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Abstract: A game theoretic framework is developed in
this paper to facilitate inter-cell interference management
through cognitive sensing distributively performed by mo-
bile stations (MSs). Using stochastic geometry, we reveal
the relationship between the effectiveness of interference
management and MS’s “willingness” to perform cogni-
tive sensing. Such cognitive sensing performed by MS
is motivated by the associated beneficial results as well
as by the rewards from base station(BS) that encourage
sensing. Different tradeoffs for BS and MSs exist in their
interactions, which are modeled as a Stackelberg game
in this paper. While both BS and MS seek to manage
interference at its own minimum cost, we design algorithm
to achieve Nash Equilibrium in such a game and investigate
the optimal strategies taken by the players (BS and MSs).

I. INTRODUCTION

The “shortage” in available spectrum resource has accompa-
nied the expanding need for the broadband wireless access in
the past decade. Spectral efficient transmission schemes are
therefore vital in designing future communication systems.
In this regard, the Orthogonal Frequency Division Multiple
Access (OFDMA) has gained widespread popularity as a
promising technology in physical layer design for wireless sys-
tems, due to its high spectrum efficiency. It has been adopted
in several future broadband systems such as WiMAX [1][2]
and 3GPP-LTE [3][4]. For systems built upon OFDMA, intra-
cell interference can be minimized as long as orthogonality
among subcarriers is maintained. The management of inter-
cell co-channel interference (i.e., collision of same subcarriers
used in different cells), however, is yet to be properly ad-
dressed, especially when full spectrum reuse is implemented,
the suppression of inter-cell interference is becoming more
important in system design, to provide reliable services to the
users, especially those located at cell boundary.

Most schemes recently developed to reduce inter-cell inter-
ference in OFDMA systems (such as WiMAX and 3GPP-LTE)
stem from the channel assignments in conventional cellular
systems [10], and are usually base-station-centric [5]∼[8].
These schemes typically require careful spectrum planning
among different cells. For example, in soft frequency reuse
[5], the spectrum is divided into multiple chunks, which are
then allocated to mobile stations (MSs) located at the center
and edge of the cell, respectively. The base stations (BSs) of
adjacent cells coordinate beforehand to ensure that the “edge
spectrum chunks” of adjacent cells differ. In partial frequency
reuse [6][7], frequency reuse factor is set to be 1 for cell center
MSs and 3 for cell edge MSs, which inevitably necessitates

strict frequency planning. Those spectrum planning based ap-
proaches aforementioned usually requires a super centralized
control above different BSs, which is even more difficult to
implement when the BSs belong to different wireless operators
and are independent of each other.

In this paper, we develop a MS-centric scheme for inter-
cell interference management, through the means of cogni-
tive sensing [12] performed by MSs. The scheme is built
upon OFDMA downlink, but the methodologies developed
herein apply to general multi-cell systems as well. In this
scheme, distributive MSs sense their surrounding wireless
environments and collect subcarrier usage information from
the potential interferers (e.g., MSs in adjacent cells). When
the subcarrier usage is quasi-static, the collected information
will be valid for a period of time into the future, and can be
compiled to reduce potential future interferences. While the
task of cognitive sensing itself can be power-consuming for
the MSs, the benefits are two-folded: Firstly, BS can provide
certain amount of “reward” to encourage cognitive sensing;
secondly, the information collected from cognitive sensing can
eventually reduce interference to the MSs themselves. From
the perspective of the BS, tradeoffs exist as well: while in-
formation collected from cognitive sensing will reduce power
wasted in subcarrier collision, BS should decide whether such
benefit justified the additional “rewards” given out. The inter-
actions between BS and MSs are modeled in a game theoretic
framework, particularly, as a Stackelberg game [11]. Both BS
and MS are assumed to be independent entities in this game,
in regard of decision making that involves cognitive sensing.
Specifically, BS cannot enforce the task of cognitive sensing
onto the battery-operated MSs. Instead, both parties decide on
their optimal strategy by “rational thinking”. The impact of the
“extent” of cognitive sensing is first discussed using stochastic
geometry [13], especially how it could affect the effectiveness
of the interference management. The tradeoffs for BS and MS
in the game are identified and used for proper modeling of
the utility functions. The Nash Equilibrium of such game is
derived and we also analyze the algorithm to achieve the Nash
Equilibrium.

Immediately following this introduction, we describe the
cognitive sensing model in Section II. The formulation of the
game theoretic framework using Stackelberg game is discussed
and analyzed in Section III and we conclude this paper in
Section IV.

