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Abstract

It is well-known that a biometric fuzzy vault can be constructed by applying an error correct-
ing code (ECC) to a biometric signal. This is attractive because authentication only requires
the check bits of the ECC to be stored on the access control device, whereas the personal
biometric traits need not be stored. For a given coding rate, the ECC attempts to correct
the errors between an enrollment biometric and the provided probe, and authenticates if it is
successful in doing so. Unfortunately, most implementations of biometric fuzzy vaults have
very poor robustness to the inherent noisiness of biometric measurements. In this paper,
we provide ECC design considerations for secure biometric systems, which provide both bet-
ter robustness and greater security. In particular, for any feature extraction algorithm, we
propose to reorder the feature bits according to their reliability, and associate the reliable
bits with high-degree variable nodes in the graph of the ECC. Further, the reliability of a
bit is measured at enrollment and used to initialize the ECC decoding. Experiments on an
extensive database show considerable reduction in the false reject rate, while restricting the
successful attack rate to a very low value.
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ABSTRACT

It is well-known that a biometric fuzzy vault can be constaetby
applying an error correcting code (ECC) to a biometric dighhis
is attractive because authentication only requires thelcbés of
the ECC to be stored on the access control device, whereaethe
sonal biometric traits need not be stored. For a given coditeg the
ECC attempts to correct the errors between an enrollmentédiiic
and the provided probe, and authenticates if it is succeissfioing
so. Unfortunately, most implementations of biometric fuzaults
have very poor robustness to the inherent noisiness of bigmneea-
surements. In this paper, we provide ECC design consideafor
secure biometric systems, which provide both better rolasstand
greater security. In particular, for any feature extrattidgorithm,
we propose to reorder the feature bits according to thembidity,
and associate the reliable bits with high-degree variabites in the
graph of the ECC. Further, the reliability of a bit is measuat en-
rollment and used to initialize the ECC decoding. Experiteem
an extensive database show considerable reduction inlgeeré&ect
rate, while restricting the successful attack rate to a i@mvalue.

Index Terms— Biometrics, fuzzy vault, distributed source cod-
ing, LDPC codes, error correction coding

1. INTRODUCTION

Biometric access control is becoming increasingly popataan al-
ternative to traditional password-based authenticatibhis is pri-
marily because biometrics authentication is conveniem¢gdot in-
volve remembering a password) and because a biometricl Sggna
difficult to replicate. However, biometric access controbgents
new challenges of its own. Biometric measurements are émttlgr
noisy, and an authentication system must be robust to iar&at
among the biometric samples of a given user. Conventigntliy
problem is solved by storing a reference biometric sample,fea-
ture vector obtained from the biometric, on the device. Tlseme
robust pattern-matching algorithm compares the refersaceple

and thereby gain access to the system. In practice, thisvesais-
ing an error correction code (ECC) in a Slepian-Wolf codiragrfe-
work [3]. The ECC can correct the slight variations amongybiut
legitimate measurements. Further, the check bits of the BEQG-
late the cryptographic hash in traditional password systelust as a
hacker cannot invert the hash and steal the password, hetgast
use the check bits to recover and steal the biometric.

The advantages notwithstanding, implementations baséui®n
principle [4, 5, 6] suffer from high false reject rates (FRRhe
main reason for this is that it is difficult to model the noidyao-
nel between multiple biometric measurements from a givear. us
Therefore, it is difficult to design an ECC for this noisy chah
This problem was partially remedied in [7] in the context oigir-
print biometrics. The method adopted in that work was tosfam
the fingerprint into a feature vector which possesses sosieathe
properties. In particular, after feature transformatitre compli-
cated biometric channel is reduced to a binary symmetricoéla
(BSC), for which standard ECC designs are readily availabls-
ing LDPC codes in a Slepian-Wolf coding framework, this egst
achieves FRR = 11% and FAR = 0.01% and provides 30 bits of se-
curity.

