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ABSTRACT

We propose an algorithm that enables joint Viterbi decoding of mul-
tiple independent audio recordings of a word to derive its pronunci-
ation. Experiments show that this method results in better pronun-
ciation estimation and word recognition accuracy than that obtained
either with a single example of the word or using conventional ap-
proaches to pronunciation estimation using multiple examples.
Keywords: Speech recognition, Joint decoding, Pronunciation esti-
mation.

1. INTRODUCTION

Speech recognition (ASR) systems are sometimes required to add
words to their lexicon based only on audio recordings of the words,
e.g. in name diallers or dictation systems where users may desire to
add new names or keywords to the system by voice. Typically, the
user records one or more instances of the word and expects the sys-
tem to recognize them when they are uttered thereafter. The system
must somehow learn a model for the new word, based only on these
recordings.

In phoneme-based recognition systems this is typically done by
learning the pronunciation of the word from the recorded examples
[1]. When only one acoustic realization of a word is available, this
is readily achieved by automatically recognizing the phoneme se-
quence in it. However, a pronunciation determined from only one
recording of a word can be very unreliable. Pronunciations can
be much more reliably estimated if there are multiple recorded in-
stances of the word. To estimate its pronunciation one must now
determine the phoneme sequence that best explains all recorded in-
stances. This, however, poses a problem since the phoneme se-
quences recognized in the individual sequences may be different.
A variety of approaches have been proposed to deal with this. A
common technique is to derive pronunciations by voting amongst the
recognition outputs from the individual recordings [2]. Another gen-
erates N-best hypotheses from each of the audio inputs and rescores
the cumulative set jointly with all the recordings [3][4]. Other meth-
ods produce recognition lattices individually from each of the inputs,
and identify the most likely path in the intersection of these lattices.

In this paper we note that the Bayesian principle behind most of
these techniques is to determine the phoneme sequence that is maxi-
mally likely given all examples of the word. In HMM-based systems
in particular, this would best be performed by joint decoding of all
the examples. We therefore propose to derive the pronunciations of
the word by joint decoding of all presented examples.

The conventional Viterbi decoding algorithm, however, is un-
suited to performing such joint decoding since the multiple record-
ings are all independent observations, typically of different lengths,
and have no temporal correspondence to one another, as we explain
in Section 2.

We propose an algorithm, described in Sections 3-5, based on a
technique presented in [5], that deals with this problem by enforc-
ing a temporal correspondence through the introduction of a “ cor-
respondence” variable. This recasts the otherwise-intractable prob-
lem of joint recognition as joint decoding given a correspendence
between the optimal state sequences for the recordings. The cor-
respondence itself may be derived through other criteria. Here we
assume it is obtained through a DTW-based alignment algorithm.

Our experiments, described in Section 6 reveal that the pronun-
ciations estimated using this approach are significantly superior to
other methods of discovering pronunciations from audio examples
of words, both in terms of the fraction of words for which pronunci-
ations are correctly discovered, as well as in terms of the recognition
accuracy obtained with discovered pronunciations.

2. JOINT RECOGNITION OF MULTIPLE INPUTS

The usual problem of automatic speech recognition is that of finding
the sequence of terms1 WAWB · · ·WK that were spoken in produc-
ing an acoustic signal X. The Bayesian solution to the problem is
given by:

ŴAŴB · · · = argmaxWaWb···P (X|WaWb · · · )P (WaWb · · · )
(1)

where ŴAŴB · · · is the recognized sequence of terms, WaWb · · ·
represents an arbitrary sequence of term, ands. P (WaWb · · · ) rep-
resents the a priori probability of WaWb · · · .

In practice, in HMM-based systems the probability distribution
for any term sequence P (X|WaWb · · · ) is composed from HMMs
H(W ) representing the probability distributions of individual terms,
P (X|W ). Furthermore, the actual procdure for recognition does not
explicitly enumerate the argument of Equation 1 for each term se-
quence as the computational expense can be prohibitive. Rather, an
HMM H(G) is composed for a parsimoious term graph G that rep-
resents the set of all term sequences allowed by the probability dis-
tribution P (WaWb · · · ), from the HMMs H(W ) of the individual
terms. Any sequence of states S = s1, s2, · · · , sT that is traversed
in a walk throughH(G) actually represents an underlying sequence
of termsW(S) = Wa,Wb, · · · whose HMMsH(Wa),H(Wb), · · ·
are entered and exited in the process of traversing S. Recognition is
actually performed as:

Ŝ = argmaxSP (X,S|H(G) (2)

ŴAŴB · · · = W(Ŝ) (3)

1We refer to WA, WB etc as terms rather than phonmes or words since
the discussion is applicable to recognition in general.



