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Abstract: We develop a game theoretic framework for
effective and adaptive inter-cell interference management
in the OFDMA-based WiMAX/3GPP-LTE systems. Such
approach requires no fixed spectrum planning beforehand
and does not affect the spectrum usage for users that are
not subject to inter-cell interference. Based on the handoff
mechanisms in WiMAX systems, we also examine means of
categorizing users who are, or are not, subject to potential
interference. Different optimization opportunities for BSs
are identified and analyzed. The interactions between BSs
are modeled by a Stackelberg game in which BSs can make
intelligent and rational decisions to reduce interference
with minimum optimization cost. The algorithm to attain
stable Nash Equilibrium is investigated and the behaviors
of BSs with different preferences in the game are examined.

I. INTRODUCTION

The ever-growing needs for broadband wireless access have
recently provoked the development of the new IEEE 802.16
standards [1][2]. This emerging family of IEEE standards, usu-
ally known by its industry consortium, WiMAX(Worldwide
Interoperability for Microwave Access), promises to support
high-rate wireless data services comparable to wire-line con-
nections. WiMAX systems adopt Orthogonal Frequency Divi-
sion Multiple Access (OFDMA) for serving multiple mobile
stations (MSs) [2]. In such systems, the intra-cell interference
can be minimized as long as orthogonality among subcarriers
is properly maintained, which is quite feasible with appropriate
scheduling in a connection-oriented system like WiMAX.
Suppression of inter-cell (co-channel) interference, however,
is more challenging, and is especially important to the MSs
located at the cell boundary, when full spectrum reuse is
implemented.

In recognition of its importance, different schemes have
been proposed to mitigate inter-cell interference in OFDMA-
based systems [4]-[7]. However, most of such schemes rely
strongly on careful system-wise frequency planning. For ex-
ample, in soft frequency reuse [3], the spectrum is divided
into multiple chunks and then allocated to MSs located at the
center and edge of the cell. The base stations (BSs) of adjacent
cells coordinate beforehand and agree on the allocations of
these frequency chunks, to ensure that the “edge spectrum
chunks” of adjacent cells differ. In partial frequency reuse
[4][5], frequency reuse factor is set to be 1 for cell center
MSs and 3 for cell edge MSs, which inevitably necessitates
strict frequency planning. Performances of those two different
schemes are compared in [6]. The spectrum-usage planning
aforementioned usually requires a super centralized control

above different BSs, which is even more difficult to imple-
ment when the BSs belong to different wireless operators. In
addition, planning before system deployment can suffer from
severe inefficiency when imbalances exist in the distribution
of the MSs (e.g., when most MSs are located at the cell edge).
Moreover, full spectrum reuse cannot be maintained in some
of these schemes (e.g., the partial frequency reuse). Various
other inter-cell interference management schemes for OFDMA
systems are being proposed as well, yet most of them stem
from the channel assignment schemes for conventional cellular
systems [8] and usually require system-wise planning as well.

In this paper, we propose an adaptive protocol to sup-
press inter-cell interference (a.k.a. subcarrier collisions). While
certain aspects of the protocol are designed specifically for
the WiMAX downlinks, the underlying methodology can be
applied to general broadband systems. The proposed protocol
requires no preset spectrum planning and does not require
users that are not subject to interference to coordinate their
spectrum usage with those who are. Different optimization
opportunities for interference suppression are identified and
analyzed. The interactions between BSs are modeled as a
Stackelberg leader-follower game in which rational BSs seek
to reduce interference with minimum cost. We also develop
the algorithm for implementing such game and analyze the
behaviors of BSs with different preferences. Immediately
following this introduction is a system description in Section
II. The Stackelberg game between BSs is presented in Section
III, which also includes the methodology for modeling BSs’
utility functions and the analysis of different game outcomes.
Finally, we conclude our discussion in Section IV.

II. SYSTEM DESCRIPTION

We consider in this paper the downlink interference man-
agement for a two-cell system (extension to multi-cell system
is straightforward, e.g., a multi-cell system can be modeled by
allowing a BS to involve in multiple two-player games with
different adjacent BSs) shown in Fig. 1. Each circular cell has
radius R which overlap αR (α ∈ [0, 1]) with each other.

