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Abstract—In this article, we design a novel energy-detection
based receiver architecture to detect UWB signals in a strong
narrowband interference (NBI) environment. Designed receiver
is capable of suppressing NBI at low cost without any need
for searching its frequency location. This is made possible by
preprocessing the received signal using a cascaded nonlinear
energy operator followed by a high-pass filter before regular
energy detection.

Index Terms—Teager-Kaiser, energy detection

I. INTRODUCTION

UWB signaling, in which an extremely wide frequency
bandwidth of more than 500 MHz is employed, is an attractive
solution for target sensing systems as well as wireless com-
munications. In a sensing system point of view, UWB can
provide more information capacity compared to a narrowband
system since it utilizes a much wider bandwidth. Particularly,
higher target and range resolution can be obtained using an
UWB sensing system. As far as the wireless communications
is considered, UWB is an attractive solution because it allows
for higher data rates at low cost.

One of the key challenging issues regarding UWB trans-
mission systems is the performance degradation due to high-
power narrowband signals existing in the environment. Since
UWB systems operate over extremely wide frequency bands,
they have to co-exist with other narrowband systems which
may operate with much higher power levels. In addition,
intentional interferers may exist in the environment where
they use high power narrowband signals to jam UWB sens-
ing systems. Even though narrowband interferers operate on
a very small fraction of the bandwidth utilized by UWB
systems, they can completely jam UWB signals because of
their relatively high operating power. Therefore, it is neces-
sary to design efficient transceivers that are robust to NBI.
Existing techniques dealing with NBI issues consist of two
groups which are NBI avoidance techniques employed at the
transmitter and NBI cancelation or suppression techniques
employed at the receiver. Although many methodologies to
cope with NBI have been developed in the literature, none
of them has proven to give an optimum solution and they
all have severe limitations for UWB systems [1]. Most of
the feasible NBI avoidance techniques, such as multiband
schemes, multicarrier approaches and pulse shaping methods,
require accurate information about the center frequency of
the NBI which is not known a priori in most of the sit-
uations and needs to be estimated. Although many digital
NBI cancelation techniques have been developed for wideband
systems [2], none of these approaches is practical for UWB
systems because of the required extremely high sampling
rates and larger dynamic ranges of analog-to-digital converters

(ADCs) to resolve NBI. These techniques are mostly based
on employing adaptive filters, which behave similar to notch
filters, to adaptively estimate and eliminate NBI in digital
domain. Analog notch filtering can be an effective approach
for canceling NBI in UWB systems, however it is not very
efficient since it requires exact information about the NBI to
be effective (center frequency, power, etc.) and that the NBI
is fixed and always exists [1]. Another method is to use bank
of analog notch filters at the receiver which results in high-
cost and complex receivers. The most popular technique so
far to suppress NBI is to use rake receivers [3] which are also
highly complex and their complexity increases depending on
the number of rake fingers employed [1]. Furthermore, NBI
may exist as a transient in the system which makes most of
the NBI avoidance and cancelation techniques ineffective.

Energy detector (ED) is a low-complexity non-coherent
detection architecture well-suited for UWB signals, and it is
widely used due to its simplicity and good performance. ED
does not suffer from the issues related to coherent reception
systems such as accurate synchronization, pulse shape esti-
mation and high sampling rates [13]. In an ED scheme, the
energy of the received signal is measured and compared to an
appropriately selected threshold to determine the presence of
a signal. It should also be noted that for an additive white
Gaussian noise (AWGN) channel and completely unknown
signal parameters, ED provides the uniformly most powerful
(UMP) test, i.e. it gives the optimal detection performance
[10]. However, if there is an unknown interferer in the
system, ED is not UMP anymore and signal energy needs
to be increased in order to compensate for the performance
degradation caused by the narrowband interference [12].

In this paper, a novel ED based receiver design for UWB
systems is developed. Proposed receiver is capable of sup-
pressing NBI in the analog domain at very low additional
cost which makes it practical to implement for UWB signal
detection. Developed UWB receiver architecture is a generic
one in the sense that it can be used in both active and
passive sensing systems to detect the presence of targets as
well as in wireless communications such as demodulation of
on-off keyed (OOK) UWB signals. In the developed receiver
architecture, a cascaded nonlinear energy operator and high-
pass filter is utilized followed by a classical energy detector.
The nonlinear energy operator employed is called the Teager-
Kaiser (TK) energy operator [4] which will be explained in
Section II. With the help of this energy operator, NBI co-
existing with the UWB signal in the system is converted to
a low frequency signal and then suppressed using a high-
pass filter. Throughout the rest of this article, we will refer to
our developed detector as the Teager-Kaiser Energy Detector
(TKED).