II. SYSTEM DESCRIPTION

We consider in this paper an OFDMA-based two-cell system
with full spectrum reuse. The spectrum is divided into S
orthogonal subcarriers that form the set S. Traffic load in cell i

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

978-1-4244-2075-9/08/$25.00 ©2008 IEEE



is βi ∈ [0, 1]. The MSs in both cells are uniformly distributed
according to a two-dimensional Possion point process [13],
MSs within a cell are assumed to have the same statistical
average on the number of subcarriers usage. Therefore, the
distribution of subcarrier usage in a cell is also geographically
uniform. Each of the two BSs covers a circular cell with radius
R and the two cells overlap αR in radius. We assume that
interference occurs only in the overlapping area to which we
refer it as the interference zone (IZ). The MSs from cell i that
are located in the IZ form the set Ii and the MSs in the IZ from
cell j form the set Ij . For simplicity, we further assume that
the MSs in Ii are only subject to interference from downlink
transmission to MSs in Ij , vice versa1.

When BSs coordinate with each other, interference manage-
ment can be collectively carried out by both BSs. Examples
of such schemes can be found in [5]∼[9]. Especially, a game
theoretic study is provided in [9] to model interactions between
adjacent BSs in interference management based on partial
information exchange. In this paper, we assume that adjacent
BSs are independent and therefore do not coordinate with
each other. In addition, MSs registered with one BS cannot
directly inform its subcarrier usage to another BS. We further
assume that only entities in cell i (including BS i and MSs
in Ii) engage in unilateral efforts to suppress co-channel
subcarrier collisions. In this case, BS i can gather information
on interferers (i.e., downlink transmissions to MSs in Ij)
through the cognitive sensing performed distributively by MSs
in Ii. Such cognitive sensing begins with a probing/sensing
signal sent out from a MS � ∈ Ii, which covers a circular
sensing region A� of radius r�. If a MS in Ij receives this
probing signal, it will respond2 and report its presence to � as
well as the subcarriers it is currently using, if any.

Fig. 1: Cognitive sensing in two-cell model
The distributive cognitive sensing by MSs in Ii is illustrated

by Fig. 1. Assume there are Ni MSs in cell i (For the sake of
clarity, only MSs in the IZ are shown in Fig. 1) and MSs in
both cells are uniformly distributed. The distribution of MSs
in cell i can then be described by a two-dimensional Poisson

1Note that such assumption and simplification is taken here only for
analytical and notational convenience. In general, when the MSs are not
uniformly distributed, or when some MSs outside the overlapping area are
subject to co-channel interference as well, the methodologies proposed herein
still apply. The only difference lies in the definition of the interference zone,
the set of Ii will differ as well and may lack an readily intuitive interpretation.

2In practice, it is not compulsory for a MS  ∈ Ij to respond upon receiving
the probing signal from �. However, since subcarrier collision is mutual and
is equally detrimental to both MSs involved,  has the incentive to respond
to probing request from �, since the response will eventually contribute to
avoiding co-channel subcarrier collision (and is therefore beneficial to  as
well). In this paper, we focus on the interaction between BS i and MSs in
Ii and assume spontaneous response from  ∈ Ij . The interactions between
MSs � and  can be modeled as a game-theoretic problem in its own right,
but does not fall within the scope of discussions in this paper.

point process with density λi = Ni

πR2 . In such Poisson point
process, if we let NA be the number of MSs from Ii in a
region A (A ⊂ IZ), we have [13]:

P (NA = k) =
(λi‖A‖)ke−λi‖A‖

k!
, (1)

The distribution of MSs in cell j can be described similarly.
To collect subcarrier usage information in Ij , each MS � ∈ Ii

senses a an circular area of radius r� (denoted by the small
circles shown in Fig. 1) and collects information on the
existence and subcarrier usage of any MSs from Ij located
within the circular sensing area.

