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Abstract
We consider a secure verification problem in which Alice wants to verify whether her signal
Xn is compatible with Bob’s signal Yn, where Xn and Yn are drawn i.i.d. according to
a joint distribution p(x,y). The notion of compatibility is defined as the requirement that
p(x,y) belongs to a certain set A of allowable joint distributions. For privacy, Alice jointly
encrypts and encodes Xn and transmits the result over a public channel to Bob. Using the
information leaked by the encryption algorithm, Bob verifies the compatibility of Xn with Yn.
We characterize the minimum information that Alice’s encryption and coding algorithm must
leak in order to guarantee reliable verification results. Further, we determine the maximum
information that Bob can hope to extract about Xn if he is curious. It is shown that a
source/channel separation theorem holds for this scenario.
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Abstract—We consider a secure verification problem in which
Alice wants to verify whether her signal Xn is compatible with
Bob’s signal Y n, where Xn and Y n are drawn i.i.d. according to a
joint distribution p(x, y). The notion of compatibility is defined
as the requirement that p(x, y) belongs to a certain set A of
allowable joint distributions. For privacy, Alice jointly encrypts
and encodes Xn and transmits the result over a public channel to
Bob. Using the information leaked by the encryption algorithm,
Bob verifies the compatiblility of Xn with Y n. We characterize
the minimum information that Alice’s encryption and coding
algorithm must leak in order to guarantee reliable verification
results. Further, we determine the maximum information that
Bob can hope to extract about Xn if he is curious. It is shown
that a source/channel separation theorem holds for this scenario.
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I. INTRODUCTION

It is often necessary to compare two signals to determine

whether they are compatible. The notion of what constitutes

compatibility may differ according to the application; for

instance, one may be interested in whether the signals are

within a specified distortion, or whether they arose from a

specified joint probability distribution, or whether they contain

the same number of zeros, and so on. Given the two signals,

and the compatibility criterion, a computer can perform a

suitable measurement and confirm or reject the compatibility

hypothesis. However, when one or both of the signals are

encrypted, this task is much more difficult because encryption

obfuscates the structural properties that are needed to verify

compatibility.

Consider, for instance, an authentication scenario in which

Bob maintains a database of legitimate fingerprints in an

access control system. A user, Alice, would like to participate

in a login procedure, but in the interest of privacy, she

would not like to reveal her fingerprint to Bob. Therefore,

Alice encrypts her fingerprint and sends it to Bob via a

public transmission channel. However, if Alice’s encryption

completely destroys all the information that is required to

implement authentication, then Bob will be unable to verify

whether she is a genuine user or not. In other words, Alice

must leak some information about her fingerprint to Bob to

ensure that authentication is possible in the first place. On the

other hand, Bob may be very curious and may want to recover

as much information as he can about Alice’s fingerprint from

her encrypted transmission. For this situation, it is useful to

ask: What is the minimum information leakage rate that Alice

must allow to enable Bob to confirm or reject her request for

authentication? Further, what is the maximum information that

Bob can hope to extract about Alice’s signal?

In this paper we answer these questions from the point

of view of information theory. Specifically, we consider ver-

ification of compatibility between two vectors Xn and Y n

owned by Alice and Bob respectively. Alice jointly encrypts

and encodes her data using a secret key before sending it to the

verifier over a public channel. The public channel is modeled

as a memoryless noisy channel. Bob does not have access to

Alice’s key. He must then determine whether Xn and Y n are

compatible in the sense that they are generated i.i.d. according

to some joint probability distribution p(x, y) in a prescribed

compatible probability set A. Alice may choose to leak some

information about her data to Bob in return for his services. We

characterize the minimum information leakage rate achievable

by Alice and the maximum information leakage rates achiev-

able by Bob.

The groundwork for information-theoretic studies of secrecy

and privacy was laid by Shannon in [9]. However, the study of

cipher systems from an information theoretic viewpoint was

undertaken relatively recently [11], [6]. The tradeoff between

lossy compression and secrecy for Shannon cipher systems

is studied in [12]. Recently, joint compression-encryption

systems have been investigated within the framework of dis-

tributed source coding [7], [5]. In this setting, the encryption

key is used by the decoder as side information during signal re-

covery. Closer in spirit to this work, [1] considers the problem

of the signal identification from compressed data, and derives

achievable compression rates for the case in which a third-

party verifier, Charlie identifies whether Alice’s and Bob’s

compressed signals satisfy a single-letter distortion criterion

without decompressing them. In this work, we consider a more

general compatibility criterion and further allow Alice to leak a

small portion of her signal to Bob as payment for verification.