In Section III, commonly used receiver types are discussed.
We introduce our proposed receiver architecture, and analyze
the effects of the TK energy operator on different input signal
components in Section IV. In Section V, some simulation
results are provided to demonstrate the performance of our
proposed receiver. Finally, concluding remarks are presented
in Section VI.

II. TEAGER-KAISER ENERGY OPERATOR

Teager-Kaiser (TK) energy operator is a nonlinear differen-
tial energy operator which was first systematically introduced
in [4]-[5], and found some applications in the literature such
as transient signal detection [6] and demodulation of AM-FM
signals [7]. Let ψ(s(t)) denote the continuous time Teager-
Kaiser (TK) energy operation on input signal s(t). The ψ(s(t))
is defined by

ψ(s(t)) = ṡ(t)2 − s(t)s̈(t) (1)

If s(t) = Acos(2πfct+ θ), then,

ψ(s(t)) = A2(2πfc)
2 (2)

It is clear from (2) that the TK operator functions as a
frequency-to-DC converter. The output of the operator is a
DC signal which is proportional to the squares of both am-
plitude and frequency of the sinusoid. To obtain discrete-time
representation s(n), assume that s(t) is sampled at frequency
fs. The TK energy operator in discrete-time is defined as

ψ(s(n)) = s(n)2 − s(n− 1)s(n+ 1) (3)

Note that it is almost an instantaneous operator since it only
needs two neighboring samples. If s(n) = Acos(Ωn + θ),
where Ω = 2πfc/fs, then,

ψ(s(n)) = A2sin2(Ω) (4)

It was also shown in [4] that when fs > 8fc, ψ(s(n)) can
be approximated as

ψ(s(n)) ≈ A2Ω2 (5)

III. COMMONLY USED RECEIVER TYPES

It is already well known that matched-filtering, in which the
received signal is correlated with a stored signal template at
the receiver, provides optimal detection performance when the
signal waveform is completely known and background noise
is AWGN [9]. The receiver architecture for matched-filtering
is shown in Fig.1(a). It is also referred to as the correlation
receiver. However, if the noise is gaussian but not white (may
be narrowband) and its power spectral density (PSD) is not
known, the correlation receiver has to be much more complex
in order to estimate the power spectral density of the noise and
to use a prewhitening filter before matched-filtering operation.
Moreover, if the noise is not gaussian such as a sinusoidal
interference, nonlinear receiver architectures that perform
maximum-likelihood formulation need to be implemented to
obtain optimal performance which are also highly complex
and do not have any general structure [9]. Furthermore, if the
there is a transient narrowband interference in the system with
unknown parameters, none of these approaches are applicable.

Even if there is perfect knowledge about the noise in the
system, in order to obtain perfect alignment of the received
waveform with the template, received signal must be sampled
at Nyquist rates and sampling at these high rates may not
be always feasible or possible for UWB signals because of
their extremely wide bandwidths [14]. In addition, received
waveform shape must be perfectly known for the matched-
filter to give optimum performance. In UWB sensing systems
where the presence of a target is determined by detecting the
presence of a reflected signal from the target, the waveform
of the reflected signal is completely different than that of
the transmitted signal due to many reasons inherent in UWB
signals [8]. Therefore matched-filtering is not realizable for
an UWB sensing system. Throughout our analysis, we assume
that there is no a priori information about the interference that
may exist in the system and matched-filter in Fig.1(a) will
only serve as the standard benchmark case for comparison
purposes assuming the only background noise is AWGN and
the unknown signal waveform is known.

Fig.1(b) depicts a classical ED in which the received band-
pass signal is preprocessed by a low-noise amplifier (LNA) and
a band-pass filter (BPF) to reduce the effects of noise. Then
the energy of the preprocessed signal is collected via a square-
law device followed by an integrator. This scheme enables
sampling at sub-Nyquist rates without any significant loss in
the performance. However, it should be noted that sampling at
lower rates introduces a trade-off between receiver complexity
and target/range resolution in a target detection scenario.