Since the distribution of MSs and subcarrier usage in cell j
is geographically uniform, the completeness of the information
collected on the subcarrier usage in Ij depends on the fraction
of total area in the IZ jointly covered by MSs in Ii. Let
pµ ∈ [0, 1] describe such completeness, i.e., when pµ = 1,
all subcarrier usage information in Ij is completely collected.
We can have

E[pµ] = ΥA =

∥∥∥∥∥∥∥
 all �∈Ii︷ ︸︸ ︷

A1 ∪ A2 · · · ∪ A� · · ·

⋂AIZ

∥∥∥∥∥∥∥
‖AIZ‖ , (2)

in which ΥA is the fraction of area in the IZ covered by cog-
nitive sensing; the expectation E[·] is taken over the uniform
distribution of subcarrier usage in Ij ; A� is the sensing region
covered by MS � ∈ Ii and AIZ denotes the region of IZ.
A. Impact of Sensing Radius

In the general Boolean sensing model [13] where the
distribution of sensors is governed by a Poisson point process,
when sensors with sensing range r are deployed over a large
plane with density λ (i.e., there are on average λ sensors
per unit area), a point is said to be “covered” if it falls
within the sensing range of any sensor. As the plane enlarges
(‖A‖ → ∞), the probability that an arbitrary point on the
plane is not “covered” can be computed from (1) as [13]:

PUC = lim
‖A‖→∞

E

[(
1 − πr2

‖A‖
)NA

]

� exp

{
− πr2

‖A‖E[NA]

}
(3)

= exp

{
− πr2

‖A‖ (λ‖A‖)
}

= e−λπr2
.

In our model, although MSs in Ii are distributed over
(finite) IZ instead of infinite plane, (2) can still be used as
a suitable approximation (its validity is verified later in this
paper). To study the interaction between a BS and its MSs,
we assume that all MSs in Ii choose the same sensing radius,
i.e., r� = r, ∀� ∈ Ii. Such assumption allows us to investigate
the behaviors of MSs as an integrated whole and model the
multiple games played by a BS and different MSs as a single
two player game (BS v.s. MSs). In examining the impact of
the sensing radius r chosen by a MS in Ii, we define here the
critical radius r̂, such that

|Ii| · πr̂2 = ‖AIZ‖ = f(α)πR2, (4)

in which f(α) = 2
π ·
[
arccos(1 − α

2 ) − (1 − α
2 )
√

(4α − α2)
]

is the fraction of the IZ area w.r.t. whole cell area. Therefore,

r̂ = R

√
f(α)
|Ii| =

R√
Ni

. (5)
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The critical radius r̂ provides a theoretical lower bound on
what radius should be chosen to cover the whole IZ without
overlapping. However, we should note that given the relative
irregularity between the circular shape of sensing region and
the shape of IZ, it is impossible to cover IZ with exactly
|Ii| circles of radius r̂. However, r̂ still serves a meaningful
comparison base-line and can mask other system parameters
from our analysis. Specifically, we can write the actual sensing
radius as r = εr̂, where ε∈ R+ is called the critical ratio.
When ε∈[0, 1], it describes the relative “inadequacy” of actual
sensing radius, since the ideal lower bound is not yet met.
On the other hand, when ε∈(1,+∞), it describes a MS’s
willingness to intentionally provide relative “redundancy” in
its sensing range, thereby increases the fraction of area in the
IZ covered by its cognitive sensing. This way, more complete
information on the subcarrier usage in Ij can be collected to
facilitate more effective interference management at BS i.

With the definition of ε and r̂, we can approximate 1−E[pµ],
the expected probability that an active subcarrier usage in Ij

is not detected (i.e., the probability that the presence of a MS
 ∈ Ij in Fig. 1 is not detected) from (3):

1 − E[pµ] � PUC = e−λiπr2

= exp

{
− Ni

πR2
· π
(

R√
Ni

ε

)2
}

= e−ε2 . (6)

The accuracy of such approximation is evaluated in Fig. 2,
in which the actual fraction of uncovered subcarrier usage
is compared with the theoretical approximation in (6), when
Ni = 64 and Ni = 256. We can see that the probability that
any arbitrary subcarrier usage is not “covered” approaches 0
fast at an “exponentially-squared” rate. The simulation result
matches the theoretical approximation quite well. In addition,
we notice that as Ni increases, theoretical approximation better
matches simulation results. This roots from the fact that (3) is
derived in infinite plane, which is not exactly true in our model.
However, when ε is fixed, as Ni increase and r̂ decreases, IZ
can be viewed as an “infinite” plane since limNi→∞ r̂ → 0.
In this case, the sensing area covered by MSs but outside
AIZ (and is thus ignored in our model) approaches zero, i.e.,
(A1 ∪ A2 · · · ∪ A� · · · )C ⋂

AIZ → ∅.
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Fig. 2: Fraction of undetected subcarrier usage in Ii, i.e., 1−E[pu],
as a function of the critical ratio ε.

