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Abstract

Face recognition algorithms typically deal with the clas-
sification of static images of faces that are obtained using
a camera. In this paper we propose a new sensing mech-
anism based on the Doppler effect to capture the patterns
of motion of talking faces. We incident an ultrasonic tone
on subjects’ faces and capture the reflected signal. When
the subject talks, different parts of their face move with dif-
ferent velocities in a characteristic manner. Each of these
velocities imparts a different Doppler shift to the reflected
ultrasonic signal. Thus, the set of frequencies in the re-
flected ultrasonic signal is characteristic of the subject. We
show that even using a simple feature computation scheme
to characterize the spectrum of the reflected signal, and a
simple GMM based Bayesian classifier, we are able to rec-
ognize talkers with an accuracy of over 90%. Interestingly,
we are also able to identify the gender of the talker with an
accuracy of over 90%.

1. Introduction

In this paper we address the topic of automatic recogni-
tion of talking faces.

Automatic recognition of faces has usually been treated
as a problem of visual processing. Nearly all methods for
automatic face recognition begin with images taken with a
camera. Faces may then be segmented out of the images
using a variety of techniques [1], features of various kinds
measured from them [2], and classification performed with
a variety of classifiers [3, 4, 5]. The focus of research has
primarily been on improved segmentation of faces out of
the images, improved features and improved classifiers, re-
taining the assumption about the visual nature of the basic
measurements captured by the sensor, i.e. the camera.

This paper proposes to use an entirely different sensing
paradigm for the recognition of faces: an acoustic Doppler
sonar (ADS). We incident ultrasonic sound waves on the

subject’s faces and capture the reflected signals. The en-
ergy patterns and the Doppler frequency shifts in the re-
flected signal are characteristic of the subject, particularly
when they are talking, and are used to identify the sub-
ject. Since the Doppler frequency shifts resulting from fa-
cial movements related to talking are key, the approach is
geared primarily towards recognition of talking faces.

Ultrasound measurements have commonly been used for
imaging, particularly as a diagnostic tool (although we are
not aware of any prior work on the use of ultrasound imag-
ing for facial recognition). They have, however, been used
chiefly as imaging tools (as noted above) that scan the target
to recreate images of the target from the energy and spec-
tral patterns of the reflected signal; further processing if any
is performed on the inferred images. The final representa-
tion derived is thus still visual. In our work however, the
sensor is static and performs no scan; we do not attempt to
infer an image of the target. Instead, it is our contention
that the information relating to the target is encoded in the
reflected signal itself and it can hence be processed directly
for classification, without resorting to an intermediate visual
representation.

ADS sensors have also previously been shown to be
useful sources of primary or secondary measurements for
voice-activity detection [6], gait [7], and even speaker iden-
tification [8] (where Doppler measurements were used to
augment the information in a speaker’s voice); however this
paper, to the best of our knowledge, is the first reported use
of Doppler sonars as primary sources of information for rec-
ognizing faces.

Our ADS sensor is an inexpensive device that consists of
a low-frequency ultrasound emitter and an acoustic trans-
ducer that is tuned to the transmitted frequency. An ultra-
sound tone output by the emitter is reflected from the sub-
ject’s face and undergoes a Doppler frequency shift that is
proportional to normal velocity of the portion of the face
that it is reflected by. The reflected “Doppler” signal thus
contains an spectrum of frequencies that represent the mo-
tion of the subject’s facial features such as the cheeks, lips,
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tongue, etc. The pattern of movements of facial muscles
while speaking is typical of the subject. By characterizing
the velocities of these movements, the Doppler signal thus
represents a signature that is quite specific to the person.
Although the energy is the reflected signal also contains in-
formation about the physiognomy of the speaker’s face, en-
ergy variations in the reflected signal due to modulation by
the subject’s physiognomy are indistinguishable from those
arising simply from changing the distance of the subject to
the sensor. However, the temporal variations in the reflected
energy remains characteristic of the subject as it represents
the typical movements of the subject’s head.

It must be pointed out that the type of information cap-
tured by the Doppler sensor is fundamentally different from
that captured by a camera. The camera primarily captures
static images. Movements, such as those of a talking face
are captured chiefly as the difference is subsequent snap-
shots in a series of images such as in a video. The signal
captures by the Doppler sensor on the other hand actually
represents a characterization of the dynamics of the face,
and it may in fact not be possible to compute a static image
of the face from it.

