rate.
(a) and (b) show performance by genre for audio features only and for combined audio and video
features, respectively.
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