To make secure biometric systems practical, the FRR-FAR
tradeoff must be improved further. While the scheme of [Butes
a simple framework for implementing a secure biometriceaystit
does not fully exploit the fact that bits extracted from arbétric
have different reliabilities [8]. In particular, the feagutransfor-
mation generated reliable bits, but the ECC was agnostihéo t
difference in reliabilities. The hypothesis of this worktisat ex-
ploiting the unequal reliabilities of the feature bits in E@ecoding
can significantly improve the security vs. robustness (FARRRR)
tradeoff. We retain the idea from [7] of transforming a coitgted
channel between biometric signals to a simple channel lestee
corresponding feature vectors. However, after featunesfeaima-
tion, we manipulate the decoding decisions of the ECC baseden

with a probe and confirms or denies access. This creates atgecu reliability of those features.

threat, because anyone who gains unauthorized accessdewice
can steal the biometric sample. Since a user cannot gerarate-
limited number of new biometrics, this is a serious problem.

In principle, this problem can be solved by using a “fuzzylt/au

scheme [1, 2] The user and the system agree on a secret ke

and if there is sufficient “common randomness” between thelen

ment and the probe biometrics, then the user can extracteye k

1Another way to address this problem is via “cancelable” kitios, in
which biometric features stored on the device can be revakeddifferent
features can be assigned in the case of suspected attaclevetow is diffi-
cult to provide security guarantees for such systems eapeiithe cance-
lable feature transformation algorithm is compromised.

The remainder of this paper is organized as follows: In Sec-
tion 2, we present a general framework for secure biometitcs
which the system is divided into a feature transformatioh asyn-

Yirome code. The desirable characteristics of the feataresfor-

mation are enumerated. In Section 3, we discuss ECC design co
siderations that enable the system to achieve an efficieRtFRR
tradeoff. The method presented is general and is appli¢atday
biometric modality. For concreteness, in Section 4, we thie
example of feature vectors extracted from fingerprints pussess
the properties of Section 2, and demonstrate the improveiméme
security-robustness tradeoff.
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Fig. 1. A general framework for implementing and analyzing a se-
cure biometric system.

2. SECURE BIOMETRICS ARCHITECTURE

A general framework for secure biometrics is shown in FigTfis
framework implements a biometric fuzzy vault in two stag@ébe
first stage involves transforming the biometric into featuectors,
and the second stage involves Slepian-Wolf coding of thaufea
vectors. The central idea is to generate binary featurexgethich
are i.i.d. Bernoulli(0.5), independent across differesgns but dif-
ferent measurements of the same user are related by a birary s
metric channel (BSC) with small crossover probakbflityhis is one
of the standard channel models and therefore standard E€ighde
such as LDPC codes can be used for Slepian-Wolf coding otthe f
ture vectors. We emphasize that the feature transformatiorade
public and isnot assumed to provide any security. Security is pro-
vided by the syndromes generated by the Slepian-Wolf coder.

2.1. Enrollment and Authentication Procedure

Suppose that there afd users. During enroliment, usére 7 =
{1,2,..., M} provides a biometrien;. Then a feature transforma-
tion function freat(-) Maps the biometric into a binary feature vector
a; = freat(my;) Of fixed lengthN. Individual bits ofa; are denoted
by a;; with j € J = {1,2,..., N}. Next, a functionfse(-) maps
the binary vector into a secure biometsic= fseda;). In the frame-
work considered herefse(-) does syndrome encoding using an er-
ror correcting cod&C. The access control system stosesC and a
cryptographic hash of the binary feature vecf@gr(a; ). It does not
store eithetm; or a;.

During authentication, the uséror attacker impersonating user
1, requests access by providing a prabeThe access control sys-
tem transforman into a probe feature vectds = frea(n). Now,
the ECC decoder assumes that the probe feature vbdwan er-
ror prone version of the enrollment feature veciQr It combines
the secure biometris; (syndrome) and the probe veclorand per-
forms ECC decoding. In distributed source coding termigglohis
is equivalent to Slepian-Wolf decoding of the syndrogeisingb
as side information. The result is either an estinagtef enrollment
vectora;, or a special symbd indicating decoding failure. Now, it
is possible thaf; # a;, yeta; satisfies the syndroms. To protect
against this possibility, and more importantly to protegaiast an

2The statistical requirements on feature vectors in thisiceevere first
reported by some of the current authors in [7]. Here, theabivg is to
augment that framework so that the feature vectors can lgegyomatched
to an error correcting code in the following section.

attacker using a stolen set of syndromes to construct hisestin
matea; which satisfies the syndromes but is not the true biometric,
access is granted if and only fifasi@;) = fhast{(ai).

