
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

A Non Parametric Approach for Modeling
Interferometric SAR Imagery and

Applications

Kuntal Sengupta, Prabir Burman

TR2008-052 August 2008

Abstract

In this paper, we present a non parametric modeling for phase maps of interferometric SAR.
Cosine and Sine projections maps are generated from the SAR phase map, and each of them
are individually modeled by fitting 2D basis functions. The coefficients of these basis functions
describe a ”smoothed” version of the original phase map. Several applications can be derived
from this noise filtered phase map: better phase unwrapping and SAR image compression are
two of the applications that we will be discussing in the paper. The approach can be extended to
other imaging domains that involve large maps of directional or phase data, such as modeling of
phase MRI images, modeling of wind directions in meteorological data, etc.
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Abstract 

 
In this paper, we present a non parametric modeling 

for phase maps of interferometric SAR. Cosine and 

Sine projections maps are generated from the SAR 

phase map, and each of them are individually 

modeled by fitting 2D basis functions. The 

coefficients of these basis functions describe a 

"smoothed" version of the original phase map. 

Several applications can be derived from this noise 

filtered phase map: better phase unwrapping and 

SAR image compression are to of the applications 

that we will be discussing in the paper. The approach 

can be extended to other imaging domains that 

involve large maps of directional or phase data, such 

as modeling of phase MRI images, modeling of 

wind directions in meteorological data, etc. 

 

1. Introduction 

 

 

Synthetic aperture radar (SAR) involves imaging of 

the Earth by processing microwave backscattering 

data collected along the flight path of an aircraft or a 

spacecraft [1-2]. The data collection leads to high-

resolution images of the local complex ground 

reflectivity. Starting from two SAR images obtained 

from different flight paths, these images are first 

registered and a product image is computed by 

multiplying the first image with the complex 

conjugate of the second  image. The phase of the 

product image is the SAR interferogram.  Note that 

the phase is limited between -π and π. The inherent 

circular nature of the data leads to the “artificial” 

discontinuities in the map. This “wrapped” phase 

map needs to be processed further.  

 

Unwrapping the phase map leads to digital elevation 

model of the terrain [3]. Unwrapping involves the 

removal of the phase hops of more than π between  

neighboring pixels, by adding or subtracting  

multiples of 2π. The assumption here is that the 

underlying function is a smooth function. However, 

in practical situations, the 2D phase is corrupted by 

noise. For example, temporal and baseline 

decorrelation introduces local inconsistencies  

 

 

 

 

 

in the data called the residues. 2D phase 

unwrapping algorithms are highly sensitive to 

residues, especially if these residues introduce 

local singularities in the map [4]. For example, 

given a pixel, if we walk around its eight 

neighbors, with this pixel in the center, the angle 

values should sum up to approximately zero. If the 

sum is close to a non zero multiple of π, this 

implies that the data has a singularity, and the map 

cannot be unwrapped. This fact is used widely in 

the fingerprint literature to find cores and deltas in 

the orientation field computed from the fingerprint 

image. Formally, this is called as the Poincare 

index method in locating feature points in 

fingerprint images [5].  

 

 

Having noted that the noise sensitivity of 2D phase 

unwrapping algorithms is a critical factor in 

obtaining the digital elevation map, we need to 

devise techniques for noise filtering, or smoothing 

of the data. Most techniques reported in the 

literature treat the problem as an image denoising 

problem, and design filters to address the issue. 

One other application domain that we wish to 

address here is the compression of angle maps. By 

using a non parametric model fitting approach, we 

address both the problems of smoothing 2D phase 

maps as well as compression. There are two main 

contributions of the paper: 

- we present an unique model based    

      smooth representation of SAR phase maps 

- we present a method of filtering noisy 

SAR phase maps.  

 

To our knowledge, not much prior literature exists 

in the area of modeling/coding of 2D phase maps. 

The phase image datasets are often treated like 

normal intensity images, and compression 

algorithms such as wavelets or DCT are used. Our 

non parametric approach is an extension of our 

prior work in [7], and the algorithm/code 

developed there has been applied to solve this 

problem. Outside the domain of SAR imagery, 

there are several other applications where 

compression of large databases of angle maps are 
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considered important. Three dimensional  phase 

MRI, meteorological data with wind direction are a 

few of these examples. 