Our work is also related to [4], where secure collaboration

between two users is enabled via Slepian-Wolf coding [10];

however, in that work, information leakage is determined by

the Slepian-Wolf code and the parties do not encrypt their data

for security.

The remainder of this paper is organized as follows: Sec-

tion II sets up the notation, presents a mathematical formula-

tion of the problem and states the main results. In Section III,

we sketch the proof of Theorem 2.1. Section IV sketches the

proof of the achievability of Theorem 2.2 using a random en-
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Fig. 1. Bob verifies whether Y n is δ-compatible with Xn upon receiving
an encrypted version of Xn over a noisy channel.

cryption and source/channel coding scheme. We also prove the

converse of Theorem 2.2. Concluding remarks are presented

in Section V.

II. NOTATION AND PROBLEM SETTING

Throughout the paper, random variables are assumed to be

drawn from finite alphabets. A random variable, its realization

and alphabet are denoted by uppercase, lowercase and script

letters respectively. For example, S is a random variable over

its alphabet S and a realization s ∈ S is drawn according to

its probability distribution pS(s). When there is no ambiguity,

the subscript in pS(s) is omitted and we write pS(s) as

p(s). The number of elements in S will be denoted by |S|,
and Sn denotes the set of all n-tuples sn

1 = (s1, s2, ..., sn)
with elements from S. Let sn

m = (sm, sm+1, ..., sn) and

for simplicity write sn
1 as sn. For a given sn, we use psn

to denote the empirical probability distribution of singleton

random variables derived from sn. Finally, all logarithms use

base 2.

Let X ,Y be arbitrary finite sets, and P(X × Y ) be the set

of all joint probability distributions of two random variables

X ∈ X and Y ∈ Y . Consider a set A ⊂ P(X × Y ).
We refer to A as a “compatible set”. One example of a

compatible set is A = {p(x, y) : I(X;Y ) ≥ θ} for some

θ ≥ 0. Let D(p(x, y) ‖ q(x, y)) denote the KL divergence

between probability distributions p(x, y) and q(x, y), and let

δ > 0. Define a ball with radius δ centered at p(x, y) by

B(p(x, y), δ) = {q(x, y) ∈ P(X×Y ) |D(q(x, y) ‖ p(x, y)) <
δ}.

Definition 2.1: Suppose n is large enough. The realizations

xn and yn are said to be δ-compatible with respect to A
if and only if the joint empirical distribution pxn,yn(x, y) ∈
B(p(x, y), δ) for some p(x, y) ∈ A. Further, the random

variables Xn and Y n are δ-compatible with respect to A if and

only if they are generated i.i.d. according to a joint probability

distribution q(x, y) ∈ B(p(x, y), δ) for some p(x, y) ∈ A.

The problem setting is shown in Figure 1. Xn and Y n are

generated i.i.d according to some joint distribution q(x, y).
Alice jointly encrypts and encodes Xn into Zn ∈ Zn using

her secret key K independently and uniformly chosen from

her key space K. Bob receives Un ∈ Un which is the output

of a noisy channel p(u|z) with input Zn. The channel models

not just noisy transmisson of Xn but can also be used to

model the actions of an attacker. In the following, we always

assume that the capacity C of the channel p(u|z) is positive.

Now, without completely decrypting Un, Bob wants to verify

whether Xn and Y n are δ-compatible with respect to A.

Definition 2.2: Let A be a compatible set. A function

f (n) : Xn × K1 → Zn is called an n-length joint en-

cryption/source/channel encoder with information leakage rate

0 ≤ α ≤ 1 if

1

n
H(Xn|Zn) ≥ (1 − α)H(X)

for Zn = f (n)(Xn, K). The verification decoder is defined

by g(n) : Un × Yn → {0, 1}. Here, 0 denotes the event that

Xn and Y n are not δ-compatible, and 1 denotes the event that

Xn and Y n are δ-compatible.