The MSs in each cell are assumed to be uniformly dis-
tributed. We also assume that only MSs in overlapping region
are subject to interference and refer to such region as the
interference zone (IZ), the MSs from cell i located in IZ form
the set Ii

1. Accordingly, the MSs outside IZ form the set IC
i .

1Such retain assumption and simplification is taken here only for analytical
and notational convenience. When the MSs are not uniformly distributed,
or when some MSs outside the overlapping area are subject to co-channel
interference as well, the methodologies proposed herein still apply. The only
difference lies in the definition of IZ and Ii, which may lack an readily
intuitive interpretation but does not affect the proposed protocol otherwise.
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In addition, assuming that the number of subcarriers allocated
to a MS is uniformly distributed as well, when the number of
MSs in a cell is substantially-large, the geographic distribution
of subcarrier usage is also uniformly distributed within a
cell.We assume full spectrum reuse and that the spectrum in
each cell is divided into S subcarriers which form the set S.
The fraction of the overlapping area can be computed as:

Fig. 1: Two Cell Model
f(α) =

2

π
·
[
arccos(1 − α

2
) − (1 − α

2
)
√

(4α − α2)
]
. (1)

A. Identifying the MSs in IZ
Unless in the unlikely case that each MS is equipped

with GPS, the BS may not be able to obtain the exact real-
time location of a MS. In this paper, we design a protocol
to facilitate the identification of the set Ii based on the
handoff overhead. Specifically, for mobile WiMAX system,
the IEEE 802.16e [2] specifies handoff mechanisms using fast
base station switching (FBSS) or macro diversity hand over
(MDHO). We focus the discussion in this paper on FBSS, but
the methodologies described here apply to MDHO and other
handoff mechanisms in systems like 3GPP-LTE as well.

With FBSS, a MS � maintains an active set (also known
as the diversity set) which includes the BSs that MS can
(possibly reliably) communicate with. Within the set, the BS
to which MS is currently registered is marked as “anchor”
BS. While FBSS was originally designed to facilitate seamless
handoff, the BSs in the active set (other than the anchor BS)
are at the same time the BSs that can cause possible downlink
interference to the MS �. In the scheme shown in Fig. 1, when
� (registered with BS i) is located in IZ, its active set would
be {i(A), j}, which indicates that BS i is the anchor(A) BS
of � and j is a BS that 1) � can communicate with, from the
perspective of handoff and 2) could cause interference to �,
from the perspective of interference management2. In FBSS
protocol, the content of active set is feedback to all BSs in the
set. In this way, when BS i learns that the active set of � is
{i(A), j}, it can determine that � ∈ Ii

⋂
j , which indicates that

� is in the IZ and � is subject to interference from downlink
transmissions in cell j. For the two-cell model considered here,
we will use the simplified notation � ∈ Ii to indicate that �
is subject to inter-cell interference. In contrast, when a MS
�′ registered with BS i has an active set {i(A)}, BS i can
determine that �′ is located outside its IZ.

2In FBSS, MS monitors CINRs from different BSs and make intelligence
decisions as to whether a BS should be included in the active set. Detailed
specifications of the maintenance of an active set at MS are given in [2]. In
our application, the threshold CINR can be modified to determine whether
a BS will cause interference to a MS. Generally, the threshold CINR (γi

T )
used for identifying potential interfering BSs should be lower than the CINR
(γh

T ) used for identifying BSs for handover. For example, to guarantee the
detection of all potential interfering BSs, we expect γi

T ≤ γh
T − KdB. In

practice, value of K usually ranges from 6 to 10 and should be determined
upon specific system configurations.