In our work the signals captured by the sensor are pa-
rameterized through a simple feature computation scheme
and classification is performed using a very simple Gaus-
sian classifier. Nevertheless, using only these very simple
mechanisms we are able to achieve accuracies exceeding
90% in recognizing faces from our collection. As we argue
in the concluding section of the paper, we have reason to
believe that this performance could be improved further by
better characterization of the signal and better modelling of
distributions. Furthermore, we believe that as complimen-
tary sources of information, cameras and Doppler sensors
may, in fact, be used together to achieve better classifica-
tion than either of them could get by themselves.

In Section 2 we briefly present some background on fa-
cial movement as a cue to a person’s identity. In Section
3 we describe the basic hardware setup of the ADS. Our
setup, built with off-the shelf components, costs only a few
dollars (US); if replicated on a large scale it can be made far
cheaper. In Section 4 we briefly discuss the Doppler princi-
ple that accounts for the information in the measurements.
In Section 5 we describe the signal processing we employ to
extract features from the Doppler signal for classification.

In Section 6 we describe the classification mechanism
that we employ to recognize faces using the Doppler sig-
nal. We use a simple Bayesian mechanism within which
we combine the likelihoods of features derived from the
Doppler signal for this purpose. We describe experiments
in Section 7 which demonstrate the effectiveness of our
method. Finally in Section 8 we present our conclusions.

Figure 1. Left panel: Procedure proposed by Chao et. al. [12]
to compute facial motion flow from a sequence of images. Right
panel: An example of facial flow measurements from Chao et.
al. [12]. Flow measurements such as these, that have been ob-
tained from video, have previously been successfully used to clas-
sify talking faces.

2. FACIAL MOTION AND IDENTITY

A person’s face is the primary cue to their identity – in
fact it is believed that humans may have evolved specialized
abilities to recognize faces. Moreover, and key to this paper,
there is considerable evidence obtained both from studies
of human subjects and inference from computer algorithms
that the movements of a person’s face, including facial ges-
tures and the motion of facial structures that occurs while
speaking also carry significant information about the iden-
tity of the person. A well-known study by Berry [9] demon-
strated that both children and adults are able to identify the
gender of a speaker through visualization of point-light dis-
plays of their faces as they conversed, clearly suggesting
that information about the speaker’s gender, at least, was
present in their patterns of facial motion. Similarly, Knapp-
meyer, Thornton and Buelthoff [10] argue using another
study that combines computer animation with psychophysi-
cal methods that facial movement carries information about
a variety of characteristics of the subject such as their age,
gender, emotion and identity.

Needless to say, talking faces produce speech sounds.
It may be argued that the identity of the speaker lies pri-
marily in this speech signal, and that the facial movement
is only a secondary phenomenon that accompanies it and
only presents an alternative characterization of information
that is already present in the speech signal itself. Munhall
and Buchan [11] provide contradicting evidence through a
study where they show that even when the facial movements
of the images in a video of talking faces corresponded to
a different utterance than the one played out in the audio
channel, the combination of video and sound results in im-
proved identification of the talker, demonstrating that the
facial movement has distinct cues about the identity of the
talker that are independent of the accompanying audio.

Other evidence about the cues to speaker identity in
patterns of facial motion is derived through interpretation
of results obtained computationally by various researchers.
Some of this evidence is rather direct: Chao, Liao and Lin
[12] show that features characterizing facial movement de-



rived from a video are very effective for identifying the
talker. Other evidence is indirect: audio-visual speaker
recognition algorithms attempt to identify speakers using
a combination of the audio signals and the accompanying
video [13]. Several of these methods augment static mea-
surements from video with motion features that are com-
puted through difference operations on adjacent frames, as
this is observed to result in improved speaker recognition.
The motion features in these methods effectively capture
patterns of facial motion.

The work reported in this paper is based on the premise
drawn from all the above that facial movement carries in-
formation about the identity of the talker. However, unlike
prior work that characterizes such motion through differ-
ences in features derived from video snapshots, we charac-
terize it directly in terms of the patterns of velocity of fa-
cial structures, as we explain in Section . One of the draw-
backs of our approach is that our sensor integrates informa-
tion from different facial components that all move with the
same velocity. This results in a loss of resolution; neverthe-
less our results show that the approach is promising.