III. STACKELBERG GAME BETWEEN BS AND MSS

A. Reward from BS to Cognitive MS

The task of cognitive sensing can be power-consuming for
battery-operated MSs. Thus, to enable collection of subcarrier

usage in Ij , we assume that the BS will provide a power
reward3 PR(r) = Rrr

ρ to a MS who performs cognitive
sensing within a radius of r. Rr ∈ R+ is termed here the
power reward factor, which describes how “generous” BS is
in rewarding MS. ρ is the pathloss exponent that usually takes
value from 2 ∼ 5 and describes how power-consuming it is
for an MS to perform cognitive sensing. Apparently, larger
power rewards should be given when sensing is performed
under adverse lossy wireless environment (e.g., ρ = 5) than
in LoS environments (e.g., ρ = 2). Let P0 be the downlink
transmission power allocated to a MS without cognitive sens-
ing, the reward mechanism described above means that the BS
will allocate power P0+Rrr

ρ to a MS that performs cognitive
sensing within a radius of r.

B. Tradeoffs for BS and MS
The reason that BS promises power rewards to MSs that

perform cognitive sensing is that information collected through
the sensing can be used to reduce the power wasted in
downlink transmission due to subcarrier collisions. Here we
assume when the same subcarrier is allocated to different MSs
co-located in the IZ (BS i to a MS � ∈ Ii and BS j to another
MS  ∈ Ij), the collision results in total waste in transmission
power on this subcarrier. In addition, when perfectly accurate
information on the subcarrier usage in Ij can be obtained,
we assume all collisions can be avoided4. That is, subcarrier
collision occurs only due to incompleteness in the knowledge
of subcarrier usage in Ij . In this case, the net power saving
for the BS (from rewarding cognitive sensing) can be given as

Ps
BS = βjf(α)P0 − βjf(α)e−ε2 [P0 + Rr(εr̂)ρ] . (7)

For the MS, the drawback of sensing is the power consump-
tion associated with it, which increases with r and can be
modeled as PS(r) = C1r

ρ, where C1 is the power consumed
in sensing within a unit-radius circular area. On the other hand,
benefits of sensing are two-folded:

• Firstly, the power reward by BS is beneficial to the MS
and can (at least partially) compensate for the battery-
power consumed by MS to perform sensing.

• Secondly, the information collected can be compiled at
BS and used to reduce subcarrier collision for MS.

To model the benefit from BS’s reward, we let δe ∈ R+ be
the “exchange rate” from the saving in battery power to the
increase in downlink transmission power. That is, MS views
PR from BS equivalently as saving in its own battery power, in
the amount of Rrr

ρ

δe
. In other words, a rational MS is willing to

consume Rrr
ρ

δe
units of power in cognitive sensing in exchange

for power reward of Rrr
ρ from the BS. When δe > 1, the MS

values its own battery power over the increment in downlink
power allocated to it, and vice versa. On the other hand, a MS
also disfavors wasting its power in receiving undecodable (due
to collision) downlink transmission. In this regard, let C′

2 be
the power wasted in receiving a collided (thus undecodable)

3Note that different functional forms of PR(r) can be chosen other than
the one provided here, with the general principal that ∂PR(r)

∂r
> 0.

4Such assumption is valid when BS i has enough flexibility in avoiding
subcarrier collision if perfect information is available. It is taken here to
facilitate investigating the impact of “completeness” in information collecting.
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subcarrier and C2 = C′
2βjf(α). Then the expected amount of

wasted power can be given as PW = C2e−ε2 .
With all the tradeoffs, the equivalent net power saving for

an MS in performing cognitive sensing within radius r is:

Ps
MS = C2

(
1 − e−ε2

)
+
(

Rr

δe
− C1

)
· (εr̂)ρ. (8)

C. Strategy Spaces and Utility Functions

Different system parameters are involved in (7) and (8) to
describe the payoffs of BS and MS. To model the interactions
between a BS and a MS as a strategic game, the strategy spaces
for the two players (i.e., what parameters are at the liberty of
each player and what are not) should be first identified. In the
system described above, C1 is the power required to sense a
circular region of unit radius, C2 is the the amount of power
wasted in receiving an undecodable (i.e., collided) subcarrier.
Both of them are determined by the hardware design of the
MS, and are not subject to variations after deployment. Clearly,
C2 = βjf(α)C′

2 cannot be altered by either MS or BS in cell
i. Also, as can be seen from (5), r̂ is determined by system
deployment and the pathloss exponent ρ is by definition a
subjective description of the MS’s wireless environment. These
parameters, therefore, cannot serve as decision variables. On
the other hand, although the parameters P0 and δe can each be
used to partially describe the preference of one player, neither
of them affects the payoffs of both players. Thus, they do not
capture the essential interactive nature of the decision making
process and are excluded here from the strategy spaces.