B. Partial Information Exchange
Since the MSs outside IZ are not subject to inter-cell

interference, we allow the subcarrier allocation to these MSs
to proceed randomly without any coordination between cells.
After the subcarriers have been allocated to MSs in IC

i , the
remaining subcarriers in cell i are denoted by the set SA

i ⊂ S.
BSs i and j then exchange (through the backbone network or
direct wireless links) information on SA

i and SA
j to facilitate

interference management. Note that only partial information
on the subcarrier usage (i.e., SA

i and SA
j ) need to be exchanged

between BSs, the subcarrier allocation to MSs outside IZ is not
affected. In this way, we do not have to rely on any planning of
subcarrier allocation beforehand, and do not restrict subcarrier
usage to a certain fraction of MSs (which is the case in partial
and soft spectrum reuse studied in [3]-[6]). Also note that
with the absence of “super-BS” that coordinates operations of
different BSs (e.g., when different BSs are owned by different
wireless operators), BSs do not follow fixed rules in ored to
avoid subcarrier collisions. Instead, the nature of subcarrier
collision (that it can cause mutual damage, but could be
avoided by either unilateral or mutual “yielding”) can result
in “delicate” decision making, which we try to study through
a Stackelberg game in this paper. To see this, we first present
possible outcomes of the game resulted from different strategy
pairs adopted by the BSs, in the following.
C. Optimization Opportunities and Different Outcomes

1) Random Allocation: If neither BSs makes an effort
to reduce inter-cell interference (i.e., subcarrier collisions),
the leftover available subcarriers in SA

i and SA
j will be

randomly allocated to MSs in Ii and Ij , respectively. Since
the subcarrier allocation to MSs outside IZ has already been
performed randomly, this outcome is equivalent to the scenario
in which subcarriers in the whole cell are randomly allocated.

Fig. 2: Blind Optimization performed unilateral by BS i.

2) Blind Optimization: When one and only one of the BS
(say BS i) takes effort to reduce possible subcarrier collisions,
it first identifies SO = SA

i

⋂SA
j and avoids allocating those

subcarriers to MSs in Ii, if possible. On the other hand, the
other BS (BS j) will randomly allocate subcarriers in SA

j to
MSs in Ij . The unilateral effort of interference avoidance by
BS i is referred to as “blind optimization”. Note that since a
subcarrier collision is mutual and equally detrimental to both
MSs (from different cells) involved, BS j is in fact “free-
riding” the blind optimization performed by BS i in this case.

An example of blind optimization is illustrated in Fig.
2. After initial random allocation, the sets of available sub-
carriers in two cells are SA

i ={f10, f6, f14, f9, f11, f8} and
SA

j ={f19, f13, f17, f26, f7, f11, f8}, respectively. The MSs in
Ii need 4 subcarriers for their downlink transmission while
the MSs in Ij need 3. Therefore, 3 subcarriers will be
randomly chosen from SA

j and allocated to MSs in Ij . In
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the example of Fig. 2, these 3 randomly chosen subcarriers
are {f7, f8, f13}. In contrast, to avoid possible subcarrier
collisions from SA

j , BS i undergoes blind optimization and
identifies that SO = {f8, f11} and marks those subcarriers
with lowest logical numbers (1, 2). The subcarrier allocation
to MSs in Ii is performed by prioritizing those subcarriers
associated with higher logical numbers (or equivalently, to
avoid using subcarriers in SO, if possible). In doing so, BS
i makes full use of the exchange information (presuming that
subcarrier allocation in Ij is random). In Fig. 2, although the
f8 is randomly chosen by BS j, its usage in Ii is deliberately
avoided by BS i and subcarrier collision is prevented.

3) Joint Optimization: In joint optimization, both BSs try
to avoid usage of the subcarriers in SO. For example, in Fig.
3, transmission in Ii requires 5 subcarriers (out of total 6
available subcarriers in SA

i ) while Ij requires 6 (out of 7
available in SA

j ). To avoid subcarrier collision, both BSs mark
subcarriers in SO (i.e., subcarriers {f8, f11}) with the lowest
logical numbers (note that {f8, f11} are marked differently by
BS i and BS j) and both prioritize the usage of subcarriers
with higher logical numbers. In this case, the subcarriers
{f10, f6, f14, f9, f11} are allocated to Ii while subcarriers
{f19, f13, f17, f26, f7, f8} are allocated to Ij . As a result,
subcarrier collision is prevented by joint effort of both BSs.