3. THE ACOUSTIC DOPPLER SENSOR

(a) The Doppler sensor used
in our experiments. An ul-
trasonic emitter and a corre-
sponding receiver were taped
on either side of a long-
barreled microphone. Signals
from the receiver were cap-
tured by a high-end A/D con-
verter and sampled at 96kHz.

(b) A newer version of the
ADC. Captured ultrasonic
signals are heterodyned down
by 36kHz on the device itself
and can be recorded through
the microphone jack of a PC
at 16k samples per second.

Figure 2. Doppler devices

Figure 2(a) shows our acoustic Doppler sonar setup for
recognizing talking faces. It has two main components. The
tiny pillbox-shaped object to the left is an ultra-sound emit-
ter that emits a 40 kHz tone. The pillbox to the right is
an ultra-sound receiver that is tuned to capture signals in a
narrow band of frequencies centered at 40 kHz. The barrel-
shaped device in the center is a high-quality microphone
that we have also included in our setup to capture the speech
uttered by the speaker; however we do not use this signal in
any manner for the work reported in this paper and we shall
not refer to it hereafter.

The sensor is arranged to point directly at subject’s faces.
Both the emitter and receiver in our setup have a diameter
that is approximately equal to the wavelength of the emitted

40kHz tone, and thus have a beamwidth of about 60o, mak-
ing them quite directional. Signals emitted by the 40Khz
transmitter are reflected by the subject’s face and captured
by the receiver. It must be noted that the receiver also cap-
tures high-frequency harmonics from the actual speech be-
ing uttered and any background noise; however these are
significantly attenuated with respect to the level of the re-
flected Doppler signal in most standard operating condi-
tions and can be safely ignored. The cost of the entire setup
shown in the Figure (not including the microphone) is min-
imal: the high-frequency transmitter and receiver both cost
less than $10 when bought singly and much lesser if bought
in bulk. The signal captured by the receiver is digitized prior
to further processing. Since the high-frequency transducer
is highly tuned and has a bandwidth of only about 4Khz,
the principle of band-pass sampling may be applied, and the
signal need not be sampled at more than 12Khz (although in
our experiments we have sampled the signal at 96Khz and
down-shifted the frequencies in the signal algorithmically).

4. DOPPLER EFFECT ON SIGNALS RE-
FLECTED BY A TALKING FACE

The Doppler sonar operates on the Doppler’s effect,
whereby the frequency perceived by a listener who is in
motion relative to the signal emitter is different from that
emitted by the source. In particular if the source emits a
frequency f that is reflected towards a receiver by an object
moving with velocity v with respect to the receiver, then a
reflected signal sensed at the receiver f̂ is given by

f̂ =
vs + v

vs − v
f (1)

were vs is the velocity of the sound in the medium. When
the receiver is collocated with the transmitter, as it is for our
ADS, f in the above equation also refers to the velocity of
the object with respect to the transmitter. If the signal is
reflected by multiple objects moving at different velocities
then multiple frequencies will be sensed at the receiver.

The human face is an articulated object with multi-
ple components capable of moving at different velocities.
When a person speaks all components of the face including
but not limited to the lips, tongue, jaw cheeks etc. move
with velocities that depend on facial construction and are
typical of the talker. The ultrasonic signal reflected off the
face of a subject has multiple frequencies each associated
with one of the moving components. This reflected signal
can be mathematically modeled as

d(t) =
N∑

i=1

ai(t)cos(2πfi(t) + φi) + Ψperson (2)

where fi is the frequency of the reflected signal from the
ith moving component, which is dependent on its velocity



vi. fc is the transmitted ultrasonic frequency. ai(t) is a
time-varying reflection coefficient that is related to the dis-
tance of the ith facial component from the sensor. φi is an
component-specific phase correction term. The term within
the summation in Equation 2 thus represents the sum of a
number of frequency modulated signals, where the modu-
lating signals fi(t) are the velocity functions of all moving
parts of the face . We do not, however, attempt to resolve the
individual velocity functions via demodulation. The quan-
tity Ψperson is a person-specific term that accounts for the
baseline reflection from the talker’s face. It represents a
crude zeroth order characterization of the bumps and val-
leys in the face and is not related to motion. Figure 3 shows
a typical Doppler signal captured by the receiver on our
Doppler sensor. The overall characteristics of this signal
may be assumed to be typical of the talker.

