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Abstract

In this paper, new designs for hybrid PID and lag controllers with state resetting are presented.
Lyapunov stable designs are shown for first and second order plants, which in case of integral
reset for first order plants reduces to that of a Clegg integrator but differs from the First Order
Reset Elements (FORE)’s commonly used in the literature for non-integral lag controllers. Fur-
thermore, the proposed PID and lag designs utilize different resetting conditions especially for
second order plants, which is an important class of systems for motion control. Different so-
lutions to retain a linear integrator’s steady-state disturbance rejection capability are presented.
Simulations and experiments for motion control of a typical servo motor driven positioning stage
show the performance benefits of these hybrid controllers and verify the analysis.
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Design of Hybrid Resetting PID and Lag Controllers with Application
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Khalid El Rifai and Osamah El Rifai

Abstract— In this paper, new designs for hybrid PID and lag  developed resetting controller is particularly differdram
controllers with state resetting are presented. Lyapunovtable  existing designs for second order dominant systems, which
designs are shown for first and second order plants, which g jmnortant for motion control. For such systems, Lyapunov

in case of integral reset for first order plants reduces to tha tabilit \vsis of th t ted I
of a Clegg integrator but differs from the First Order Reset stability analysis o € system are presented as well as

Elements (FORE)'s commonly used in the literature for non- different modifications to improve steady-state distudean
integral lag controllers. Furthermore, the proposed PID ad  rejection are discussed.

lag designs utilize different resetting conditions espeally for The paper is organized as follows. Section Il presents the
second order plants, which is an important class of system®ff proposed resetting PID control designs including différen

motion control. Different solutions to retain a linear integrator’s . . L . .
steady-state disturbance rejection capability are prese®d. extensions in order to maintain constant disturbance rejec

Simulations and experiments for motion control of a typical tion. Whereas, synthesis of lag and some class of higher
servo motor driven positioning stage show the performance order resetting controllers are discussed in Section kiseC

benefits of these hybrid controllers and verify the analysis study simulations and experiments for motion control are
Index Terms—motion control; hybrid systems; reset control;  yresented in Section IV. Conclusions and future work are
PID control. . . .
given in Section V.

I. INTRODUCTION Il. RESETTINGPID CONTROL

Hybrid control systems have been the subject of significant A hybrid resetting (impulsive) system is given by:
research interest due to their promise in enabling higher

performance, versatility, and autonomy. & = felz) if({,z) &S,
A specific topic within hybrid control of synthesis nature, = fi(z), if (t,x)€S, (1)

which has received considerable attention in recent yeay herez is the state, the Lipschitz continuous functign

is integrator resetting and more generally first order resel.  ribes the continuous-time d namics dpdiescribes the
elements (FORE), see [3], [10] and references therein. ngsettin law withS,. being the reysettin se? that defines the
Clegg integrator and FORE elements, first developed in 9 " 9 g

[5], [8], [9], are being revisited within the hybrid Systemsresetting condition based on time and/or state, see [1B], [6
P A T : . ; -~ for more background and details. It is assumed that the set
framework yielding many interesting formal hybrid anatysi L . X o
[3], [10]. This has allowed for a better understandin on resetting times,, is well defined and distinct and thus the
' ' 9 se(stem above is non-zeno with well defined solutions.

reset control systems. These control algorithms are foun . . . .
y 9 Assumption 2.1: The resetting times,, are well defined

to be very promising as there have been demonstrations =~ . !
yp 9 O . and distinct andd ¢ > 0 such thatt;, — t5_1 > .
that they can overcome fundamental limitations associated__ . . . . .
This can be achieved by imposing a sampling on the

with linear feedback, such as overshoot and settling time ) . . S
. . .. résetting condition, as would be in a practical implemen-
bounds, see [3]. However, due to conservatism of existing . . o
.- . o . tion, or also in the temporal regularization method as
sufficient conditions for stability of hybrid systems, rate

. ; done in [14]. Also note that the resetting conditions are
papers have focused on constructive synthesis results an

in depth understanding for resetting controllers for S.Emplrepresented by disjoint sets as done in [6]; see [14] for

. : . alternative representations and more formal discussidéns o
plants such as an integrator when combined with Cleg . . )
ch matters and its effect on existence and uniqueness of

integrators and FORE's [3], [10]. Therefore, it is desire .
Ystem solutions.