After close scrutiny of different parameters, the strategy
spaces of BS and MS can be given as {Rr : Rr ∈ R+}
and {ε : ε ∈ R+}, respectively. That is, BS decides on the
power reward factor Rr while MS decides on the critical ratio
ε (which eventually determines actual sensing radius). Each of
these two decision parameters affects payoffs of both BS and
MS. If we assume hereafter that ρ = 2, the utility functions
(which each rational player seeks to maximize) for the two
players can be given, from simplification of (7) and (8), as

UBS(ε, Rr) = P0 − e−ε2 · [P0 + Rr(εr̂)
2] (9)

and
UMS(ε, Rr) =

(
Rr

δe
− C1

)
(εr̂)2 − C2e

−ε2 . (10)

D. Stackelberg Game between BS and MS

We now model the interactive decision making between BS
and MS as a Stackelberg leader-follower game. Specifically,
we assume that BS is the “leader” that makes decision first,
by determining the value of Rr. MS is the “follower” that
chooses its optimal strategy on ε upon observation of Rr, thus
determines the sensing radius r = εr̂.

The algorithm for this Stackelberg game that obtains Nash
Equilibrium is given as Algorithm III.1. The game begins with
the decision from BS. However, since the utility of BS is
determined jointly by ε and Rr, rational decision making is
only possible with knowledge on what it will trigger from
the MS on ε. To this end, BS assumes rationality in MS and
predicts that MS will choose the response that maximizes MS’s
own utility. That is, BS assumes the “rational response” of MS,
which varies with Rr, will be ε̃(Rr), as shown by the statement

(i) in Algorithm III.1. BS then substitutes ε̃(Rr) into (10) and
transforms its utility function UBS(ε,Rr) into a single variable
function U∗

BS(Rr) (statement (ii)). Finally BS can determine
its own optimal strategy R∗

r ∈ R+ that maximizes U∗
BS(Rr)

(statement (iii)).
On the other hand, after MS observes the decision R∗

r from
BS, it can directly choose its optimal strategy (response) ε∗

which maximizes its own utility (statement (iv)). For rational
BS and MS, when all other system parameters (C1,C2, δe,
etc.) are available to both players, we would have ε∗=ε̃(R∗

r ).
From this process of decision making, we see that the outcome
(ε∗,R∗

r ) is the unique Nash Equilibrium of this game by
definition [11], since neither players can be better off by
deviating alone from such outcome.

Proposition 3.1: For the Stackelberg game modeled above,
the rational response function of a MS can be described as:

• If Rr ≥ δeC1 ≥ 0, each MS always performs cognitive
sensing with the maximal sensing radius, i.e., ε̃(Rr) →
+∞,∀Rr ∈ {X|X ≥ δeC1 ≥ 0}, unless restrained by
its sensing capacity in practice;

• If 0 < C2 < (C1 − Rr

δe
)r̂2, MS never performs

any cognitive sensing, i.e., ε = 0,∀Rr ∈ {X|X <
δe

(
C1 − C2

r̂2

)}⋂R+; and
• If 0 < (C1 − Rr

δe
)r̂2 < C2, MS will perform cognitive

sensing with a radius of r = ε̃(Rr)r̂, in which

ε̃(Rr) =

√
ln

C2

(C1 − Rr
δe

)r̂2
, (11)

Sketched Proof : We can show through straightforward
derivation that UMS(ε,Rr) will be monotonic (increasing and
decreasing, respectively) in the first two cases w.r.t. ε, therefore
the boundary maximals. When 0 < (C1 − Rr

δe
)r̂2 < C2,

ε̃ = arg max
ε∈R+

UMS(ε,Rr) = {ε :
∂UMS

∂ε
= 0}. (12)

By solving
∂{(C1−Rr

δe
)(r̂ε)2}

∂ε + ∂{C2e
−ε2}

∂ε = 0, we have ε̃1 =√
ln C2

(C1−Rr
δe

)r̂2 or ε̃2 = 0. It can be easily verified that ε̃2 = 0

is not a valid maximum of UMS. Therefore ε̃(Rr) = ε̃1 is the
rational response function for MS can take in this case.