2.2. Desirable Statistical Properties of Feature Vectors

Based on the requirements mentioned at the beginning oféus
tion, we propose a general secure biometric system in whiefea-
ture vectors possess the following properties:

1. Abitin a feature vector representation is equally likelyoe
0 or 1. Thus, the entropyid (4; ;) = 1 bitforalli € T
andj € J. (HereA; ; denotes a random variable, aag;
denotes the actual realization.)

2. Different bits in a given feature vector are independsnt,
that a given bit provides no information about any other bit.
-|-|']US,,H(A/L',J‘7 Alyk) = H(AL,J) + H(Alyk) = 2 bits for all
j # kwherej, k € J.

. Feature vectora; and A, from different users are indepen-
dent, so that one user’s feature vector provides no infoaomat
about another user’s feature vector. ThiS,A;,;, Au,k) =
H(A; )+ H(Ay ) = 2bitsfor alli,u € Z,i # u and all
jkeJ.

. Suppose feature vectass; and A’ are obtained from differ-
ent readings of the same biometric. Then bits; and 4; ;
are statistically related by a BSC whose crossover prababil
is denoted by; ;. Thus, H (A} ;|A:;) = H(ps,;) for all
1 €T andj € J. If p; ; is small, it means that the hit; ; is
robust to repeated noisy measurements.

It has been shown in [9] that this secure biometric framework
has positive information theoretic security. In other wgrdiven
the syndromes;, H(A;|s;) > 0. For this work, we are concerned
with practical implementation using error correcting cad€&or an
ECC with rateR,0 < R < 1, the syndrome stored on the device
consists of(1 — R)N bits. The coding rat& determines a perfor-
mance tradeoff for the access control system, which is disulin
the following section.

3. ECC DESIGN CONSIDERATIONS

To optimize the security robustness tradeoff, we proposxpdoit
the reliability of feature vector bits and assign the feathits to
appropriate codeword bits of an ECC. For secure biometsasgu
the framework of Fig. 1, measures of security and robustaess
defined in brief as follows:

1. The False Reject Rate (FRR) is the probability with which
ECC decoding fails to recover an enrollment feature vector
given the stored syndrome and a legitimate probe feature vec
tor.

. The False Accept Rate (FAR) is the probability with which
ECC decoding recovers an enroliment feature vector given
the stored syndrome and an illegitimate probe feature vecto

3. The Successful Attack Rate (SAR) is the probability with
which ECC decoding recovers an enrollment feature vector
given the stored syndrome and an illegitimate probe feature
vector constructed by an attacker using some extra side info
mation about the feature extraction process. For instahee,
attacker may know which transforms applied to the biometric
signal can produce reliable bits for the victim. This is a enor
realistic measure of security than FAR.



4. Number of Bits of Security (NBS) measures the secrecy of-  The probabilityp;,; in Property 4 of Section 2.2 can be estimated
fered by the secure biometric, i.e., the syndrome. Itis @effin during the enrollment stage when multiple biometric saspéend
as the number of bits that an attacker must guess correctly ihence multiple feature vectors, are extracted from each égter
order to extract a feature vector, given the syndrome and thg; ; is measured, we propose to re-order the bits in the featateve
ECC parameters. If the feature vector bits satisfy the prope a; in the order of increasing ;, i.e., in the order of decreasing

ties of Section 2, then NBS N — (1 — R)N = RN.