. . S
to extend the synthesis and design of reset controllers f6 Let us consider the class of state-dependent reset control

more classes of problems where constructive results can be .
systems given by:

obtained.
This paper presents a new integral and lag resetting control i = foz) ifxgs,
technique for use with PID and lag control for first and at = fa(x) if zes )

second order dominant plants, which reduces to a Clegg
integrator for integral control of a first order plant. TheWhich is a special case of the class given by Equation (1).
Another assumption that is needed for invariance set type of

This work was not supported by any organization _ statements for reset systems is the quasi-continuous depen
K. El Rifai and O. El Rifai are with Mitsubishi Electric Re-

search Labs, Cambridge, MA 02139, USal ri f ai @rer| . com dence on initial conditions property, see [6] for backgrun
oelrifai @erl.com and details.



Assumption 2.2: The system given by Equation (2) is aWhich is similar to that used in sliding mode control and
left continuous dynamical system by means of the quassome adaptive controllers, see for instance [11]. Where
continuous dependence on initial conditions property [6]. K, > 0 is a chosen scala¢, = r — y is the tracking error

First some main results in stability of reset systems af®r a desired reference Consider the following control law:
summarized and restated for completeness as they will be
later used.

Theorem 1: Let V(x) be a continuously differentiable ra- u = —Kpz—Kizetai —fly,....y" ) (4)
dially unbounded positive definite function such tha0) = Ze = z, ifz2.>0
0 and zj = 0, ifzz2<0
V() < 0 itz &Sy Where K,,, > 0 is a proportional gaink;, > 0 is an
AV = VEhH)-V(E@) <0 ifzxes, integral gain. Whereas, the "feedforward” signgl,is such
that forn = 1, we havez, =7, whereas:, = i 4 K,é for
) n = 2. Substituting Equation (4) into Equation (3) yields the
Then under assumption 2.1 : following hybrid resetting closed loop system:
(i) The x = 0 solution of the hybrid system given by
Equation (1) is globally Lyapunov stable. o = Acwe, if 22>0
(i) The z = 0 solution of the hybrid system given by le = Agzy, if 22.<0 (5)
Equation (2) is globally asymptotically stable if assuropti
2.2 is satisfied and in addition either Wherez. = [2,z.]" and
V(z)<0 ifzdgs, A - [ —Ki)y/a —Kéu/a }
orthe setS = {z ¢ S,V = 0} U{z € S, AV = 0} contains Lo
no invariant set other then the sgi}. Ag = { 0 0 ]

(i) The x = 0 solution of the hybrid system given by
Equation (1) is globally exponentially stablelifis quadratic Consider the following Lyapunov function:
and3J« > 0 such thatV < —aV. ) )
The proof of these statements can be found in [13], [6] V=az"+ Kz,
and particularly part (ii), which is the extension of theComputingV for the continuous-time part of system (5)
invariant set theorem to resetting systems, can be fou@/ijelds:
in [6]. Note that the statement of part (ii) applies only to )
state-dependent hybrid systems given by Equation (2) and V = —2K,,2*<0
following assumption 2.2 unlike parts (i) and (iii).
Consider the following class of plants consisting of a chai
of integrators: AV = V(zh) =V(zg) = —Kpnz2 <0

cl

XVhereas, for the resetting dynamics of (5) :

ay™ = f(y, .. .’y(n—l)) +u ©) Using Theorem 1 this proves Lyapunov stability of the
Where y(™ is the n'" derivative of the targeted outpyt Cclosed loop system (5). Furthermofe,= 0, z. = 0) is the
where n is the order of the system. In this paper it isonly invariant set within the union of the sefs ¢ 5,V =
assumed that < 2 since this is reasonable for the dominanf} and{z € S,, AV = 0} and thusz — 0 asymptotically
dynamics of most practical control systems. Whereas, tind thuse — 0 asymptotically if assumption 2.2 is satisfied.
known constant parameter> 0 is the high frequency gain. ~ Note that forn =1 the resetting sef,. is defined by:
It is assumed that signals ..y(" 1) are available, i.ey for

e/edt <0

n = 1 andy, y for n = 2. This is typical for PID control even RZe =

if only y is measured ag is usually obtained through some _ . _
Therefore, forn = 1 the integral resetting is identical to

type of filtered differentiation in practice. Furthermotbhe i X
reference trajectory and its firstn derivatives-(!), . .., (") that of a Clegg integrator and the overall controller is Pl
Qntroller, with feedforward.

