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Design of Hybrid Resetting PID and Lag Controllers with Application
to Motion Control

Khalid El Rifai and Osamah El Rifai

Abstract— In this paper, new designs for hybrid PID and lag
controllers with state resetting are presented. Lyapunov stable
designs are shown for first and second order plants, which
in case of integral reset for first order plants reduces to that
of a Clegg integrator but differs from the First Order Reset
Elements (FORE)’s commonly used in the literature for non-
integral lag controllers. Furthermore, the proposed PID and
lag designs utilize different resetting conditions especially for
second order plants, which is an important class of systems for
motion control. Different solutions to retain a linear integrator’s
steady-state disturbance rejection capability are presented.
Simulations and experiments for motion control of a typical
servo motor driven positioning stage show the performance
benefits of these hybrid controllers and verify the analysis.

Index Terms— motion control; hybrid systems; reset control;
PID control.

I. I NTRODUCTION

Hybrid control systems have been the subject of significant
research interest due to their promise in enabling higher
performance, versatility, and autonomy.

A specific topic within hybrid control of synthesis nature,
which has received considerable attention in recent years
is integrator resetting and more generally first order reset
elements (FORE), see [3], [10] and references therein. The
Clegg integrator and FORE elements, first developed in
[5], [8], [9], are being revisited within the hybrid systems
framework yielding many interesting formal hybrid analysis
[3], [10]. This has allowed for a better understanding of
reset control systems. These control algorithms are found
to be very promising as there have been demonstrations
that they can overcome fundamental limitations associated
with linear feedback, such as overshoot and settling time
bounds, see [3]. However, due to conservatism of existing
sufficient conditions for stability of hybrid systems, recent
papers have focused on constructive synthesis results and
in depth understanding for resetting controllers for simple
plants such as an integrator when combined with Clegg
integrators and FORE’s [3], [10]. Therefore, it is desired
to extend the synthesis and design of reset controllers for
more classes of problems where constructive results can be
obtained.

This paper presents a new integral and lag resetting control
technique for use with PID and lag control for first and
second order dominant plants, which reduces to a Clegg
integrator for integral control of a first order plant. The
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developed resetting controller is particularly differentfrom
existing designs for second order dominant systems, which
is important for motion control. For such systems, Lyapunov
stability analysis of the system are presented as well as
different modifications to improve steady-state disturbance
rejection are discussed.

The paper is organized as follows. Section II presents the
proposed resetting PID control designs including different
extensions in order to maintain constant disturbance rejec-
tion. Whereas, synthesis of lag and some class of higher
order resetting controllers are discussed in Section III. Case
study simulations and experiments for motion control are
presented in Section IV. Conclusions and future work are
given in Section V.

II. RESETTINGPID CONTROL

A hybrid resetting (impulsive) system is given by:

ẋ = fc(x) if (t, x) 6∈ Sr

x+ = fd(x), if (t, x) ∈ Sr (1)

Wherex is the state, the Lipschitz continuous functionfc

describes the continuous-time dynamics andfd describes the
resetting law withSr being the resetting set that defines the
resetting condition based on time and/or state, see [13], [6]
for more background and details. It is assumed that the set
of resetting timestk is well defined and distinct and thus the
system above is non-zeno with well defined solutions.

Assumption 2.1: The resetting timestk are well defined
and distinct and∃ ǫ > 0 such thattk − tk−1 ≥ ǫ.

This can be achieved by imposing a sampling on the
resetting condition, as would be in a practical implemen-
tation, or also in the temporal regularization method as
done in [14]. Also note that the resetting conditions are
represented by disjoint sets as done in [6]; see [14] for
alternative representations and more formal discussions of
such matters and its effect on existence and uniqueness of
system solutions.

Let us consider the class of state-dependent reset control
systems given by:

ẋ = fc(x) if x 6∈ Sr

x+ = fd(x), if x ∈ Sr (2)

Which is a special case of the class given by Equation (1).
Another assumption that is needed for invariance set type of
statements for reset systems is the quasi-continuous depen-
dence on initial conditions property, see [6] for background
and details.



Assumption 2.2: The system given by Equation (2) is a
left continuous dynamical system by means of the quasi-
continuous dependence on initial conditions property [6].

First some main results in stability of reset systems are
summarized and restated for completeness as they will be
later used.