There is a natural tradeoff among these measures. For ezatopl

make NBS large, one must perform ECC with a large coding rate,

thereby generating a small number of syndrome bits. Thikimil
crease the likelihood that a noisy but legitimate biomatrimbe can
not be decoded to the enroliment feature vector, therelgasing
the FRR. In any case, given a coding rdtethe best tradeoff be-

reliability. By abuse of notation, we denote the re-ordefiesture
vector by the same symbal. After re-orderingy < k = p;,; <
pi, forall j,k € J. This reordering is performed for each enrolled
user. The corresponding reliabilifit; ; can be calculated for all
1t € Tandj € J according to (1). The reordered reliabilities then
have the property th&®; ; > R, i for j < k.

Next, the reordered feature vector bits are associatedvarih
able nodes of the chosen LDPC code graph such that highest-

tween FRR and FAR (or SAR) will be achieved by a channel codggjapility bits are placed at the highest-degree variainges. The

that most closely approaches channel capacity. By desigmpérty
4,in Section 2), each bit of a legitimate probe feature vastelated
to the corresponding bit of the enroliment feature vectoatBSC.
The reliability of a feature vector bit can be measured imseof the
crossover probability of the corresponding BSC. Let thessower
probability bep and the reliability beR, then

(52)]

It is obvious that the largeR is, the more likely it is that the bit
has not flipped between measurements. In the sequel, welapply
density parity check (LDPC) codes to demonstrate how thieshié
ity information can be combined with coding so as to optintize
security-robustness tradeoff.

R = @)

3.1. Properties of LDPC codes

An LDPC code is often represented by a bipartite graph with tw
types of nodes, variable nodes that correspond to codevits;cahd
check nodes that correspond to parity-check constrairtis. iim-
ber of check nodes that a variable node connects to is céiésdbt
gree of that variable node.

In general, LDPC codes can be categorized into regular LDP
codes and irregular LDPC codes. Regular LDPC codes are those
which all nodes of the same type have the same degree, wigitg ir
ular LDPC codes have non-constant degrees for variable laeckc

nodes. In [10], it has been shown that irregular LDPC codes ca

approach Shannon capacity with iterative decoding. Thesefve

use an irregular LDPC code to generate the syndrome. Then, ac

cess control involves Slepian-Wolf decoding of the syndzamthe
presence of the probe feature vector as side informatiocodieg
is performed iteratively using belief propagation (BP).&BP de-
coding is used for irregular LDPC codes, high-degree végiabdes
obtain more information from their connected check nodesnse-
quently, the bits in these nodes can be decoded more adgyttp

We exploit this property in our code design, as detailedwelo

3.2. Associating Reliable Bits with LDPC Codegraphs

There are numerous examples in the literature in which kitaeted
from human biometric signals have different reliabilitieBor in-

stance, when bits are extracted from fingerprint minutibe,reli-

ability of the extracted bit depends on the location of theutiae
point. It stands to reason that, in order to make an accucatesa
control decision, it is necessary for the decoding algorith exploit
the reliability information to the fullest extent possibiehis applies
to conventional biometric matching as well as to the progaseure
biometrics framework.

advantage of this is that reliable information can be spmddnore

quickly during the message-passing iterations of BP. Aftermap-

ping between feature vector bits and variable nodes is ddcide

may permute variable nodes so that their indices agree Wéin t
corresponding feature vector bit indices. This permutatioes not
change either the code or its error performance.

3.3. Soft Initialization of LDPC Decoding

Following the above association of high-reliability bitsthvhigh-
degree variable nodes, the coding performance can be ieqbfay-
ther if the soft-decision decoder knows the reliability ath bit of
side information. At each iteration of the BP algorithm, thes-
sages exchanged between variable nodes and check noddteare o
represented by Log Likelihood Ratio (LLR). Since differdits of
the feature vector have different reliability, each valéainde should
have its own initial LLR at the start of the decoding procé3snote
the initial LLR of the j variable node of user by L;;fori e
andj € J. Now, the;" bit in the probe feature vector of user
is the output of a BSC with crossover probability; and reliability
Ri,; which have both been estimated at the time of enrollment.
When a probe feature vectbr is provided for authentication,