 

2. A Non Parametric Approach to Estimating 

the Phase Map Model in 1D 

 
A phase map can be fully represented by a discrete 

matrix whose elements represent the direction 

pointed to by a hypothetical vector planted at the 

corresponding pixel. To avoid the difficult problem 

created by orientation discontinuity, we create two 

distinct maps, the cosine and the sine map of the 

phase [7]. At the location (i,j), if the phase value is 

Θ(i,j), then define the two maps S and C as follows: 

 

S(i,j) = cos(Θ(i,j)) and 

C(i,j) = sin(Θ(i,j)).   (1) 

 

For ease of explanation, we would consider the 

discussion on the 1D case initially. For the sine 

curve (map), the noise model is: 

 

                                                                         (2) 

 
In the equation above, Z is the underlying (true) 

curve, and ε is the noise at the location xi, 

respectively. Assume i = 1, 2, ..n. Following [7], we 

model the underlying curve as a summation of basis 

splines as shown below: 

       

                                                                               (3) 

 

Here, ψ(xi,) is the a vector of basis function values at 

the location xi. For example, if we consider m basis 

functions, then ψ is m×1. Also, θθθθ     is the weight 

associated with each basis function, and its 

dimension is 1×m. 

 

For a chosen set of basis functions, and our 

observation values S(xi), we need to estimate the 

weights associated with these functions. For these, 

we use the Minimum Mean Squared approach. The 

cost function defined is: 

 

 

 

 

To solve the above equation for the weight 

parameters, we construct two matrices as follows: 

 

 

and 

 

 

 
                                                                             (4) 

                                                                      
Note that A is a m×m matrix, and B is m×1 matrix. 

Next, we compute the eigenvector as follow: 

 
                                                                             (5) 

 
The eigenvector considered above is the one that is 

associated with the largest eigenvalue. The 

estimated weight matrix is computed as: 

 

 
The smooth sine projection of the phase map is:  

 

 

 

 
The above process is repeated for the cosine map 

too, and similar weights of the spline function are 

determined.  

 

3. Choosing the Basis Functions and extension 

to 2D 

 
Inspired by the Fourier Expansion work on 

fingerprint orientation map in [6], we choose 

(2K+1) the basis functions as below: 

 

 

 

 

 

 

 

In the above equation, ν = π/n. One nice property 

to note is that the basis functions are orthogonal, 

hence A is a diagonal matrix. This makes the 

inversion function computation in Eq. [5] very 

trivial while computing the weight function. Other 

basis functions such as basis spline functions can 

be considered too, but for the computational 

efficiency, one can orthogonalize the basis set 

using the QR factorization technique. 
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Figure 1: Plot of a few sample orthogonal 1D basis 

functions selected for the experiments here (top), 

and a mesh plot of the 2D basis function (bottom). 

 

The extension of the technique described in Section 

2 is straightforward. We now consider the tensor 

product of the basis functions in dimension x and 

dimension y. The rest of the mathematics is almost 

similar, with the difference that we have nx ×ny 

observations to deal with.Also, assuming that there 

are (2Kx+1) 1D functions for the x dimension and 

(2Ky+1) 1D functions for the y dimension, the 

weight vector has (2Kx+1)(2Ky+1) elements or 

coefficients in it. A few example 1D and 2D basis 

functions are illustrated in Figure 1. 

 

 

4. Representation of the map: Quantization and 

Error Map 

 
As shown in Figure 2, the (2Kx+1)(2Ky+1) 

coefficients of the basis functions corresponding to 

the estimated sine and the cosine maps, respectively, 

essentially code the phase map. Each of these 

coefficients are quantized and coded in “N” bits. 

Thus, if we have 2(2Kx+1)(2Ky+1) coefficients 

modeling the cosine and the sine maps, the total 

storage requirements are 2N(2Kx+1)(2Ky+1). 

Once these coefficients are known, the estimated 

cosine and sine maps are computed and the 

original phase map are estimated. The estimated 

phase map is smooth, and the error map is 

computed by subtracting the original map from the 

estimated map. The subtraction has to consider the 

wrap around issue. Keeping the circular nature 

data in mind, one can generate the error map, 

which is always bounded between – π and π. This 

map can be further compressed using a standard 

compression technique, such as DCT based 

method or wavelet based methods. Since the 

dynamic range of the error map is generally low, a 

fewer number of bytes can easily code this map. 