In an energy detection problem, the energy measure of the
received signal is obtained as follows:

y(t) =
1

τ

∫ t

t−τ

|r(t)|2dt (6)

where r(t) and τ denote the received signal and integration
window length respectively. Note that the expression in (6)
corresponds to the received signal energy normalized to win-
dow length. y(t) in (6) is then sampled with a sampling
rate ts to obtain yk and compared to a previously defined
threshold, γ, to detect the presence of a signal. This problem
can be set as a binary hypotheses testing problem in which
the interference-plus-noise hypothesis (H0) is tested against a
signal-plus-interference-plus-noise hypothesis (H1):

H0 : yk = ik + nk

H1 : yk = sk + ik + nk (7)

where sk, ik and nk denote unknown signal, the interference
term and the background noise present in the system. nk

is modeled as white Gaussian noise (WGN) with flat power
spectral density σ2

n, i.e. nk ∼ N (0, σ2
n). The analysis of ED

has been extensively carried out in the literature and the same
analysis will not repeated here for brevity. Interested reader
should refer to [11]-[14].

IV. PROPOSED RECEIVER ARCHITECTURE

In this section, we design a novel ED based receiver archi-
tecture which has a built-in NBI suppression capability for a
wideband system. The architecture of the proposed detector is
shown in Fig.2. In the proposed architecture, two additional
preprocessing blocks which enable to suppress NBI are added



(a) Matched filter

(b) Energy detector

Fig. 1. Commonly used receiver architectures for UWB systems

to a classical ED between the BPF and the square-law device.
The additional preprocessing blocks are the Teager-Kaiser
(TK) energy operator described in Section II and a high-pass
filter respectively. The role of the TK operator is to act as a
spectrum-shifter and move the NBI component of the received
signal towards very low frequencies. These low-frequency
components resulting from the NBI are then eliminated using
a high-pass filter before energy measurement. The mechanism
of the TK operator is discussed in the next section.

Fig. 2. Proposed receiver design (TKED), dashed lines: additional blocks to
an energy-detector

A. Effect of TK Operator on Wideband Signals and NBI
A scenario in which a NBI spectrum overlaps with that of

an UWB system is shown in Fig.3.

Fig. 3. Overlap between NBI and UWB signal spectrum

NBI can be modeled in two separate ways: 1) single-tone
interferer of the form [1]:

s(t) = Aisin(2πfit+ θi) (8)

where Ai and fi are the amplitude and the frequency of the
interferer, respectively, or a 2) band-limited interferer whose

model is a zero-mean Gaussian random process with power
spectral density (PSD) [1]:

Si(f) =

{

Pi, fi −
Bnbi

2 ≤ |f | ≤ fi + Bnbi

2
0, otherwise. (9)

where Bnbi and fi are the bandwidth and the center frequency
of the interferer, respectively, and Pi is the power spectral
density.

In our analysis, the narrowband interferer is modeled as
a single-tone interferer as in (8) for analytical simplicity.
However, the results derived for a single-tone interferer also
apply for an interferer which can be modeled as a band-limited
random process as in (9). This will be validated by simulations
in the following section.

Suppose the input to a TK operator s(t) is composed of
two different frequency components, namely s1(t) and s2(t).
Then if the TK operator defined in (1) is applied on s(t), the
output is

ψ(s1 + s2) = ψ(s1) + ψ(s1) + ψc(s1, s2) (10)

where the cross-term ψc(s1, s2) is defined as

ψc(s1, s2) = 2ṡ1ṡ2 − s1s̈2 − s2s̈1 (11)

Proposition 1: If the input signal, s(t), to a TK operator is
composed of N sinusoids with different frequencies given by

s(t) =

N
∑

i=1

Aisin(2πfit), (12)

then

ψ(s(t)) = K +

N
∑

i=1

N
∑

j>i

γ
j
i cos

[

2π(fi − fj)t
]

(13)

+γi
jcos

[

2π(fi + fj)t
]

where

γ
j
i = AiAj(2πfi)(2πfj) +

AiAj(2πfi)
2

2
+
AiAj(2πfj)

2

2

γ
i
j = AiAj(2πfi)(2πfj) −

AiAj(2πfi)
2

2
−
AiAj(2πfj)

2

2

and K is a constant.
Proof: It was previously shown in Section II that if the

input signal to a TK energy operator ψ(.) is a pure sinusoid,
the output is a DC component whose amplitude is proportional
to squares of both of its amplitude and frequency as given in
(2). Now, consider N = 2, i.e. the input signal, s1(t), consists
of two sinusoids

s1(t) =

2
∑

i=1

Aisin(wit+ φi) (14)

where wi = 2πfi. Without loss of generality, we can assume
that φi = 0 for all components. Then the output of the TK
energy operator, ψ(s(t)) after some manipulations is given by