Fig. 1. The HMM on the left represents two word sequences ”DOG
STAR” and ”ROCK STAR”, and is composed from the HMMs for
DOG, ROCK and STAR. The graph in the middle represents the
trellis that must be searched to determine the best state sequence for
the data sequence (bottom). The dark lines illustrate a state sequence
that represents the word sequence ”ROCK STAR”.

Note that the recognition process does not directly determine
the term sequence. Rather, it identifies the optimal state sequence Ŝ
through a trellis representing all possible state sequences that could
be traversed by X, and the term sequence is determined from this
state sequence. This is illustrated by figure 1. Note too that the
trellis is two-dimensional; the vertical axis represents HMM states
and the horizantal axis represents time.

The problem of joint recognition of multiple audio inputs is de-
fined as follows: givenN independent recordings X1, X2, · · · ,XN

that represent the same term sequence we aim to compute:

ŴAŴB · · · = argmaxWaWb···P (X1,X2, · · · ,XN |WaWb · · · )
P (WaWb · · · ) (4)

For ease of presentation, in the following discussion we will assume

Fig. 2. A 3-dimensional trellis required for joint estimation of the
optimal state sequence for two data sequences. The HMM is shown
to the left, and the two data sequences with time axes t1 and t2 are
shown in red and blue to the bottom and right. The red lines in
the trellis represent transitions where there is state transition activity
along the red data sequence only. The blue lines similarly repre-
sent transition activity for the blue data only. Green lines represent
transitions occuring for both data sequences.

only two inputs X1 and X2; however it applies equally to larger col-
lections of inputs. Within the HMM framework mentioned earlier, a
naive translation of the problem in Equation 4 would be:

Ŝ1Ŝ2 = argmaxS1Ŝ2P (X1X2,S1S2|H(G)) (5)

This corresponds to finding the most likely super-state sequence

Ŝ = (Ŝ1Ŝ2) through a three-dimensional trellis2, with one HMM-
state axis and two time axes representing the temporal evolution of
the two sequences X1 and X2. This is illustrated by figure 2.

There are several problems that arise in finding the optimal path
through such a trellis, however.

• There is no reason to believe that W (Ŝ1) = W (Ŝ2), i.e. that
the two component state sequences Ŝ1 and Ŝ2 of Ŝ represent the
same term sequence. As a result, no unique term sequence can be
derived from the outcome of the decoding process.

• Since the two data sequences are independent and accordingly
have separate time axes, many of the transitions in the trellis rep-
resent state transition activity along one of the data sequences, but
no activity at all (not even self transitions) along the other. Con-
sequently, it is difficult to impose constriants that would restrict Ŝ
such that Ŝ1 and Ŝ2 represent the same term sequence.

• The computational complexity of the search increases exponen-
tially with the number of data sequences being jointly decoded.

The problem of joint decoding of multiple data sequences rep-
resenting the same term sequence is not new: it is also encountered
when performing recognition with simultaneous audio-visual data
[7], multi-band recognition [8] etc. However, in these problems there
is strict temporal correspondence between the multiple data streams
since they represent multiple observations of the same event (utter-
ance). This is utilized to set the feature streams for the multiple
observations to have the same number of vectors with one-to-one
correspondence between vectors from different streams. Even when
the data are not naturally thus synchronized, such as for audio-visual
data, they are resampled such that they do [7]. Once such correspon-
dence is established, the problem reduces to search over a simple
2-dimensional manifold (along a digonal) within the 3-dimensional
(or more generally N+1-dimensional) trellis. It becomes relatively
simple to impose constraints that ensure that all component state se-
quences represent the same term sequence, and any increase in com-
plexity is merely the result of increase in the number of states in
the HMM. Unfortunately, in our problem, since the data sequences
are completely indepdenent no such correspondence exists and an
alternate strategy must be devised.

3. THE JOINT RECOGNITION ALGORITHM

The difficulty of joint recognition of multiple independent data se-
quences arises primarily from the fact that no correspondence exists
between the time axes of the sequences. We remedy this problem
by introducing a correspondence variable C that identifies lower-
dimensional manifolds within the 3-dimensional (N+1-dimensional)
trellis such that the components state sequences Si of any super-state
sequences S within the manifold are consistent, i.e. they represent
the same term sequence. In other words, for any S = (S1,S2) that
lies within a manifold, W (Si) = W (Sj)∀i, j. A correspondence-
specific decoding algorithm finds the most likely term sequence given
the correspondence :

Ŝ1Ŝ2 = argmaxS1Ŝ2P (X1X2,S1S2|CH(G)) (6)

ŴAŴB · · · = W(Ŝi) (7)

Since Ŝ1 and Ŝ2 are guaranteed to be consistent, either of them may
be employed in Equation 7.