Theorem 1: Let V (x) be a continuously differentiable ra-
dially unbounded positive definite function such thatV (0) =
0 and

V̇ (x) ≤ 0 if x 6∈ Sr

∆V = V (x+) − V (x) ≤ 0 if x ∈ Sr

Then under assumption 2.1 :
(i) The x = 0 solution of the hybrid system given by
Equation (1) is globally Lyapunov stable.
(ii) The x = 0 solution of the hybrid system given by
Equation (2) is globally asymptotically stable if assumption
2.2 is satisfied and in addition either

V̇ (x) < 0 if x 6∈ Sr

or the setS = {x 6∈ SrV̇ = 0}∪{x ∈ Sr∆V = 0} contains
no invariant set other then the set{0}.
(iii) The x = 0 solution of the hybrid system given by
Equation (1) is globally exponentially stable ifV is quadratic
and∃α > 0 such thatV̇ ≤ −αV .

The proof of these statements can be found in [13], [6]
and particularly part (ii), which is the extension of the
invariant set theorem to resetting systems, can be found
in [6]. Note that the statement of part (ii) applies only to
state-dependent hybrid systems given by Equation (2) and
following assumption 2.2 unlike parts (i) and (iii).

Consider the following class of plants consisting of a chain
of integrators:

a y(n) = f(y, . . . , y(n−1)) + u (3)

Where y(n) is the nth derivative of the targeted outputy,
where n is the order of the system. In this paper it is
assumed thatn ≤ 2 since this is reasonable for the dominant
dynamics of most practical control systems. Whereas, the
known constant parametera > 0 is the high frequency gain.
It is assumed that signalsy, ..y(n−1) are available, i.e.y for
n = 1 andy, ẏ for n = 2. This is typical for PID control even
if only y is measured aṡy is usually obtained through some
type of filtered differentiation in practice. Furthermore,the
reference trajectoryr and its firstn derivativesr(1), . . . , r(n)

are known, bounded and, piecewise continuous. This means
the above system is either a first order system:

a ẏ = f(y) + u

or a second order system:

a ÿ = f(y, ẏ) + u

Define the following generalized error variable:

z = −(d/dt + Kpp)
n−1e = y(n−1) − zr

Which is similar to that used in sliding mode control and
some adaptive controllers, see for instance [11]. Where
Kpp > 0 is a chosen scalar,e = r − y is the tracking error
for a desired referencer. Consider the following control law:

u = −Kpv z − Kivzc + ażr − f(y, . . . , y(n−1)) (4)

żc = z, if zzc > 0

z+
c = 0, if zzc ≤ 0

Where Kpv > 0 is a proportional gain,Kiv > 0 is an
integral gain. Whereas, the ”feedforward” signal,żr is such
that forn = 1, we haveżr = ṙ, whereasżr = r̈ + Kppė for
n = 2. Substituting Equation (4) into Equation (3) yields the
following hybrid resetting closed loop system:

ẋcl = Acxcl, if zzc > 0

x+
cl = Adxcl, if zzc ≤ 0 (5)

Wherexcl = [z, zc]
T and

Ac =

[

−Kpv/a −Kiv/a
1 0

]

Ad =

[

1 0
0 0

]

Consider the following Lyapunov function:

V = a z2 + Kivz
2
c

Computing V̇ for the continuous-time part of system (5)
yields:

V̇ = −2Kpvz
2 ≤ 0

Whereas, for the resetting dynamics of (5) :

∆V = V (x+
cl) − V (xcl) = −Kivz

2
c ≤ 0

Using Theorem 1 this proves Lyapunov stability of the
closed loop system (5). Furthermore,(z = 0, zc = 0) is the
only invariant set within the union of the sets{x 6∈ Sr, V̇ =
0} and {x ∈ Sr, ∆V = 0} and thusz → 0 asymptotically
and thuse → 0 asymptotically if assumption 2.2 is satisfied.

Note that forn = 1 the resetting setSr is defined by:

zzc = e

∫

e dt ≤ 0

Therefore, forn = 1 the integral resetting is identical to
that of a Clegg integrator and the overall controller is PI
controller, with feedforward.