are known, bounded and, piecewise continuous. This mea . o
the above system is either a first order system: Whereas, fom = 2 the resetting condition is given by:

zze = (é+ Kppe) / (6 + Kppe)dt <0
ay = f(y) +u 7 _
or a second order system: The above_ controller is S|rr_1ply a EID_controIIt_-:‘r, with
' feedforward, in a cascade (series) realization with iratgr
ay = f(y,9)+u resetting. Note that the resetting condition differs frdmtt
commonly used with integral resetting control. In fact, if
the above PID controller where represented in a parallel

z = —(d/dt+Kpp)" te= yt 4, realization and a Clegg integrator is used, as commonly,done

Define the following generalized error variable:



see Equation (6), then the response will be very differig,t 1) Using a Resetting Offset b;: This can be dealt with by
will be demonstrated later. resetting to a nonzero value using the offset tégmvith the
following controller:

u = —Kpe+ Kpé+ Kjreg (6) u = —Kpyz— Kpze+az, — f (8)
éer = e, ifeer>0 2. = =z, fzz.>0
ef = 0, ifeer<0 zF = bg, if22.<0

: . . ote that ifby; = d/ K, is chosen then the fixed point for
Note that in order to verify the non-zeno behavior o H O / ! xed pol

. . o he overall hybrid system, plant given by Equation (7) and
assumption 2.1, by using the temporal regularization ntkethg . . : B ‘
[14] the resetting controller would be as follows : Controller given by Equation (8), i§z, 2) = (0,d/Ki).

Stability of this fixed point can be shown using the modified
Lyapunov function:

U o= - pvz—szc—i—az‘T—f(y,...,y("fl))
o _ 2 ‘ _ N2
ZF—Z} if 2z >00r T < Thin v 02"+ Ki(2 = d/Kiv)
T=1

=04 i s <0andr > :

O} if zz. <0and7t > 7n Vo= 2,22 <0

N ComputingV for the continuous-time part of system yields:
z
it

Wherer,.;, is a chosen lower bound on resetting period¥Whereas, for the resetting dynamics :
Since the stability_ of the system ha; _been verified indepen- AV = V(a:*l) V(2a) = K22 <0
dent of the resetting speed or condition, then the temporal €
regularization or any other equivalent method can be addddnis proves Lyapunov stability of the closed loop system for
without any concern or need to re-analyze the system stabihe plant given by Equation (7) and controller given by Equa-
ity. In fact, a statement similar to that of Theorem 1 (i)Istil tion (8), see Theorem 1, and if assumption 2.2 is satisfied

applies to the above system, see [13], [6]. the system converges asymptotically to the unique invarian
set within the union of the setse ¢ S,,V =0} and{x €
A. Remarks Sy, AV = 0}, which the fixed-point(z, z.) = (0,d/K;,)

, and thus the tracking errar — 0 asymptotically. Thus
zero steady-state tracking in the presence of the constant
disturbancel is possible ifb; = d/ K, .
. i T . However, it is not always possible to obtain an accurate
of filtered differentiation in practice. . .

The assumption that(y Y1) and parametex estimate of the disturbanek and thus a more robust method
* o is needed. Therefore, another possibility is to combine the

are known can be relaxed by applying standard pararpésetting pole or integrator with a standard nonresetting

eter adaptive cor?trgl If is linearly parameterized, Seeintegrator, as done in [1], which is discussed next in the
[11], however, this is not the focus of the paper.

context of the generalized integrator resetting.
2) Combining a Resetting and a non-resetting I ntegrators:
Consider the following control law:

« Note that the assumption that batlandy are available
is a prerequisite to PID control, even if only is
measured ag is usually obtained through some type

B. Constant Disturbance Rejection

Observe that if the system is given by

ay™ = fly,...,.y" V) +u+d 7 u = —Kpz— Kipizer — Kivazez +az, — f(9)
21 = 2z, fzza>0
Whered is a constant disturbance. It is well known that + .
z 0, if 2z2z.1<0

cl =

integral control can achieve zero steady-state rejection o
constant disturbances. This is the case as the closed loop #¢2

system with plant (7) and PID controller (4) without res&ti \where k., > 0 is the resetting integrator gain correspond-

admits the fixed pointz, z.) = (0,d/Ki,). Moreover, this jng to statez,; and Kin» > 0 is the nonresetting integrator

fixed point is stable and — 0 can be shown using standardgain corresponding to state,.