For a code (f (n), g(n)), we can define a false negative

probability p1(f
(n), g(n)) as

Pr{g(n)(Un, Y n) = 0 | q(x, y) ∈
⋃

p(x,y)∈A

B(p(x, y), δ)},

and a false positive probability p2(f
(n), g(n)) as

Pr{g(n)(Un, Y n) = 1 | q(x, y) /∈
⋃

p(x,y)∈A

B(p(x, y), δ)}.

Definition 2.3: A number 0 ≤ α ≤ 1 is an achievable

information leakage rate for verification with respect to a

compatible set A if, for any ǫ > 0 and any large enough

n, there exists a joint encryption/source/channel-verification

code (f (n), g(n)) with information leakage rate α such that

p1(f
(n), g(n)) ≤ ǫ and p2(f

(n), g(n)) ≤ ǫ.

Question 1: For a given compatible set A and a memoryless

channel p(u|z) with capacity C > 0, what is the set of all

achievable information leakage rate α for verification?

We also consider scenarios in which the verifier (Bob) is

curious and will try to recover a fraction α of the original data

xn. Alternatively, Alice may leak a public (non-secret) portion

of xn to Bob in return for his services. This public informa-

tion may be leaked by the joint encryption/source/channel-

verification code.

Definition 2.4: A joint encryption/source/channel encoder

f (n) with information leakage rate α is defined in the same

way as that Definition 2.2. A “curious” verification decoder

is given by g(n) : Un × Yn → Xαn that can decode

αn components of Xn with high probability if (Xn, Y n)
are δ-compatible with respect to A, i.e., pe(f

(n), g(n)) =
Pr{g(n)(Un, Y n) 6= (Xt1 , ..., Xtαn

)} ≤ ǫ.

As above, we can similarly define an achievable information

leakage rate for curious verification. Then, a natural question

arises for the curious verifier:

Question 2: For a given compatible set A and a memoryless

channel p(u|z) with capacity C > 0, what is maximum

achievable information leakage rate α for curious verification?

Our purpose in this paper is to answer Question 1 and

Question 2 using the following two theorems respectively.

First, define

H0 = sup
q(x,y)∈B(p(x,y),δ), p(x,y)∈A

H(X|Y ). (1)



Theorem 2.1: If the compatible set A is finite and the

channel capacity C > 0. Then, any 0 < α ≤ 1 is an achievable

information leakage rate for non-curious verification.

Theorem 2.2: If the compatible set A is finite and the

channel capacity C > 0. Then, the maximum achievable in-

formation leakage rate for curious verification is min{1, C
H0

},

that is, any 0 < α ≤ min{1, C
H0

} is achievable for curious

verification.

Discussion:

• Obviously, if α = 0 or C = 0, then, the correlation

between X and Y is totally lost, and the verification will

fail;

• Theorem 2.1 implies that as long as the information

leakage rate is nonzero, then successful verification will

be achieved with high probability. The price of successful

verification at low information leakage rate is that the

verifier has to wait for a very long time. This will become

clear in the proof of Theorem 2.1 in Section III;

• Theorem 2.2 implies that because of the channel con-

straint, the curious verifier cannot decode a large portion

of xn if the channel capacity C is far smaller than H0;

• Theorem 2.2 also implies that a source/channel separation

theorem holds for the curious verification framework.

III. PROOF OF THEOREM 2.1

We shall show that for any α > 0 and large enough n, there

exists a n-length joint encryption/source/channel-verification

code (f (n), g(n)) with information leakage rate α such that

p1(f
(n), g(n)) < ǫ and p2(f

(n), g(n)) < ǫ. The approach of

the proof is similar to that of Theorem 1 in [1]. Let A =
{p1(x, y), ..., pt(x, y)} and ǫ > 0. According to the law of

large numbers and properties of KL distance, there exists mi

such that for any m ≥ mi

Pr{D(p
Xm

1 ,Y m
1

(x, y) ‖ pi(x, y)) < δ} > 1 − ǫ (2)

if (Xm
1 , Y m

1 ) is generated i.i.d. by q(x, y) ∈ B(pi(x, y), δ).
Let m0 = maxi=1,...,t mi. Next, let Θ be an n-length optimal

channel code with |Z|nC codewords in the sense that the error

probability of decoding over this public channel p(u|z) is

arbitrarily small, and define a one-to-one mapping from |X |m0

to Θ. This is achieved by letting n be large enough.