Whereas, forn = 2 the resetting condition is given by:

zzc = (ė + Kppe)

∫

(ė + Kppe) dt ≤ 0

The above controller is simply a PID controller, with
feedforward, in a cascade (series) realization with integrator
resetting. Note that the resetting condition differs from that
commonly used with integral resetting control. In fact, if
the above PID controller where represented in a parallel
realization and a Clegg integrator is used, as commonly done,



see Equation (6), then the response will be very different, this
will be demonstrated later.

u = −KP e + KDė + KIeI (6)

ėI = e, if e eI > 0

e+
I = 0, if e eI ≤ 0

Note that in order to verify the non-zeno behavior of
assumption 2.1, by using the temporal regularization method
[14] the resetting controller would be as follows :

u = −Kpv z − Kivzc + ażr − f(y, . . . , y(n−1))

żc = z
τ̇ = 1

} if zzc > 0 or τ < τmin

z+
c = 0

τ+ = 0
} if zzc ≤ 0 andτ ≥ τmin

Whereτmin is a chosen lower bound on resetting period.
Since the stability of the system has been verified indepen-
dent of the resetting speed or condition, then the temporal
regularization or any other equivalent method can be added
without any concern or need to re-analyze the system stabil-
ity. In fact, a statement similar to that of Theorem 1 (i) still
applies to the above system, see [13], [6].

A. Remarks

• Note that the assumption that bothy andẏ are available
is a prerequisite to PID control, even if onlyy is
measured aṡy is usually obtained through some type
of filtered differentiation in practice.

• The assumption thatf(y, . . . , y(n−1)) and parametera
are known can be relaxed by applying standard param-
eter adaptive control iff is linearly parameterized, see
[11], however, this is not the focus of the paper.

B. Constant Disturbance Rejection

Observe that if the system is given by

a y(n) = f(y, . . . , y(n−1)) + u + d (7)

Whered is a constant disturbance. It is well known that
integral control can achieve zero steady-state rejection of
constant disturbances. This is the case as the closed loop
system with plant (7) and PID controller (4) without resetting
admits the fixed point(z, zc) = (0, d/Kiv). Moreover, this
fixed point is stable andz → 0 can be shown using standard
invariance principle arguments.

Whereas, with resetting, the closed loop system with
plant (7) and resetting controller (4) no longer admits such
a fixed point, and a solution withz = 0 is no longer
an equilibrium. Therefore, zero steady-state tracking in the
presence of constant disturbances is no longer guaranteed
if resetting persists. Possible solutions to this problem are
discussed next.

1) Using a Resetting Offset bd: This can be dealt with by
resetting to a nonzero value using the offset termbd with the
following controller:

u = −Kpv z − Kivzc + ażr − f (8)

żc = z, if zzc > 0

z+
c = bd, if zzc ≤ 0

Note that if bd = d/Kiv is chosen then the fixed point for
the overall hybrid system, plant given by Equation (7) and
controller given by Equation (8), is(z, zc) = (0, d/Kiv).
Stability of this fixed point can be shown using the modified
Lyapunov function:

V = a z2 + Kiv(zc − d/Kiv)
2

ComputingV̇ for the continuous-time part of system yields:

V̇ = −2Kpvz
2 ≤ 0

Whereas, for the resetting dynamics :

∆V = V (x+
cl) − V (xcl) = −Kivz

2
c ≤ 0

This proves Lyapunov stability of the closed loop system for
the plant given by Equation (7) and controller given by Equa-
tion (8), see Theorem 1, and if assumption 2.2 is satisfied
the system converges asymptotically to the unique invariant
set within the union of the sets{x 6∈ Sr, V̇ = 0} and{x ∈
Sr, ∆V = 0}, which the fixed-point(z, zc) = (0, d/Kiv)
, and thus the tracking errore → 0 asymptotically. Thus
zero steady-state tracking in the presence of the constant
disturbanced is possible ifbd = d/Kiv.

However, it is not always possible to obtain an accurate
estimate of the disturbanced, and thus a more robust method
is needed. Therefore, another possibility is to combine the
resetting pole or integrator with a standard nonresetting
integrator, as done in [1], which is discussed next in the
context of the generalized integrator resetting.

2) Combining a Resetting and a non-resetting Integrators:
Consider the following control law:

u = −Kpv z − Kiv1zc1 − Kiv2zc2 + ażr − f (9)

żc1 = z, if zzc1 > 0

z+
c1 = 0, if zzc1 ≤ 0

żc2 = z

WhereKiv1 > 0 is the resetting integrator gain correspond-
ing to statezc1 andKiv2 > 0 is the nonresetting integrator
gain corresponding to statezc2.