2A given pair of state sequences (S1S2) can be obtained from multiple
super-state sequences. However all of them are equivalent in that they also
have the same likelihood and we will not distinguish between them.



We define the globally optimal super-state sequence Ŝ as the
most likely super-state sequence S that also conforms to the condi-
tion that all component state sequences Si represent the same term
sequence. Our eventual goal is to find Ŝ. In general the global op-
timum is not guaranteed to lie within any correspondence. How-
ever, if the HMMs for the terms are have strictly left-to-right (Bakis)
topology with no skipping of states permitted, a common model for
phonemes in phoneme-based recognition systems, then it is easy to
show that the globally optimal solution is also the correspondence-
specific solution for a correspondence C given by:

C = {Xi
1 7→ Xj

2|i ∈ Ik, j ∈ Jk, k ∈ {1 · · ·L}} (8)

where Xi
1 7→ Xj

2 indicates that the ith vector of X1 and the jth

vector of X2 are required to be at the same HMM state, Ik repre-
sents a sequence of indices such that min(i|i ∈ Ik) = max(i|i ∈
Ik−1 + 1) and max(i|i ∈ IL) = T1, where T1 is the number of
vectors in X1. Jk represents similar sequences of indices such that
max(JL) = T2. An example of such a correspondence is illustrated
by figure 3. Although not every correspondence of the form in Equa-

Fig. 3. Illustrating the correspondence of two observation sequences
X1, represented by the gray blocks, and X2 represented by the white
blocks. The alignments are X1

1 7→ X1
2; {X2

1,X
3
1} 7→ X2

2; X4
1 7→

{X3
2,X

4
2,X

5
2} and so on.

tion 8 is guaranteed to contain the global optimum, given the correct
correspondence Ĉ the global optimum can be obtained simply as a
correspondence-specific optimum.

Given a correspondence C such as the one in Equation 8, the
joint likelihood of X1, X2 and a super-state sequence S is:

P (X1,X2,S|C) = P (S|C)
L∏

l=1

∏
i∈Il

P (Xi
1|sl)

∏
j∈Jm

P (Xj
2 |sm)

(9)
where sl is the state that all observations Xi

1|i ∈ Il must lie in, and
sm is similarly defined for X2 and Jm. P (S|C) is given by

P (S|C) = π2(s1)

L∏
l=1

P (sl|sl)
|Il|+|Jl|−2

L−1∏
l=1

P 2(s̄l+1|s̄l) (10)

where π(s) is the a priori probability of HMM state s and P (si|sj)
is the HMM transition probability between states si and sj .

It is relatively straightforward to demonstrate that Equation 9
can be computed dynamically using the Viterbi algorithm, simply by
computing the state output probability of any state s as

∏
i∈Il

P (Xi
1|s)∏

j∈Jl
P (Xj

2 |s) P (s|s)|Il|+|Jl|−2, and raising the the state initial
and transition probabilities to the second power (or, more generically
for N data sequences, to the N th power).

3.1. Determining the optimal Correspondence

Although an optimal correspondence (i.e. one that contains the opti-
mal state sequence) cannot be known a priori, a reasonable hypothe-
sis is that such an alignment will roughly follow the alignment of the
data sequences X1 and X2 themselves. We therefore estimate the
correspondence Ĉ by aligning the two data sequences via dynamic
time warping [6].

4. DETERMINING WORD PRONUNCIATIONS

We are now set to determine the pronunciation of a word from mul-
tiple acoustic examples. We align all inputs to generate a correspon-
dence C. We then perform a correspondence-specific joint phoneme
decode of all recordings using Equation 9, where termsW are phonemes.
The a priori probability of phoneme sequences P (WaWb · · · ) is
provided by a phoneme N-gram language model in the work reported
here. However, it may also be provided by phoneme graphs derived
from spellings or by any other means.

5. EXPERIMENTAL EVALUATION

We evaluated the proposed joint-decoding algorithm for pronuncia-
tion estimation using Carnegie Mellon University’s Sphinx-2 semi-
continuous density HMM-based speech recognition engine. The sys-
tem was modified to perform correspondence-constrained decoding
on multiple inputs as mentioned in section 3. The acoustic mod-
els for speech recognition system comprised 3000 tied states trained
from a corpus 110 hours of read English utterances, mostly proper
nouns, collected over the telephone channel (8KHz, 8 bit, ulaw com-
pressed) with different phone lines, speakers, and acoustic environ-
ments. A held out “pronunciation learning set” comprising 1679
phrases including 1215 unique proper nouns (”subject terms”) each
having multiple examples, was used to learn pronunications. We
note that this is a difficult corpus where the baseline recognition ac-
curacy on our held-out test set using manually-constructed dictio-
nary pronunciations is only 83.8%.