Invarance prlnglple arguments. ~ Stability of this system can be analyzed with the following
Whereas, with resetting, the closed loop system withyapunov function:

plant (7) and resetting controller (4) no longer admits such

a fixed point, and a solution withk = 0 is no longer ) ) )

an equilibrium. Therefore, zero steady-state trackinghia t V =az"+ K125 + Kiv2(2c2 — d/Kiu2)

presence of constant dlst.urbances. IS no Ioryger guarame(%imputingV for the continuous-time part of system vyields:

if resetting persists. Possible solutions to this problem a '

discussed next. V = —2K,,2*<0

— z



Whereas, for the resetting dynamics : more elaborate convergence statement for this case is not
considered here.

- + _ L2

AV = Vizg) = V(za) = —Kinzg <0 Note that in the above case with a single switch we have:
This proves Lyapunov stability of the closed loop system 1 ift>¢*
for the plant given by Equation (7) and controller given by aq(t) = { 0 ift<tr

Equation (9), with the combined integrators method. Fur- _ _ ) ]
thermore, if assumption 2.2 is satisfied the system conserge Alternatively, turning the resetting off may be defined by

asymptotically to the unique invariant set within the uniorfh® tracking errore| < e satisfying some bound, as long as
of the sets{z ¢ S,,V = 0} and {z € S,,AV = 0}, Some sampling is introduced to prevent chattering.

which is the fixed-point(z, zc1, zc2) = (0,0, d/Kiv2) , and [Il. HYBRID RESETTINGLAG COMPENSATORS

thus the tracking erroe — 0 asymptotically, see Theorem ) )

1. Therefore, zero steady-state rejection of constantidist N this , the resetting PI compensator used solely:fer 1
bances is achieved. Note that if some partial informatioff?d Within @ PID forn = 2 of Section Il will be modified
about the disturbance is known then using an offset terfd Yield resetting lag compensators.

ba to cancel part of the disturbance is possible in additiop A Resetting Lag Controller

to using a nonresetting integrator. This approach is based o
thatin [1], [2] but utilizes the more general resetting stuue
developed in this paper.

A resetting Lag controller can be achieved by simply
replacing the resetting integrator of Section Il with a FORE

. . . . as shown next. However, a an additional modification to the
3) Turning Off the Resetting: Another possible and simple FORE'’s resetting condition will be introduced. Consides th

strategy is to turn off the resetting towards the end of thFoIIowin control law:
command, when the system is settling to it's desired steady- g '
state value. This can be expressed by:

u = —Kpz—Kipze+az — f (12)
u = —Kpz— Kipze+az — f (10) Ze = z—acze, I (z—acz)ze >0
2. = =z, (fzze>0o0rt>t* 25 = 0, i (2—acz)2 <0
zF = 0, if zz.<0andt<t* Where the controller pole. < 0. Note that the resetting

. . _ dition d d the FORFE’ like that -
Wheretx is a chosen time based on the reference trajectoCon ion depencs on e poie uniike that com

and the expected system response time. This can be repeagﬁo({"y used [3], [10] and reduces to the same on used for

: . o : ntegrator. Note that the same resetting logic used for th
with every subcommand in repetitive processes. This S'n?ﬁtegratorzzc < 0. which reduces to the standard FORE’

ple switching strategy allows for benefiting from transien‘;(?/Set logic whem = 1, may also be used. Stability of the

improvements due to resetting while preserving standar stem can be shown using the same plant of Equation (3)

mtegrators steao_ly-state d|§turban_ce rejection camabA and the following Lyapunov function:
design trade-off in the choice af is expected as turning

the resetting off too early means less gains will be made V=az*+ K22

out of using resetting, while delaying it too much degrades inal” for th , . ¢ ields:
steady-state tracking. The stability of the system witts thiCOMPutingV” for the continuous-time part of system yields:

switching is easily verified by redefining the controller as: V o= —2K,2% —2K;a.22 <0
Whereas, for the resetting dynamics :
u = —Kpyz—Kipze+az— f (12) N )
2. = =z, ifzz.>0 AV = V(zj) —V(za) = —Kwz; <0
zF = ag(t)z., if 22, <0 Following Theorem 1, this proves exponential stability of

the closed loop hybrid system consisting of plant given by

Whereay(t) < 1 uniformly and is piecewise constant, whichgquation (3) and controller given by Equation (12) since
allows for infinitely countable distinct switches with well yy < _ v for somea > 0.