5. SIGNAL PROCESSING

The received “Doppler signal” is initially sampled at 96
kHz. The ultrasonic sensor is highly frequency selective
with a 3 dB bandwidth of only about 4 kHz; at 40 kHz ± 4
kHz the signal is attenuated by more than 12 dB. Moreover,
the frequencies in the received signal rarely wander outside
of this range (since facial features do not move fast enough).
It can hence be safely assumed that the effective bandwidth
of the Doppler signal is less than 8kHz. We therefore het-
erodyne the signal from the Doppler channel down by 36
kHz so that the signal is now centered at 4 kHz and resam-
ple it to 16 kHz. While we currently perform the hetero-
dyning and resampling digitally, in a more recent version
of our device (shown in Figure 2(b)), the analog Doppler
signal is heterodyned down to have a center frequency of 4
kHz onboard, and the signal from it only need be sampled
at 16 kHz, with no further resampling required.

The frequency characteristics of the Doppler signal vary
slowly, since the articulators that modulate its frequency are
relatively slow-moving. To capture the frequency charac-
teristics of the Doppler signal we segment it into relatively
long analysis frames of 40 ms. Adjacent frames overlap by
75%, such that 100 such frames are obtained every second.
Each frame is Hamming windowed, a 1024-point Fourier
transform computed from it, and the power in all the unique
spectral terms in the resulting transform computed, to ob-
tain a 513-point power spectral vector. The power spectrum
is logarithmically compressed and a Discrete Cosine Trans-
form (DCT) is applied to it. The first 40 DCT coefficents are
retained to obtain a 40-dimensional cepstral vector. Each
cepstral vector is then augmented by a difference vector as
follows:

∆Cd[n] = Cd[n+ 2]− Cd[n− 2]
cd[n] = [Cd[n]T ∆Cd[n]T ]T (3)

where Cd[n] represents the cepstral vector of the nth anal-
ysis frame, ∆Cd[n] is the corresponding difference vector
and cd[n] is the augmented 80-dimensional cepstral vector.
The dimensions of the feature vector are reduced to 20 using
PCA. The 20-dimensional vectors are finally used for clas-
sification. We note here that the entire processing is very
similar to that used to process audio signals for classifica-
tion and is computational complexity is very low.

Figure 3 doppler signal acquired by the ultrasonic re-
ceiver.

Figure 3. Doppler signal, spectrogram, and features from a talking
face.

6. CLASSIFIER
We use a simple Bayesian formulation for recognizing

talking faces. For each subject, we learn a separate distri-
bution for the feature vectors from of the Doppler features
computed from a set of training recordings. For the pur-
pose of modelling these distributions, we assume that the
sequence of feature vectors from any channel to be IID.
Specifically, we assume that the distribution of the Doppler
feature vectors for any subject w is a Gaussian mixture of
the form:

P (d|w) =
∑

i

cw,iN (d;µw,i, Rw,i) (4)

where d represents a random feature vector derived from
the Doppler signal. N (X;µ,R) represents the value of a
multivariate Gaussian with mean µ and covariance R at a
pointX . µw,i, Rw,i and cw,i represent the mean, covariance
matrix and mixture weight respectively of the ith Gaussian
in the distribution of Doppler feature vectors for subject w.
All parameters of the distribution for any subject are learned
from a small amount of training Doppler recordings from
that subject.

Classification is performed using a simple Bayesian clas-
sifier. Let {D} represent the set of all doppler feature vec-
tors obtained from any test recording. The recording is rec-
ognized as having come from a subject ŵ according to the
rule:



ŵ = argmax
w

P (w)
∏
d∈D

P (d|w) (5)

where P (w) represents the a priori probability of the sub-
ject w. We assume the a priori probability to be uniform for
all the subjects.

7. EXPERIMENTS
Experiments were conducted to evaluate the effective-

ness of the ultrasonic Doppler sensing as a mechanism for
recognition of talking faces. All experiments were con-
ducted on a corpus of Doppler recordings collected at Mit-
subishi Electric Research Labs. A total of 50 subjects were
made to record 75 sentences each from the TIMIT corpus.
Each sentence was treated as a separate recording; we thus
has 75 recordings per subject. The subjects included people
of both gender, including men with facial hair.