Fig. 3: Joint Optimization performed by both BSs.

III. BINARY STACKELBERG GAME BETWEEN BSS

A. Strategic Game between the Two BSs

We model the interactions between the two BSs involved
in interference management here as a strategic game. In
the framework of game theory [9][10], interactive decision-
making entities (players) evaluate different outcomes of the
game using “utilities”, which are real numbers that describe
the levels of satisfactions a “player” feels toward the outcomes.
The outcomes result from strategies taken by all players in the
game. A rational player maximizes its own utility by proper
decision making. This pursuit of maximum utilities may result
in an relatively stable outcome in which all players obtain
their “achievable” maximum utilities, given that the actions of
other players are fixed. Such an outcome is defined as Nash
Equilibrium in game theory literatures and describes the state
in which no player can be better off by deviating alone from
current outcome. Here we are interested in analyzing how such
Nash Equilibrium, if exists, can be achieved in the interference
management game played by the two BSs.

TABLE I: Strategic Game Played by Two Base Stations��������BS i
BS j

Optimize (O) Not Optimize (NO)

Optimize (O) [U i
J , Uj

J ] [U i
B , Uj

F ]
Not Optimize (NO) [U i

F , Uj
B] [U i

R, Uj
R]

In the game shown in Table I, each player (i.e., BS i
and BS j) can choose its specific action from the binary
strategy space X ={Optimize(O), Not Optimize(NO)}. BS

i’s action changes row-wisely while BS j’s action changes
column-wisely. The outcome of the game can be denoted as
a two-dimensional strategy vector A = (Ai, Aj) such that
{Ai, Aj} ∈ X . The game results in random allocation when
A = [NO, NO]; in this case, the utility pair of the two BSs is
denoted as [U i

R, U j
R], shown by the bottom-right entry of Table

I. Similarly, when both BSs agree to participate in mutual
interference avoidance (i.e., A = [O, O]), joint optimization
results, which is associated with the utility pair [U i

J , U j
J ].

When (unilateral) blind optimization is performed by one of
the BSs, the BS that performs blind optimization achieves
utility UB while the other (free-riding) BS achieves utility
UF , as denoted by the two diagonal entries in Table I.
B. Binary Stackelberg Leader-Follower Game between BSs

The different outcomes in the game shown in Table I
result from interactions between BSs and cannot be solely
determined by either of the BSs. Therefore, a player has
to consider possible response from the other player before
making any rational decision. To analyze this decision making
process between BSs, we model it as a Stackelberg leader-
follower game in which one of the players (leader) makes
decision first before the the other player (follower). The game
is binary since each player chooses its action from the binary
decision space X ={Optimize(O), Not Optimize(NO)}.
Algorithm III.1: BINARY STACKELBERG DECISION MAKING ()

comment: Sequential leader-follower decision making.

initialization: BS i and j exchange information on SA
i and SA

j

for BS i :

do




predicts AAi
j , Ai = O or NO (i)

comment: predicts BS j’s optimal response;

A∗
i ← arg maxAi∈X

{
U i

[
Ai, A

Ai
j

]}
(ii)

comment: BS i determines its strategy from prediction

of BS j’s (optimal) response;
for BS j :

do A∗
j ← arg maxAj∈X

{
U j [A∗

i , Aj ]
}

(iii)
comment: BS j makes decision upon observation of A∗

i .

output (utility pair{U i[A∗
i , A∗

j ], U
j [A∗

i , A∗
j ]})