éhe initial LLR for the ;" variable node can be obtained by

if b; =0

. Rij
LJ—{— if b = 1

Riﬁj

whereb; is the probe feature vector bit which is mapped to variable
nodej. This is repeated for ajl € 7.
For secure biometric authentication &f users with/N-bit fea-
ture vectors, the above method would require the storagel of
reliabilities at the access control device, in additiontte 4/ syn-
dromes. As a more practical alternative, we propose to stoke
N reliabilities as follows: After reordering the feature t@s as
in Section 3.2, the average crossover probability for eatpdsi-
tion across allM users is computed using = - > p;; for
all j € J. Then, the reliabilitiesR; corresponding to these aver-
age crossover probabilities are obtained by substityting 5; in
(1). Finally, store theseV reliabilitesR;, 7 € J on the access
control device. With these stored reliabilities, BP deogdior any
probe feature vector will start by initializing the LLRs hgtvariable
ifb; =0

nodes using -
R,
—R; ifbj=1

whereb; is the probe feature vector bit provided by the user, or at-
tacker. Note that, the sign of the LLR is determiregddecoding
time and depends on the feature vector provided for authertitati
In other words, storingR; on the access control device does not

L=
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Fig. 2. Distibution of intra-user and inter-user pairwise distag

The attacker distribution is slightly shifted towards tkeé because
the attacker knows some side information about the victfegsure

vector.

leak any information about whether a bit is more likely to b8 a
or 1. Even if the attacker knows the reliabilities, he stidleds to
guess enough positions correctly in order to successfalipver a
victim’'s enrollment feature vector. Actually, the reliityi infor-
mation can improve security to some extent because, if taelar
provides wrong bits in the reliable positions, the decodsgore
likely to fail.

3.4. Effect of Shuffled Belief Propagation

In standard BP, during each message passing iterationarible
nodes or all check nodes are processed in parallel, whileufilsd
BP [12, 13], they are processed serially. Therefore, nodasare
processed later can utilize the latest updated informéditan previ-
ously processed nodes. Compared with standard BP, theeshBff
algorithm can reduce the number of iterations to achievestimee
performance. Alternatively, by using the same number oéitens,
the decoding performance is usually improved.

4. RESULTS

In this section, we present the results of experimentsedoit to
test the effectiveness of the proposed ECC design changesséd
an extensive (proprietary) database of 1035 users with @B&romint
samples per user. The fingerprint samples are converteahnimia-
tia maps; the average number of minutaie points in a sam@2.is
There is a coarse alignment operation performed in the hagjn
in which a user’s fingerprints are aligned with respect to ofthe
15 available samples. This experimental setup and feautrace
tion algorithm are adoped from [7]. Since we are concernéhl thie
effect of ECC design, we do not repeat the details of the featu-
traction algorithm. In brief, the feature bits are extracas follows:
Random cuboids are generated in the minutiae space, andribe m
tiae falling inside each cuboid are counted. This numbeowispared
with the median of the number of points in the cuboid meastoed
all users in the database, and a 0 or 1 bit is generated depeodi
whether the number is less than or greater than this mediae.va
400 cuboids are generated in all, and 150 of the most robubsiidsi

Reliability

75 100 125
Bit Position

50

150

Fig. 3. The magnitude of the log likelihood ratio of the average
crossover probabilities for each of the 150 bits is storetheraccess
control device and is used to initialize belief propagati@coding.

are preferred. Here, robustness refers to the fact thatutmber of
minutiae points in the cuboid is far away from the medianuitesy
in a bit value that is preserved in repeated measuremenesarlg|
different users have different robust cuboids.

With our ECC design considerations, we further reorder the
cuboids using another reliability measure, namely the sowesr
probability p; ;,7 € {1,2,...,1035},5 € {1,2,...,150}. These
cuboids are stored in their new order on the access contvitale
Fig. 2 plots the distribution of the Hamming distance betwée
feature vectors. It is observed that there is a very smallapde-
tween the inter-user and intra-user distributions. Thésteilolitions
assume that every user employs his own set of cuboids. Atdétegl
is an attacker distribution in which a user (attacker) degitb use
the robust ordered cuboids of another user (victim). Ind¢hise, the
distribution shifts slightly closer to the intra-user diistition, but
the overlap between the two is still reasonably small.