Figure 4. Experimental setup: Subjects spoke facing the Doppler
sensor. Subjects typically sat a distance of 0.75m from the sensor.

For the recording, subjects were seated in a sound-
proofed room (since the audio data from the spoken utter-
ances were also collected) facing the Doppler-augmented
microphone setup of Figure 2. Before the experiments they
were given a small demonstration on how to use the record-
ing setup (i.e. how to use the keyboard/mouse to operate
the recording setup). They were then instructed to read sen-
tences which were displayed on a screen adjacent to the mi-
crophone naturally, without attempting to restrict the mo-
tion of their faces and heads in any manner. They were also
instructed not to make any unnatural movements (i.e. ma-
licious motions) in front of the setup, or to block their face
in any manner during recording. No additional instructions
were given. Subjects were not interrupted once recording
began, nor were their actions corrected or modified during
the recordings. All data from a subject were recorded in a
single session, although they were allowed to take breaks.

The recorded data for each speaker were divided into two
sets, a training set of 37 utterances and a test set of 38 utter-
ances. Gaussian mixture densities with different numbers of
Gaussians per density were trained for each subject. Table
1 shows the results obtained.

Table 1. Talker classification accuracy vs. number of Gaussians in
the GMMs

# Gaussians 4 10 20 40 50
% Accuracy 81 85 87 90 90

Table 2. Percent accuracy in classifying the gender of the talker.
Rows represent the test data, columns the ground truth. The
overall accuracy is 91.25%.

% Male Female
Male 82.5 17.5
Female 0 100

We note that using GMMs composed of 40 or more
Gaussians we are able to achieve an accuracy of over 90%
in recognizing faces.

The facial structures of male and female humans is
known to be different. It may hence be inferred that the
patterns of facial motion in both genders is also different.
This hypothesis is also corroborated by Berry [9]. To test
this hypothesis we ran an alternate experiment, where we
attempted to identify only the gender of the speaker. For
this experiment we separated the set of male and female
subjects into a training and a test set, retaining only a to-
tal 360 recordings each from males and females in our test
set. The training set for each gender was also trimmed to
360 recordings to maintain balance. A separate GMM was
trained for each gender, and the 720 test recordings were
classified with these GMMs. Table 2 reports these results.

We note from the table that we are able to identify the
gender of the speaker with an accuracy of over 91%. The
results indicate that speech-related facial movements have
statistically different patterns for male and female subjects.
This relation of facial motion to gender has hithertofore not
been quantified or studied to the best of our knowledge. In-
terestingly, males are far more likely to be misrecognized as
female than the other way around.

8. CONCLUSION AND DISUCSSION
Our experiments indicate that talking-related facial

movements are indeed unique and may be used to recog-
nize faces. Importantly, the manner in which our measure-
ments are taken make them fundamentally different from
video, and the two may in fact be used together for further
improved recognition. The results may also be interpreted
as computational corroboration of human studies that show
that facial movements may be distinctive cues for determin-
ing the gender and identity of subjects. Our approach for
signal characterization and classification is not optimal ei-
ther. We do not actually attempt to characterize the tem-
poral nature of the data in any manner. The features de-
rived from the signal are also very simplistic and make no



attempt to distinguish between different facial features that
move with the same instantaneous velocity at a given in-
stant (it may be possible to resolve these to some extent by
analysis of modulation patterns of the energy in different
frequency bands). We also believe that better classification
may be achieved through the use of discriminative classi-
fiers. These and other avenues remain to be explored.

Even the current set of experiments may, at best, be con-
sidered to demonstrate promise in the proposed approach.
The data we have gathered are not actually representative
of realistic patterns of facial motion that may be obtained in
spontaneous talking. Rather, they only characterize the type
of movements during more controlled reading. In order to
obtain a more realistic measurement of the effectiveness of
the proposed system, we may need to collect data from sub-
jects talking in more conversational scenarios. Since such
situations typically do not permit mounting of Doppler sen-
sors in locations from which reliable measurements may be
made, collection of such data is a difficult task.

In all of our recordings talkers faced the Doppler sensor.
In more realistic scenarios, we may not have such control
over the direction of the talker’s face. In such situations we
may need to use multiple, or arrays of receivers to capture
the reflected signal, in order to achieve a more complete,
multi-directional characterization of the talker’s face. We
are currently addressing these issues.
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