defined dwell time between switches to be performed. The Note that the modified resetting logic can be related to

resetting dynamics with this term now satisfies: energy based reset control, which is a general methodology
_ +\ _ T (n2 1.2 proposed by [12] for stabilization using controller state
AV = Viwg) = Viwa) = —Kinlag — 1)z <0 resetting. In [12], the basic idea is to reset the contrabler
Since aq(t) < 1 uniformly. Note that this is no longer a values that cause it's emulated enefgyto vanish whenever
state dependent autonomous system given by Equation (Bg controller's energy is about to decrease, i.e., will dat s
but Lyapunov stability as in Theorem 1 (i) is still preservedack to the plant. Although the precise resetting condition
for linear hybrid systems of this form, see [13], [6]. Itlogic is different in [12] and it is not specified for any
follows that this switching does not introduce any destabiparticular controller, the same energy based interpoatati
lizing effects, and the system remains Lyapunov stable, @an be used. Let, = 22 then the proposed resetting



condition corresponds to, = (z — acze)ze < 0. Note that This is a typical model for many motion control systems
the standard Clegg integrator falls under this methodologguch as that shown in Figure 5 from which this model has
but not the FORE. been identified. The plant used for simulations is of order 5
. . and relative degree 3 with lightly damped poles and zeros.
B. Higher Order Resetting Controller However, the system is "¢ order dominant system and
For the plant given by Equation (3), consider the followinghus the designs of Section Il with= 2 and f = 0 will be
control law: used, i.e., the plant is treated as a double integrator.giant
all the simulations shown, the system is required to follow a
N filtered step input, with a00 Hz reference filter. Note that
u = —Kpz-— ZKiZci +az. — f (13) a feedforward gain).7q is used instead of exactly for all
i these simulations, as it is more realistic. Note that odel5s
Zei = Z— QeiZeiy, 0 (2 — GeiZei)zei >0 was the chosen solver in SIMULINK as it is better suited to
2E = agizei +bai, 0 (2= Gcizei)ze <0 these discontinuous systems.

ct

Where the scalars.; < 0 and |ag;| < 1 for N controller
states. Wherez,; = 0 corresponds to an integrator and 0.03
ac; > 0 corresponds to a FORE. Note that the case ¢
aq;j = 1 andbg; = 0 for the 4t controller state means this
is a nonreset pole. The default fag; and by; is zero but

nonzero values may be useful in some cases, for examj

for improved disturbance rejection, as shown in Section II. 0

0.02r

0.01f |

Let bg; = 0, which can be added in a manner similar tc & 001
. . e . . O — r
that of Section Il with specific disturbances, and conside o ™
the following Lyapunov function: 3§ -0.02 ~ Proposed Resetting PID
N [ —— Standard PID
-0.03} — Parallel Resetting PID
V= azQ—i-ZKiz?i
@ -0.04f
Computing V' for the continuous-time part of the system —0.05
yields:
. N 0% 0.05 0.1 0.15 0.2 0.25
VvV = —2vaz2 — 2ZKiaciZ2i <0 time, seconds
[

Whereas, for the resetting dynamics :
Fig. 1. Tracking error for series and parallel reset and resetr PID
controllers.

cl

N
AV = V(z}) = V(za) = ZKi(aZi —1)25 <0

Figure 1, a standard PID controller is compared to the
rT;‘.')roposed series resetting PID controller and a parallel re-
setting PID controller. Both resetting controllers seems t
improve transients and settling time compared to the linear
: : . . 'ntroller but the proposed resetting PID outperforms the
ac; > 0 Vi then exponential stability of the hybrid system ISparallel resetting PID, specially in terms of settling time
concluded, see Theorem 1. In Figure 2with the addition of a constant input distur-

IV. APPLICATION TOMOTION CONTROL bance, steady state error is seen with reset PID although it

Next, the proposed resetting designs will be evaluated v|!;jglﬁJ r:\::?(‘j‘sg?&‘c"?ts'm'g::“gmsse;;zegtgg dreigttet?ra?:kri]:nze?ro
simulations and experiments on a servo driven motion contrd /K y 9

system, see [15], [12] for instance for applications of FGRE (rj(_)r same(;/vhneﬂ:mgr_ovtln% trans;fe;:s due tg_ rese';tmg. ABDt.E d
and Clegg integrators to motion control problems. Iscussed method 1S fo turn off the Tesetting at a prescribe

time ¢* is shown in Figure 2. Whereas, 2 integrator with

A. Smulations and without resetting allows for achieving zero steadyestat
In this section a case study simulation will be used t&@cking while trading off the level of improved transients

demonstrate the developed controllers. Consider thewiello With steady-state tracking, see Figure 4. All these methods