The model based technique coupled with the error 

map helps us in  achieving high compression ratio. 

Also, the resulting estimated phase map using the 

dual strategy is noise filtered and can be 

unwrapped effectively. 

 

 
 

Figure 2: The model fitting approach for angle 

maps. 
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Figure 3: Generation of  the difference map while 

considering the circular nature of the data. 

 

5. Experimental Results: Compression 
We obtained interferometric SAR images from the 

STAR Lab of Stanford University. The SAR image 

corresponded to an area around Mt. Etna. The phase 

map is computed from the raw SAR imagery using 

the software package (“snaphu”)[8]. 

 

To perform our experiments, we divided the region 

into several blocks of 128x128 pixels. For each such 

block, we modeled the phase map using the non 

parametric method described in Section 2 of this 

paper. For our experiments, we used a total of 121 

(11 functions in each dimension) 2D basis functions. 

The 242 coefficients obtained were coded using 1 

byte each.  The error map generated was coded using 

a standard DCT coding scheme, where each of the 

128x128 blocks were subdivided into 8x8 blocks for 

DCT computation and coding. For a given byte 

allocation for the entire 128x128 block, whatever 

budget is left after using up the quota for the 242 

(model) coefficients were used to code the DCT 

coefficients. In Figure 4, we illustrate one such patch 

of the SAR phase image. For illustration purposes, 

the phase value between 0 and 2π is quantized 

between 0 and 255. The noise in the computed phase 

(from raw SAR data) is quite apparent in the 

image. 

 
 

Figure 4: An example input phase map (note 

that the value of the phase has been quantized 

between 0 and 255). 

 

 
Figure 5: The modeled phase map. 

 

 
Figure 6: The error in the phase map modeling, 

which is coded using conventional means. 
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Figure 7: The (model phase + decoded error 

map), which is obtained finally by the coding-

decoding process. For this example, the overall 

compression ratio was set to 2:1. 

 
In Figure 5, we illustrate the smoothed model 

obtained using our technique, while Figure 6 

illustrates the error map coded by the DCT 

technique. Figure 7 illustrates the model phase map 

added to the decoded error map.  

 

To obtain an idea of the power of the non parametric 

technique, we computed the mean of the absolute 

error between the overall decoded map and the 

original phase map. We compared this with the 

conventional SCT compression technique, for the 

same overall byte allocation. The experiment is 

repeated over two compression ratios, 2:1 and 4:1. 

We report the results in Table 1. Note that the model 

based method for 4:1 ratio even outperforms the 

conventional method at 2:1 compression ratio. 

 

Table 1: Table illustrating the mean absolute 

error (in radians) at each pixel location using the 

model based method described in the paper and 

the conventional method of compression. 

 Model based Conventional 

2 : 1 0.123 0.276 

4 : 1 0.156 0.346 

 

 

 

 

 

 

6. Experimental Results: Unwrapping 
 

One of the purposes of smoothing the phase data 

using the non parametric technique is to aid the 

unwrapping functionality for digital elevation 

model computation. We unwrapped the model 

map (using a simplistic algorithm which is not 

described within the scope of this work) in Figure 

5 and obtained a continuous map illustrated in 

Figure 8. The unwrapping of the phase map 

obtained by adding the model phase to the DCT 

compressed error also has the nice properties of 

continuity (Figure 9). However, the original map 

is not continuous, while unwrapped, ash shown in 

Figure 10. 

 

 
Figure 8: Unwrapping of the modeled phase 

map (note that 256 represents 2ππππ). 

 



Figure 9: Unwrapping of the (modeled phase map 

+decoded error map). 

 
 

 

Figure 10: Unwrapping of the original map 

(shows discontinuities). 

 

7. Conclusions 
 

In this paper, we presented a model based technique 

for representing SAR phase images. The method can 

be used for filtering noise to aid unwrapping, as well 

as SAR image compression. This technique can be 

applied in all computer vision applications that 

involves modeling and analysis of  vector fields. 
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