Stability of this system can be analyzed with the following
Lyapunov function:

V = a z2 + Kiv1z
2
c1 + Kiv2(zc2 − d/Kiv2)

2

ComputingV̇ for the continuous-time part of system yields:

V̇ = −2Kpvz
2 ≤ 0



Whereas, for the resetting dynamics :

∆V = V (x+
cl) − V (xcl) = −Kiv1z

2
c1 ≤ 0

This proves Lyapunov stability of the closed loop system
for the plant given by Equation (7) and controller given by
Equation (9), with the combined integrators method. Fur-
thermore, if assumption 2.2 is satisfied the system converges
asymptotically to the unique invariant set within the union
of the sets{x 6∈ Sr, V̇ = 0} and {x ∈ Sr, ∆V = 0},
which is the fixed-point(z, zc1, zc2) = (0, 0, d/Kiv2) , and
thus the tracking errore → 0 asymptotically, see Theorem
1. Therefore, zero steady-state rejection of constant distur-
bances is achieved. Note that if some partial information
about the disturbance is known then using an offset term
bd to cancel part of the disturbance is possible in addition
to using a nonresetting integrator. This approach is based on
that in [1], [2] but utilizes the more general resetting structure
developed in this paper.

3) Turning Off the Resetting: Another possible and simple
strategy is to turn off the resetting towards the end of the
command, when the system is settling to it’s desired steady-
state value. This can be expressed by:

u = −Kpv z − Kivzc + ażr − f (10)

żc = z, if zzc > 0 or t > t∗

z+
c = 0, if zzc ≤ 0 and t ≤ t∗

Wheret∗ is a chosen time based on the reference trajectory
and the expected system response time. This can be repeated
with every subcommand in repetitive processes. This sim-
ple switching strategy allows for benefiting from transient
improvements due to resetting while preserving standard
integrator’s steady-state disturbance rejection capability. A
design trade-off in the choice oft∗ is expected as turning
the resetting off too early means less gains will be made
out of using resetting, while delaying it too much degrades
steady-state tracking. The stability of the system with this
switching is easily verified by redefining the controller as:

u = −Kpv z − Kivzc + ażr − f (11)

żc = z, if zzc > 0

z+
c = ad(t)zc, if zzc ≤ 0

Wheread(t) ≤ 1 uniformly and is piecewise constant, which
allows for infinitely countable distinct switches with well
defined dwell time between switches to be performed. The
resetting dynamics with this term now satisfies:

∆V = V (x+
cl) − V (xcl) = −Kiv1(a

2
d − 1)z2

c ≤ 0

Since ad(t) ≤ 1 uniformly. Note that this is no longer a
state dependent autonomous system given by Equation (2)
but Lyapunov stability as in Theorem 1 (i) is still preserved
for linear hybrid systems of this form, see [13], [6]. It
follows that this switching does not introduce any destabi-
lizing effects, and the system remains Lyapunov stable, a

more elaborate convergence statement for this case is not
considered here.

Note that in the above case with a single switch we have:

ad(t) =

{

1 if t > t∗

0 if t ≤ t∗

Alternatively, turning the resetting off may be defined by
the tracking error|e| ≤ ǫ satisfying some bound, as long as
some sampling is introduced to prevent chattering.

III. H YBRID RESETTINGLAG COMPENSATORS

In this , the resetting PI compensator used solely forn = 1
and within a PID forn = 2 of Section II will be modified
to yield resetting lag compensators.

A. A Resetting Lag Controller

A resetting Lag controller can be achieved by simply
replacing the resetting integrator of Section II with a FORE
as shown next. However, a an additional modification to the
FORE’s resetting condition will be introduced. Consider the
following control law:

u = −Kpv z − Kivzc + ażr − f (12)

żc = z − aczc, if (z − aczc)zc > 0

z+
c = 0, if (z − aczc)zc ≤ 0

Where the controller poleac ≤ 0. Note that the resetting
condition depends on the FORE’ poleac unlike that com-
monly used [3], [10] and reduces to the same on used for
an integrator. Note that the same resetting logic used for the
integratorzzc ≤ 0, which reduces to the standard FORE’
reset logic whenn = 1, may also be used. Stability of the
system can be shown using the same plant of Equation (3)
and the following Lyapunov function:

V = a z2 + Kivz
2
c

ComputingV̇ for the continuous-time part of system yields:

V̇ = −2Kpvz
2 − 2Kivacz

2
c < 0

Whereas, for the resetting dynamics :

∆V = V (x+
cl) − V (xcl) = −Kivz

2
c ≤ 0

Following Theorem 1, this proves exponential stability of
the closed loop hybrid system consisting of plant given by
Equation (3) and controller given by Equation (12) since
V̇ ≤ −αV for someα > 0.