In the first experiment we assumed that the pronunciations of
all 1215 words were unknown and estimated them using our joint-
decoding algorithm. A trigram model learned from the pronuncia-
tions of 110,000 words (including a large number of proper nouns)
was used as the phoneme language model (LM) for recognition. Fig-
ure 4 shows the “correctness” of the estimated pronunciations as a
function of the number of recordings used to estimate them, using
two different criteria. The Auto Pron Accuracy is the pronunciation
match accuracy (i.e. phoneme string accuracy) of the automatically
generated pronunciation w.r.t. the pronunciations in a hand-crafted
reference dictionary for the words. We expect a better algorithm
to provide a higher match to the reference. Recognition accuracy
shows the recognition accuracy on a held-out test set (not used to es-
timate pronunciations) using the estimated pronunciations. We note
from figure 4 that the Auto Pron Accuracy and Recognition Accu-
racy both increase as we increase number of examples. Also, there
is a significant correlation between Auto Pron Accuracy and Recog-
nition Accuracy.

We compared the pronunciations obtained with our joint-decoding
algorithm with those obtained from two other commonly used algo-
rithms for combining evidence from multiple inputs. In the first,
which we call Nbest rescoring, N-best hypotheses from each of the
audio samples were generated and the cumulative set of N-best pro-
nunciations rescored jointly with all the recordings to find the most



Fig. 4. Match accuracy of automatically generated pronunciation to
correct orthography, and recognition accuracy over the test set using
automatic pronunciation.

Method Auto Pron Accuracy Recognition
Accuracy

Nbest Rescoring 68.1% 66.4%
Voting 61.6% 54.6%

Joint Decoding 71.1% 68.2%

Table 1. Comparison of proposed method to voting and Nbest
rescoring on automatic pronunciation generation task.

likely pronunciation. For sufficiently large N, this method approx-
imates joint decoding using all examples. In the second, voting,
each example was decoded independently and the answer that oc-
curred most frequently among all examples was chosen as the win-
ner. When there were multiple winners, one of the winners was
chosen at random. Six repetitions of each word were used for this
experiment. Table 1 shows the comparison. We note that the joint-
decoding scheme performs significantly better than both Nbest rescor-
ing and much better than voting.

The joint decoding algorithm is generic and can be used not only
for pronunciation generation, but can also be used for generic phrase
recognition when repetitions of the same phrase are available. In a
second experiment we evaluated the effect of using multiple exam-
ples on phrase recognition accuracy. In this experiment we used the
hand-crafted dictionary to provide the pronunciations of all words,
and used a large finite-state grammar that included all phrases as our
language model. Figure 5 shows the results. We note that the recog-

Fig. 5. Phrase accuracy Vs number of examples. Estimated over the
pronunciation learning set.

nition accuracy significantly improves with addition of more exam-
ples. This result has significant implications in improving recogni-
tion accuracy for tasks in which multiple examples of a phrase are
available such as broadcast news, voice dialer etc. Table 2 compares
the performance of the proposed joint-decoding algorithm to voting
and Nbest rescoring on the phrase recognition task. Once again we

Method Phrase Recognition Accuracy
Nbest rescoring 69.3%

Voting 77.0%
Joint decoding 78.0%

Table 2. Comparison of proposed method to voting and Nbest
rescoring on phrase recognition.

note that joint decoding outperforms the other two algorithms. In-
terestingly, voting is noted to be superior to Nbest rescoring on this
task, whereas the latter was better for pronunciation estimation.

6. DISCUSSION

Our results show that the proposed joint decoding approach is much
more effective at learning the pronunciations of words than other
current approaches to recognition with multiple recorded examples.
The result from Figure 5 indicates that the approach may also be
effective for more generic recognition from multiple recordings.

The proposed algorithm is found to outperform both voting and
Nbest rescoring. The latter in particular approximates joint decod-
ing, yet the optimality of the proposed joint decoding algorithm reul-
sts in better recognition.

Much room for improvement remains. The proposed algorithm
is only effective when the multiple recordings repersent exactly the
same word sequence, and would be confounded by differences in the
location of pauses or pronunciation variations in the repetitions. It is
not clear how to specify correspondences in this scenario. Further-
more, our current approach to estimating the optimal correspondence
is heuristic. Future research will address these issues.
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