Now, define the joint encryption/source/channel encoder

f (n) as follows: given (Xn, K), choose a perfect encryption

system to encrypt Xn
m0+1 by the key K. Then, f (n)(Xn, K) is

defined as the codeword in the channel code Θ corresponding

to Xm0
1 , via the one-to-one mapping defined above. Let the

verification rule g(n) be given as follows: Xn and Y n are

δ-compatible if and only if

D(p
X̂

m0
1 ,Y

m0
1

(x, y) ‖ pi(x, y)) < δ (3)

for some pi(x, y) ∈ A where X̂m0
1 is the random vector

corresponding to the decoded codeword in Θ. Since m0 is

fixed, the information leakage rate for this code is m0

n
→ 0 as

n → ∞; in other words, α > 0 is achievable.

�

IV. PROOF OF THEOREM 2.2

We sketch the proof of the achievability part of Theorem

2.2, relying heavily on the method used in [8] in the context

of universal coding for the Slepian-Wolf coding problem. Let

pxn denote the “type” ([3], [2]) of a sequence xn ∈ Xn. This

is the same as the empirical probability distribution of symbols

in X . Similarly, let pxn,yn , pxn|yn and pyn|xn denote the joint

and conditional types.

Lemma 4.1: [3] The number of different types of se-

quences in Xn is less than or equal to (n + 1)|X |.

Let αH0 ≤ C, where H0 is defined in (1) and A is a finite

compatible set. Let ǫ be an arbitrary fixed positive number. To

show that α is achievable, that is, there exists for large n, a

curious joint encryption and source/channel code (f (n), g(n))
with pe(f

(n), g(n)) < ǫ, we employ a random coding scheme

consisting of a perfect encryption system, an optimal channel

code Θ and a random source coding scheme. To begin, label

all types over Xαn by indices i′ ∈ I ′ = {1, 2, ..., (αn+1)|X |}.

A. Achievability with Random Coding Scheme

• Choose a perfect encryption system Φ, such as a one-

time pad, and an optimal channel code Θ with |Z|nC

codewords such that the error probability of decoding

pe(Θ) < ǫ. The existence of such a channel code is

guaranteed by the standard Channel Coding Theorem

since the channel capacity is C > 0 by the assumption.

• Alice uniformly distributes all xαn among 2nαH0 bins,

indexed by i ∈ I = {1, 2, ...2nαH0}.

• Define a one-to-one mapping from I × I ′ to Θ. Since

αH0 ≤ C and log(|I ′|)/n goes to zero as n → ∞, such

a mapping exists.

• Random encoding: Given Xn = (X
(1−α)n
1 , Xn

(1−α)n+1)

and key K, Alice uses the key K to encrypt X
(1−α)n
1

using the encryption scheme Φ. From her random code-

book, Alice finds the bin containing Xn
(1−α)n+1, and

records the bin index I . Then, she computes the type

(empirical distribution) of Xn
(1−α)n+1 and records the

type index I ′. Finally, Alice transmits the codeword

Zn ∈ Θ corresponding to the pair (I, I ′) to the verifier.

• Curious decoding and verification: Upon receiving Un,

the verifier first performs channel decoding with the code

Θ. By the Channel Coding Theorem, with probability

one, the verifier decodes (I, I ′) correctly, and computes

entropy H(I ′) of the type with index I ′. Now consider

the following cases:

(a) If H(I ′) ≤ H0, then there exists a unique

Xn
(1−α)n+1 with type I ′ in the codebook bin

I . Thus, the portion Xn
(1−α)n+1 can be decoded

correctly without using the side information Y n.

(b) If H(I ′) > H0, then, in the codebook

bin I , the verifier decodes X̂n
(1−α)n+1 =

arg minH(pX̃n
(1−α)n+1

|Y n
(1−α)n+1

), where the

minimum is taken over all X̃n
(1−α)n+1 of

type I ′ that also lie in the codebook bin I ,



and Y n
(1−α)n+1 is the (small) portion of Y n

corresponding to the leaked portion of Xn.