Note that the modified resetting logic can be related to
energy based reset control, which is a general methodology
proposed by [12] for stabilization using controller state
resetting. In [12], the basic idea is to reset the controllerto
values that cause it’s emulated energyVc to vanish whenever
the controller’s energy is about to decrease, i.e., will be sent
back to the plant. Although the precise resetting condition
logic is different in [12] and it is not specified for any
particular controller, the same energy based interpretation
can be used. LetVc = z2

c then the proposed resetting



condition corresponds tȯVc = (z − aczc)zc ≤ 0. Note that
the standard Clegg integrator falls under this methodology
but not the FORE.

B. Higher Order Resetting Controller

For the plant given by Equation (3), consider the following
control law:

u = −Kpv z −

N
∑

i

Kizci + ażr − f (13)

żci = z − acizci, if (z − acizci)zci > 0

z+
ci = adizci + bdi, if (z − acizci)zci ≤ 0

Where the scalarsaci ≤ 0 and |adi| ≤ 1 for N controller
states. Whereaci = 0 corresponds to an integrator and
aci > 0 corresponds to a FORE. Note that the case of
adj = 1 and bdj = 0 for the jth controller state means this
is a nonreset pole. The default foradi and bdi is zero but
nonzero values may be useful in some cases, for example
for improved disturbance rejection, as shown in Section II.

Let bdi = 0, which can be added in a manner similar to
that of Section III with specific disturbances, and consider
the following Lyapunov function:

V = a z2 +

N
∑

i

Kiz
2
ci

Computing V̇ for the continuous-time part of the system
yields:

V̇ = −2Kpvz
2 − 2

N
∑

i

Kiaciz
2
ci ≤ 0

Whereas, for the resetting dynamics :

∆V = V (x+
cl) − V (xcl) =

N
∑

i

Ki(a
2
di − 1)z2

ci ≤ 0

This proves Lyapunov stability of the closed loop system
consisting of plant given by Equation (3) and controller given
by Equation (13) as well ase → 0 by invariant set arguments
in Theorem 1 if assumption 2.2 is satisfied. Whereas, when
aci > 0 ∀i then exponential stability of the hybrid system is
concluded, see Theorem 1.

IV. A PPLICATION TO MOTION CONTROL

Next, the proposed resetting designs will be evaluated via
simulations and experiments on a servo driven motion control
system, see [15], [12] for instance for applications of FORE’s
and Clegg integrators to motion control problems.

A. Simulations

In this section a case study simulation will be used to
demonstrate the developed controllers. Consider the follow-
ing plant transfer function:

y(s)

u(s)
=

1e − 4
(

( s
2π60 )2 + 0.12s

2π60 + 1
)

s2
(

( s
2π100 )2 + 0.2s

2π100 + 1
) (

s
2π8000 + 1

)

This is a typical model for many motion control systems
such as that shown in Figure 5 from which this model has
been identified. The plant used for simulations is of order 5
and relative degree 3 with lightly damped poles and zeros.
However, the system is a2nd order dominant system and
thus the designs of Section II withn = 2 andf = 0 will be
used, i.e., the plant is treated as a double integrator plant. In
all the simulations shown, the system is required to follow a
filtered step input, with a400 Hz reference filter. Note that
a feedforward gain0.7a is used instead of exactlya for all
these simulations, as it is more realistic. Note that ode15s
was the chosen solver in SIMULINK as it is better suited to
these discontinuous systems.

0 0.05 0.1 0.15 0.2 0.25
−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

T
ra

ck
in

g 
er

ro
r

time, seconds

 

 

Proposed Resetting PID
Standard PID
Parallel Resetting PID

Fig. 1. Tracking error for series and parallel reset and non reset PID
controllers.

Figure 1, a standard PID controller is compared to the
proposed series resetting PID controller and a parallel re-
setting PID controller. Both resetting controllers seems to
improve transients and settling time compared to the linear
controller but the proposed resetting PID outperforms the
parallel resetting PID, specially in terms of settling time.