The first case in Proposition 3.1 corresponds to the ideal
(and usually unrealistic) scenario in which the cost of sensing
can always be fully (or even over) compensated by the reward
from BS. The second case describes the scenario when sensing
cost is always too high to be justified. These two extreme cases
are trivial in our investigation and we will hereafter focus on
the last case where different choices of ε affect the profitability
of cognitive sensing. Substituting (11) into (10) yields
U∗

BS(Rr) = UBS(ε, Rr)|ε=ε̃(Rr) (13)

= P0 −
(C1 − Rr

δe
)r̂2

C2

[
P0 + r̂2Rr · ln C2

(C1 − Rr
δe

)r̂2

]
.

The maximization of U∗
BS(Rr) can be obtained by solving

∂U∗
BS

∂Rr
= 0, which is equivalent to solving

f1(·)r̂2 + P0

δe
=
(

C1 − Rr

δe

)
· f2(·) (14)

for Rr, in which f1(·) = Rr · ln [g(Rr)], f2(·) = ∂f1(·)
∂Rr

=
ln [g(Rr)] − Rrr̂

2

g(Rr)δe
and g(Rr) = C2

(C1−Rr
δe

)r̂2 . The derivation
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Algorithm III.1: STACKELBERG LEADER-FOLLOWER GAME BETWEEN BS AND MS (r̂,P0,C1,C2, δe, ρ)

comment: Implement Stackelberg leader-follower game with continuous strategy spaces.

initialization: The values of r̂, C1, C2 P0, and δe are determined.
for the leader (BS) :

do



ε̃(Rr) ← arg maxε∈R+ UMS(ε,Rr) = g1(Rr); (i)
comment: predicts MS’s rational response (ε̃(Rr) = g1(Rr)) to BS’s decision Rr.

U∗
BS(Rr) = UBS(Rr, ε)|ε=ε̃∗(Rr) = UBS (Rr, ε̃

∗(Rr)) ; (ii)
comment: BS models its utility as a single-variable function of Rr by substituting in the rational response of MS.

R∗
r ← arg maxRr∈R+ U∗

BS(Rr); (iii)
comment: BS determines its decision R∗

r that maximize its own utility.

for the follower (MS) :
do ε∗ ← arg maxε∈R+ UMS(ε,R∗

r ); (iv)
comment: MS makes decision upon observation of the decision R∗

r from BS.

output (utility pair {UBS(ε∗,R∗
r ),UMS(ε∗,R∗

r )}).

of a closed-form R∗
r from (14) is untractable with general

parameter settings. In addition, local optimal and global op-
timal should be carefully handled. Yet such evaluation can
be numerically implemented in practice. Especially when it is
performed at BS where computational capacity is abundant.
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Fig. 3: Example numerical procedures to obtain optimal R∗
r by

evaluating equation (13) under different P0.

We show in Fig. 3 an example to obtain R∗
r by nu-

merical evaluation, under the condition that 0 < (C1 −
Rr

δe
)r̂2 < C2. Specifically, we choose the parameters such

that C1 = C2 = 8, r̂ = δe = 1 and P0 varies from
1.0 to 4.0. Fig. 3 shows the function U∗

BS(Rr) assuming
rational response from MS, which is derived in (13). The
optimal strategy of BS can then be determined from Fig.
3 as R∗

r = [0.53, 0.82, 1.13, 1.47, 1.87, 2.35, 3.15] when P0

varies from 1.0 to 4.0 in increment of 0.5. This suggests that
in this specific system setting, the optimal reward factor R∗

r

increases monotonically with P0. It correlates positively with
the intuition since as the base transmission power P0 increases,
the cost of collision increases. In this case, BS will be willing
to provide more “generous” reward to encourage cognitive
sensing by MS, which eventually facilitates reducing subcar-
rier collisions. The relationship between the optimal decision
and other system parameters can be evaluated similarly by BS.

In contrast, the decision making process at MS is much
less computationally complex. In fact, upon observing the
decision (reward factor) from BS (i.e., Rr = R∗

r ), MS can
make its decision directly from the guidelines laid out in

Proposition 3.1. The imbalance in computational complexity in
the decision making process conforms with the general design
principles that allow computational complexity at the BS and
reduce it at the MS.

IV. CONCLUSIONS

We formulate a game-theoretic framework using Stackel-
berg game between BS and MS, to facilitate inter-cell inter-
ference management through the means of cognitive sensing
performed by MSs. Tradeoffs for the players (BS and MS) in
this game are investigated, which are used to properly model
their utility functions. The algorithm to implement such game
to achieve Nash Equilibrium is given and behaviors of players
in this game are derived and discussed.
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