The “rules” of playing this Stackelberg game is illustrated
by Algorithm III.1, in which we assume that BS i is the
leader that makes decision first and BS j is the follower3.
In order to maximize its own utility, BS i first analyzed BS
j’s optimal responses to different actions of BS i. In the
binary Stackelberg game studied here, this analysis reduces
the 4 outcomes in Table I to 2 possible outcomes, each of
which uniquely associated with BS i’s binary strategy. BS i
then chooses the strategy A∗

i which maximizes its own utility
(statement (ii) in Algorithm III.1). BS j, on the other hand,
observes BS i’s decision and makes its decision based on
complete information, to maximize its own utility (statement
(iii) in Algorithm III.1) by choosing action A∗

j .4 The outcome

3While the terms “leader” and “follower” may indicate certain superiority
of the former over the latter in some cases (e.g., in the Stackelberg duopoly
game [9]), they do not carry such implication here. That is, being “leader” does
not necessarily imply more leverage over the “follower”. Therefore, which BS
is the “leader” or “follower” is not of vital importance in this specific game.

4When both BSs are rational, A∗
j = A

Ai
j |Ai = A∗

i , which was predicated
by BS i in statement (ii) in Algorithm III.1.
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A∗ =
[
A∗

i , A
∗
j

]
from Algorithm III.1 achieves the unique

Nash Equilibrium by definition, since we can see from the
decision making process that neither of the two players can
deviate alone from this outcome and expect higher payoff.
Since the game is played upon (dynamic) initial subcarrier
allocation to users outside IZ, the execution of the algorithm
would not affect the spectrum usage of those users, in addition,
it would not required pre-fixed spectrum allocation either.

C. Modeling Utility Functions
In the Stackelberg game described above, the outcome of the

decision making process, i.e., statement (i)∼(iii) in Algorithm
III.1, strongly depends on how the utility function is modeled
by players. To understand the proper modeling of utility
functions, we first investigate here the expected number of
subcarrier collisions in different strategic outcomes. To do so,
assume that the traffic loads are βi and βj in the two cell,
such that {βi, βj} ∈ [0, 1], (i.e., neither cell is overloaded).
We then have |SA

i | = [(1 − βi) + βif(α)]S, and the number
of subcarriers needed by Ii is |SI

i | = Sβif(α).
1) Expected Number of Subcarrier Collisions in Random

Allocation: When neither of the BSs performs any interference
avoidance, the expected number of subcarrier collisions in such
random allocation can be directly computed as

E[CR] = f2(α)βiβjS. (2)

2) Expected Number of Subcarrier Collisions in Blind Opti-
mization: Without loss of generality, assume that BS i carriers
out the unilateral blind optimization while BS j randomly allo-
cates subcarriers. In this case, subcarrier collision is possible
when SO = |SO| = |SA

i

⋂SA
j | is larger than the number

of “redundant” subcarriers in cell i. We denote the number
of subcarriers that are vulnerable to subcarrier collision as

ζ; then ζ =
{

SO − d, if nB ≥ SO > d;
0, otherwise.

, where d =

S(1 − βi) ≥ 0 is the number of “redundant” subcarriers in
cell i. Since SO is governed by the binomial distribution
B(nB , pB), in which nB = |SA

i | = S[f(α)βi + (1 − βi)]
and pB = f(α)βj + (1 − βj), we can show that ζ follows a
truncated binomial distribution the expected value of which
can be computed as

E[ζ] = 0 + Pr(nB ≥ SO ≥ d + 1) · E[SO − d|SO ≥ d + 1]

= A(·)
[

nB∑
k=d+1

(k − d)

(
nB

k

)
pk

B(1 − pB)(nB−k)

]

= [E[SO] · B(·) − dC(·)] A(·),
in which A(·)=Ip(d + 1, nB − d), B(·)=Ip(d, nB − d), and

C(·)=Ip(d+1, nB−d); Ip(a, b)=
∫ ∞
0 ta−1/(1+t)a+bdt∫ 1
0 ta−1(1−t)b−1dt

,∀{a, b} ≥
0 is the regularized beta function; E[SO] = nBpB is the
expected size of SO. Each of the “vulnerable” subcarriers is
subject to collision with probability βjf(α)S

|SA
j | , from which we

can then compute the expected number of subcarrier collisions
in blind optimization as

E[CB ] = E[ζ]
βjf(α)