In Figure 2with the addition of a constant input distur-
bance, steady state error is seen with reset PID although it
improves transients. An offset used to reset to a nonzero
value close tod/Kiv maintains zero steady-sate tracking er-
ror same while improving transients due to resetting. Another
discussed method is to turn off the resetting at a prescribed
time t∗ is shown in Figure 2. Whereas, 2 integrator with
and without resetting allows for achieving zero steady state
tracking while trading off the level of improved transients
with steady-state tracking, see Figure 4. All these methods
shown for steady-state tracking improvement, as discussed
in Section II impose different design trade-offs between
retaining good steady-state tracking and maximizing the
improvement obtainable from an ideal resetting controller
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Fig. 2. Effect of constant disturbance on tracking error fordifferent types
of reset and non reset PID controllers; Resetting Offset.

when no disturbances are present.

B. Experiments

In this section, the proposed resetting PID controller for
n = 2 is tested on a typical motion control system using a
servo motor, Kollmorgen AKM21 − C [4], with collocated
motor encoder feedback for positioning the carriage on the
stage, by Thompson [4], se Figure 5. dSpace board DS
1104 is used for controller implementation. Only one axis
positioning is used for thisX − Y table, where the bottom
long stage is driven and the top stage and the carriage acts
as a load to be positioned. Note that velocity feedback is
used for thePID by filtered differentiation of the encoder
position feedback as commonly done in practice.

The system is commanded to make12mm moves at0.5g
acceleration. First consider the case where the PID controller
is not properly tuned for the system, e.g. due to inertia
uncertainty, leading to excessive vibration, see Figure 6.
An interesting observation is the robustness of resetting in
compensating for this poor PID tuning and suppressing the
system oscillations.

Due to friction, one of the methods proposed in Section
II should be used to maintain optimal steady-state track-
ing. The combined resetting and nonresetting integrators is
used instead of only a reset integrator in Figure. In the
experiments the nominal linear PID controller is given by
Kiv2 = 3, Kpv = 0.03, Kpp = 100 and a = 3e − 5 are
used. Figure shows positioning tracking error for the system,
motor positioning error converted to micrometers using the
lead of stage, using a combined PID with a resetting and a
nonresetting integratorKiv1 = Kiv2 = 3. This is compared
with 2 linear PID’s one withKiv = Kiv1 = 3, i.e., the
resetting integrator is simply removed, and the other with
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Fig. 3. Effect of constant disturbance on tracking error fordifferent types
of reset and non reset PID controllers; Turning the resetting off.

Kiv = Kiv1 + Kiv2 = 6, i.e., resetting is turned off and the
larger overall integral gain is retained. The improved settling
is evident with resetting.

An alternative to using 2 integrators is to switch off
the resetting towards the end of the move. In Figure 8,
the resetting PID controller with gainsKiv = 3, Kpv =
0.03, Kpp = 100 is used which yields a steady-state offset
of about 2 microns. In contrast turning off the resetting at
t∗ = 0.1 seconds, retains most of the transient improvement
benefits of resetting while eliminating the steady state offset
error due to disturbances. The behavior of the integrator in
these 2 cases is shown in Figure 8 where the integrator
continues to be reset to zero preventing the system for perfect
steady-state tracking. Whereas, when switching the resetting
off the integrator follows the value or response needed to
overcome friction. Of course different combinations of these
methods, e.g. 2 integrators and turning off the resetting
may also be used with satisfactory results. In summary, the
experiments not only demonstrated interesting and promising
performance of these hybrid controllers but also verified the
predicted comparative behavior of different versions and the
design trade-offs discussed earlier.

V. CONCLUSIONS

In this paper, new designs for hybrid resetting PID and
lag controllers are shown. Lyapunov stability analysis of
the system for first and second order plants are presented.
The resetting designs reduce to that of a Clegg integrator
for first order systems with integral control but differ from
existing methods for second order plants and for non-
integral lag controllers such as FORE’s. Special attention
is given to different modifications in order to retain a linear
integrator’s steady-state disturbance rejection are discussed.
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Fig. 4. Effect of constant disturbance on tracking error fordifferent integral
gain ratios for 2 integrator reset PID controller.

Fig. 5. Picture of the experimental setup.

Simulations and experiments on a motion control stage show
the effectiveness of these hybrid controllers and verify the
comparative behavior predicted by the analysis for different
versions. Future work will focus on more general classes of
systems and reset control algorithms.
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