• Verification: Bob obtains X̂n
(1−α)n+1 from the above de-

coding step, and then computes the empirical probability

distribution from it. Finally, he employs the verification

rule using KL divergence in (3) as described in the proof

of Theorem 2.1.

B. Information Leakage Rate and Error Probability

Since Alice transmits a codeword in Θ corresponding to a

pair comprising of a codebook bin index and a type index, the

information about Alice’s vector leaked to the verifier by the

protocol described earlier is given by

1

n
H(Xn|Zn) =

1

n
H(Xn|(I, I ′)

≥
1

n
H(Xn|Xn

(1−α)n+1)

=
1

n
H(X

(1−α)n
1 ) = (1 − α)H(X).

Following the counting approach in [8], the error probability

of the event Xn
(1−α)n+1 6= X̂n

(1−α)n+1 is less than ǫ if there

is no error occurrence in the channel decoding step. For this

channel code Θ, the error probability of decoding is less than

ǫ for large enough n. Therefore, the total average error prob-

ability of the event Xn
(1−α)n+1 6= X̂n

(1−α)n+1 is less than 2ǫ.

Following the analysis in Section III, for large n, there exists a

joint encryption/source/channel-verification code (f (n), g(n))
such that p1(f

(n), g(n)) < ǫ and p2(f
(n), g(n)) < ǫ. This

completes the proof of achievability in Theorem 2.2.

�

C. Proof of Converse in Theorem 2.2

In this section, we shall prove the converse part of Theorem

2.2. Assume that for an arbitrary number ǫ > 0, there

exists for any sufficiently large n, an n-length curious joint

encryption/source/channel-verification code (f (n), g(n)) with

information leakage rate α for the compatible joint proba-

bility set A such that, for any q(x, y) ∈ B(p(x, y), δ) and

p(x, y) ∈ A, Pr{gn(Un, Y n) 6= Xn
(1−α)n+1} ≤ ǫ. We want

to show that αH0 ≤ C, where C is the channel capacity of

the discrete memoryless channel p(u|z).
We have

nH(X|Y ) = H(Xn|Y n)

= I(Xn;Un|Y n) + H(Xn|Un, Y n)

= H(Un|Y n) − H(Un|Xn, Y n) + H(Xn|Un, Y n)
(a)

≤ H(Un) − H(Un|Xn) + H(X
(1−α)n
1 |Un, Y n)

+H(Xn
(1−α)n+1|U

n, Y n, X
(1−α)n
1 )

≤ I(Un;Xn) + H(X
(1−α)n
1 |Y

(1−α)n
1 )

+H(Xn
(1−α)n+1|U

n, Y n)

(b)

≤ I(Un;Zn) + (1 − α)nH(X|Y ) + nǫ,

which yields

nαH(X|Y ) ≤ I(Un;Zn) + nǫ ≤ nC + nǫ,

where (a) follows from fact that Y n → Xn → Un is

a Markov chain; (b) follows from Fano’s inequality, i.e.,
1
n
H(Xn

(1−α)n+1|U
n, Y n) ≤ ǫ. Thus, αH(X|Y ) ≤ C + ǫ for

any q(x, y) ∈ B(p(x, y), δ) where p(x, y) ∈ A. Since ǫ can be

arbitrary small, therefore αH0 ≤ C. The proof of the converse

part is thus complete.

�

V. CONCLUSIONS

This paper considers information leakage for encryption

schemes in a distributed source coding setting. Given an

encrypted vector Xn from Alice, Bob determines whether

Xn is δ-compatible with his vector Y n, i.e., whether they

are drawn from one of many permissible joint distributions.

Using identification via compressed data, it is shown that

compatibility in this sense can be verified at asymptotically

zero rate. Further, we consider the scenario in which the

verifier (Bob) is curious, or is allowed to decode a certain

portion of Xn as payment for his services. It is shown that

the maximum information that Bob can obtain about Alice’s

signal depends upon the capacity of the noisy channel between

Alice and Bob and on the Slepian-Wolf rates for the compat-

ible set. This region can be achieved by universal random

coding schemes. The converse also suggests a source/channel

separation theorem for the curious verifier.
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