(1 − βj) + βjf(α)
. (3)

The effectiveness of blind optimization depends (among
other things) on the traffic loads in both cells. Particularly,
it can be shown that ∂E[CB ]

∂βi
> 0,∀βi ∈ [0, 1], which suggests

that blind optimization performed by BS i is more effective
when the traffic load in cell i is lighter. On the other hand,
we can also show that ∂E[CB ]

∂βj
� 0, which indicates that the

effectiveness of blind optimization in reducing the subcarrier
collision is not monotonic with the traffic load in the other
cell. The first observation is quite intuitive since lighter traffic
load in cell i leaves BS i with a larger set of SA

i and thus
more flexibility to avoid allocating subcarriers in SO to MSs
in Ii. The second observation, on the other hand, requires
subtler interpretation. As βj decreases, the number of subcar-
riers required by Ij (and thus can cause potential subcarrier
collision to MSs in Ii) decreases. However, decreasing βj

also enlarges the set SA
j , which impairs the ability of BS i

to avoid subcarriers allocated to Ij that are randomly chosen
from SA

j . The joint impact of varying βj results from these two
conflicting aspects and should be evaluated together from (3)
for a rational decision to be made. However, in the special
case when βi=βj=β , we can simplify (3) and show that
∂E[CB |βi=βj=β]

∂β > 0, which is also verified later in Fig. 4.
3) Expected Number of Subcarrier Collisions in Joint Op-

timization: Subcarrier collisions only occur (and will in-
evitably occur) when |SA

i |+|SA
j |−|SO|<Sf(α)(βi + βj) in

joint optimization, i.e., when the number of distinct sub-
carriers after the random allocation to IC

i and IC
j is less

than the number of subcarriers required by MSs in IZ.
We can then write the number of subcarrier collisions as

CJ =
{

SO − di + dj , nJ ≥ SO > di + dj

0, otherwise,
, where nJ =

min{|SA
i |, |SA

j |}, di = (1 − βi)S, dj = (1 − βj)S. Let
D = di +dj and γJ=max{nJ −D, 0}. Following a discussion
similar to the one presented above, the expected number of
subcarrier collisions for joint optimization can be given as

E[CJ ] = 0+Pr(nB ≥ SO ≥ D+1)·E[SO−D|nB ≥ SO ≥ D+1]
= Ip(D+1, γJ)·(E[SO]Ip(D, γJ) − DIp(D + 1, γJ)) , (4)

where Ip(a, b) is the regularized beta function. Straightforward
computation shows that {∂E[CJ ]

∂βi
, ∂E[CJ ]

∂βj
} ≤ 0,∀{βi, βj} ∈

[0, 1]. This meets the intuitive expectations since when both
BSs coordinate, the decreasing of traffic load in either cell will
enable more effective interference avoidance.

When βi = βj = β, S=512 and R=1, Fig. 4 evaluates, as
a function of {α, β}∈[0,1], the expected density of subcarrier
collision, which is defined as the number of subcarrier colli-
sions normalized by the area of IZ. We can see that with ran-
dom allocation, considerable amount of subcarrier collisions
occur even when the traffic load is relatively low. On the other
hand, subcarrier collisions are considerably reduced in blind
optimization, in fact, they can virtually be eliminated when
β < 0.6 even for α = 1. Furthermore, when joint optimization
is used, further suppression in subcarrier collisions can be
observed, e.g., virtually no subcarrier collision occur for a
overlapping radius of α = 1 when β < 0.8. Nevertheless,
we should also note that in the extreme case when both cells
are fully loaded, there is no room for optimization after the
initial random allocation to MSs outside IZ; therefore, all three
schemes have identical performance in full-loaded systems.
D. Modeling Utility by Value and Cost Functions

In the Stackelberg game described above, the utility function
should reflect a rational BS’s desire to reduce subcarrier
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(a) Random Allocation (b) Blind Optimization (c) Joint Optimization

Fig. 4: Expected density of subcarrier collisions under different pairs of strategies made by the two BSs. Assume the traffic load in both
cells are the same (i.e., βi = βj = β), and the radius overlapping ratio α ranges from 0 to 1.

collisions with the minimum cost. More specifically, let θ
be the expected number of subcarrier collisions, the value
of an outcome to a BS can be modeled by function ψ(θ)
that monotonically decreases with θ, i.e., ∂ψ(·)

∂θ < 0. Since
subcarrier collision is mutual, the value of any outcome A to
both BSs in the game is equal and is of quantity ψ(θA), where
θA equals to E[CR], E[CB ], or E[CJ ] (which are computed
in (2)∼(4)), depending on the specific outcome A.