As described in Section 3.3, the reliabilities correspongdio
the average crossover probabilities are stored on thealeviarder
from maximum to minimum. This is plotted in Fig. 3. For any yse
these reliabilities are used to initialize BP decoding. H@C used
is an irregular LDPC code with 150 variable nodes. We tesadt v
ous coding rate® = 0.2,0.25, 0.3, 0.35 which will determine the
number of syndrome bits. The corresponding code graphsheare
obtained from [14]. To see the effect of ordering the bitsoading
to reliability, soft initialization of LDPC decoding, sHidd belief
propagation, access control is implemented for variousaies, as
shown in Table 1. The LDPC code rate used for all simulatinrike
table isR = 0.2, thus NBS= 30. It is observed that there is a slight
reduction in the FRR when the reliabilities defined in Set8® are
used to initialize BP. There is a further dramatic reductioe FRR
when, in addition to the reliability initialization, theliable feature
bits are paired with the high-degree variable nodes. If tB€ ks
agnostic to the reliability ordering, the FRR is 11% wheremith
the proposed modifications, it drops to 3.3% with shuffled Bie
corresponding FAR is very small in all experiments. As expec
the SAR is greater than the FAR because the attacker adaliiion
knows the new “reliability ordering” of the feature bits. ilGtthe
SAR is less than 0.06% in all the simulations. Having obtzioen-
siderable reduction in FRR, at very low FAR, it is now possitd
gradually trade off the increased robustness against thebauof
bits of security. If the system designer is dissatisfied Btbits of
security, he can use larger coding rates to achieve greateecy.
This tradeoff is plotted in Fig. 4 for the ECC decoding schemith
the best perfomance, i.e., shuffled BP decoding with sdfitiiza-
tion of LLRs and reliable bits in high-degree variable nodéss



| Scheme [FRR] FAR | SAR |
Unordered feature bits Not Applicable
Equal initial LLR | 0.11 |1.19x10™*| since equal
Standard BP decoding initial LLRs
Unordered feature bits
Unequal initial LLR |0.099|2.15x107%| 4.37x10*
Standard BP decoding
Unordered feature bits
Unequal initial LLR |0.083|3.36x107%| 5.00x107*
Shuffled BP decoding
Reliability-ordered bits
Unequal initial LLR |{0.037/1.01x107°| 4.30x10~*
Standard BP decoding
Reliability-ordered bits
Unequal initial LLR |0.033/1.61x107%| 5.41x10~*
Shuffled BP decoding

Table 1. The security-robustness tradeoff improves slightly when

the initial LLRs for LDPC decoding are based on the reliieii of
the bits. It improves considerably when the reliable bits asso-
ciated with high-degree variable nodes. Using shuffled BRces
FRR at the expense of a slight increase in FAR and SAR.

observed that by increasing the coding rate from 0.2 to (i35,

number of bits of security increases from 30 to 53, while tRRF

increases from 3.3% to 7%.

5. CONCLUSIONS

This paper proposed some ECC design considerations ineskimar
metrics. Specifically, the feature bits extracted from a &arhio-
metric are reordered in the order of reliability and therrgéiwith
appropriate variable nodes in the ECC code graph. Additiprihe
ECC decoder is made aware of the average reliabilities ih eai-

able node. It was shown using results on an extensive firigerpr
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Fig. 4. With improved ECC design, the FRR is considerably low-
ered. The system designer can now consider increasing thefra
the channel code, trading off the FRR for more bits of segurit

[5]

[6]

[7]

(8]

database that the proposed changes reduce the FRR from 11% to

3.3% while maintaining a very low FAR. As a result of the prepd
changes, the amount of data stored on the access controkdavi
creases very slightly. Further, the considerable redndtioFRR
affords the opportunity to tradeoff the robustness foréased num-
ber of bits of security. It is possible that there are enfirew kinds

9]

of attacks whose effectiveness might not be captured by ritoe e [10]

metrics analyzed herein. Our current work is directed atyairey
such attacks.
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