This proves Lyapunov stability of the closed loop syste
consisting of plant given by Equation (3) and controlleregiv

ing plant transfer function: §h0wn for stef_;\dy-state Fracking improvement, as discussed
» ons in Section Il impose different design trade-offs between
y(s) le — 4 ((5250)° + 5ra0 +1) retaining good steady-state tracking and maximizing the

u(s) 5% ((52355)% + 22 + 1) (=g + 1) improvement obtainable from an ideal resetting controller




0.03 T T T T 0.03

— Resetting PID
0.02 Resetting PID 0.02 ~ Standard PID
02r ——Resetting 1 .02+ 0 - . -
“‘ N _ Standard PID I Resetting PID, off at t=0.1
[V - . . \
0_017“ \ Resetting PID with offset 0.01t
|
5 9 5 9
5] | 5]
2-0.017 2-0.017
4 <
Q [}
o o
= -0.02+ = -0.02+
-0.03r -0.03r
-0.041 -0.041
0.05 0.1 0.2 0.3 0.4 0.5 005 0.1 0.2 0.3 0.4 0.5
time, seconds time, seconds

Fig. 2. Effect of constant disturbance on tracking errordifierent types Fig. 3. Effect of constant disturbance on tracking errordifferent types

of reset and non reset PID controllers; Resetting Offset. of reset and non reset PID controllers; Turning the regptif.

when no disturbances are present. Ky, = Kiy1 + Kiv2 = 6, i.€., resetting is turned off and the
larger overall integral gain is retained. The improvedliseft

B. Experiments is evident with resetting.

In this section, the proposed resetting PID controller for An alternative to using 2 integrators is to switch off
n = 2 is tested on a typical motion control system using &€ resetting towards the end of the move. In Figure 8,
servo motor, Kollmorgen AKM21 — C [4], with collocated the resetting PID controller with gain&, = 3, K, =
motor encoder feedback for positioning the carriage on tH&03, Kpp, = 100 is used which yields a steady-state offset
stage, by Thompson [4], se Figure 5. dSpace board D¥ about 2 microns. In contrast turning off the resetting at
1104 is used for controller implementation. Only one axié* = 0-1 seconds, retains most of the transient improvement
positioning is used for this¢ — Y table, where the bottom benefits of resetting while eliminating the steady statseff
long stage is driven and the top stage and the carriage a8#$0r due to disturbances. The behavior of the integrator in
as a load to be positioned. Note that velocity feedback #1€s€ 2 cases is shown in Figure 8 where the integrator
used for thePID by filtered differentiation of the encoder cONntinues to be reset to zero preventing the system for gerfe
position feedback as commonly done in practice. steady-state tracking. Whereas, when switching the negett

The system is commanded to mak®nm moves a.5g off the integrator follows the value or response needed to
acceleration. First consider the case where the PID camtrol ©ve€rcome friction. Of course different combinations ofske
is not properly tuned for the system, e.g. due to inertif’€thods, e.g. 2 integrators and turning off the resetting
uncertainty, leading to excessive vibration, see Figure 612y also be used with satisfactory results. In summary, the
An interesting observation is the robustness of resetting £XPeriments not only demonstrated interesting and progisi
compensating for this poor PID tuning and suppressing ﬂ{éerfqrmance of these hybrid _controll_ers but alsq verifiezl th
system oscillations. pre(j|cted compara’gve behavior pf different versions dre t

Due to friction, one of the methods proposed in Sectioff€Sign trade-offs discussed earlier.

Il should be used to maintain optimal steady-state track-
ing. The combined resetting and nonresetting integratrs i
used instead of only a reset integrator in Figure. In the In this paper, new designs for hybrid resetting PID and
experiments the nominal linear PID controller is given byag controllers are shown. Lyapunov stability analysis of
Kiy2 = 3,Kp, = 0.03,K,, = 100 anda = 3e — 5 are the system for first and second order plants are presented.
used. Figure shows positioning tracking error for the syste The resetting designs reduce to that of a Clegg integrator
motor positioning error converted to micrometers using théor first order systems with integral control but differ from
lead of stage, using a combined PID with a resetting andexisting methods for second order plants and for non-
nonresetting integratok;,; = K;,2 = 3. This is compared integral lag controllers such as FORE'’s. Special attention
with 2 linear PID’s one withK;, = K1 = 3, i.e., the is given to different modifications in order to retain a linea
resetting integrator is simply removed, and the other witintegrator's steady-state disturbance rejection areudssd.

V. CONCLUSIONS
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the effectiveness of these hybrid controllers and verify th
comparative behavior predicted by the analysis for difiere

versions. Future work will focus on more general classes of

systems and reset control algorithms.
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