In contrast, the cost to achieve a certain outcome A may
differ for different BSs. This is particulary true in the case of
blind optimization, where one of the BSs makes a unilateral
effort (thereby is incurred with optimization cost) in interfer-
ence avoidance while the other BSs just free-rides (which costs
nothing). To this end, we can model the cost function of BS
i in outcome A to be

ξi(A) =




gB(·), if BS i performs blind optimization;
gJ (·), if both BS performs joint optimization;
0, if BS i does not engage in optimization.

The utility of a BS i in the outcome can then be given as

Ui(A) = ψ(θA) − ξi(A). (5)

The strategy a BS takes largely depends on the functional
form of (5). Specifically, the form of value function ψ(·) and
cost function ξi(A). ψ(·) (under the premise that ∂ψ(·)

∂θ <
0) describes how detrimental is a subcarrier collision. For
example, a BS obviously considers the subcarrier collision to
be more undesirable when it chooses ψ(θ) = e−θ than when it
chooses ψ(θ) = 1

θ , since e−θ < 1
θ ,∀θ ∈ R+. The optimization

cost can impact the final decision of a BS as well, since BSs
are less likely to engage in any optimization if the associated
cost is too high.

In Table II we show the fractions of different outcomes in
Nash Equilibrium over 10000 observations of the Stackelberg
game described by Algorithm III.1. The MSs are randomly
distributed and subcarrier is randomly allocated to MSs outside
IZ in each observation. Specifically, we assume that BS 1
is the leader and BS 2 is the follower, and that β1 = 0.98
while β2 is governed by a shifted and scaled symmetric Beta
distribution with parameter a = b = 3, mean 0.98 and
spans through [0.96,1]. The value function is assumed to be
ψ(θA) = −θA, while the cost function is simply chosen to be
a multi-value function such that gB(·) = γ and gJ(·) = 2γ.
Here, γ is the normalized optimization cost, i.e., the cost of
optimization is equivalent to the incurrence of γ subcarrier
collisions. In Table II, we choose some sample values of γ;
actual values may be chosen based on optimization cost in

TABLE II: Fraction of different outcomes in Nash Equilibrium
����

Random BO by BS 1 BO by BS 2 Joint Opt

γ = 0 0.0% 2.3% 3.8% 93.9%
γ = 1 3.1% 11.0% 32.4% 53.5%
γ = 10 97.4% 0.9% 1.7% 0.0%

specific implementations. We can see that when there is no cost
in optimization, the strategy [O, O], i.e., “Joint Optimization”,
dominates most of the outcomes, with few exceptions where
blind optimization is sufficient for interference avoidance. In
the non-ideal case when γ = 1, the outcome of the game
begin to vary more. Furthermore, when the optimization cost
is unacceptably high (γ = 10), the best choice for each BS
is to avoid the costly optimization and the dominating Nash
Equilibrium is the outcome in which both BSs just randomly
allocate subcarriers. IV. CONCLUSIONS

This paper describes an adaptive protocol for inter-cell
interference management in WiMAX downlink using game-
theoretic framework. The protocol requires no system-wise
spectrum planning or coordination in spectrum usage from
users that are not subject to interference. Intelligent decision
makings by BSs in a two-cell model are implemented by
an algorithm built upon Stackelberg game. Different pairs
of strategies reveal different optimization opportunities in
managing interference, through which the Nash equilibria that
result from different behaviors of BSs in different system
settings are examined.
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