ψ(s1(t))=A
2

1w
2

1 +A
2

2w
2

2 (15)

+
[

A1A2w1w2 +
A1A2w

2

1

2
+
A1A2w

2

2

2

]

cos
[

(w1 − w2)t
]

+
[

A1A2w1w2 −
A1A2w

2

1

2
−
A1A2w

2

2

2

]

cos
[

(w1 + w2)t
]



Note that (15) is consistent with the expression in (13). Now
suppose that s2(t) = A3sin(w3t) is added to s1(t) before
feeding it to the TK operator, where w1 6= w2 6= w3. Then
using (2) and (15) in (10),

ψ(s1(t) + s2(t)) = A
2

1w
2

1 +A
2

2w
2

2 +A
2

3w
2

3 (16)

+
[

A1A2w1w2 +
A1A2w

2

1

2
+
A1A2w

2

2

2

]

cos
[

(w1 −w2)t
]

+
[

A1A2w1w2 −
A1A2w

2

1

2
−
A1A2w

2

2

2

]

cos
[

(w1 +w2)t
]

+ ψc(s1(t), s2(t))

where ψc(s1(t), s2(t)) can be derived by putting s1(t) and s2(t) in
(11)

ψc(s1(t), s2(t)) = (17)
[

A1A3w1w3 +
A1A3w

2

1

2
+
A1A3w

2

3

2

]

cos
[

(w1 −w3)t
]

+
[

A2A3w2w3 +
A2A3w

2

2

2
+
A2A3w

2

3

2

]

cos
[

(w2 −w3)t
]

+
[

A1A3w1w3 −
A1A3w

2

1

2
−
A1A3w

2

3

2

]

cos
[

(w1 +w3)t
]

+
[

A2A3w2w3 −
A2A3w

2

2

2
−
A2A3w

2

3

2

]

cos
[

(w2 +w3)t
]

It can be seen from (16) and (17) that ψ(s1(t)+s2(t)) is also
consistent with (12). Hence, it is concluded that for an input
consisting of N ≥ 1 sinusoids, the output of the TK operator
consists of a DC component and sinusoids with difference and
sum frequencies of (N, 2) combinations of f1, ...fN , in which
lower frequency terms have more power compared to their
higher frequency counterparts.

Proposition 2: If the input to a TK operator is a bandpass
signal with a 3dB flat spectrum of amplitude A spanning from
fL to fH and a center frequency fc = (fL +fH)/2, such that
fc � (fH − fL), then the 3dB spectrum of the output signal
spans from 0 to (fH − fL).

Proof: Let s(t) be a baseband signal consisting of N
sinusoidal components having the same amplitude 2A with
frequencies f1 < f2 < ... < fN . Now, suppose that s(t) is
modulated with a carrier of frequency fc, such that fc � 2fN .
Then the bandpass signal is given by

sb(t) =

N
∑

i=1

2Asin(2πfit+ φi)cos(2πfct). (18)

Note that sb(t) has a bandwidth of 2fN centered at fc. We
can again assume that φi = 0 for all components without loss
of generality. After some manipulations, sb(t) can be written
as

sb(t) =

N
∑

i=1

A
[

sin
(

2π(fc + fi)t
)

+

N
∑

i=1

(−A)sin
(

2π(fc − fi)t
)]

= sR(t) + sL(t). (19)

Now, suppose sb(t) is the input to a TK operator. Then the
output is from (10)

ψ(sb(t)) = ψ(sR(t)) + ψ(sL(t)) + ψc(sR(t), sL(t)) (20)

As it is observed from (20), ψ(sb(t)) has three terms. Now,
each of these terms will be analyzed separately to complete
the proof.

From (13), ψ(sR(t)) can be written as

ψ(sR(t)) = KR +

N
∑

i=1

N
∑

j>i

γ
j
i cos

[

(wi − wj)t
]

(21)

+ γ
i
jcos

[

(2wc +wi + wj)t
]

where

γ
j
i = A

2(wc +wi)(wc +wj) +
A2(wc + wi)

2

2
+
A2(wc + wj)

2

2
(22)

γ
i
j = A

2(wc +wi)(wc +wj) −
A2(wc + wi)

2

2
−
A2(wc + wj)

2

2

in which wi = 2πfi. Since f1 < f2 < ... < fN and fc

fN
� 2,

asymptotic expressions can be found in the limit fc

fN
→ ∞ as

follows

lim
fc
fN

→∞

γ
j
i = A

2
w

2

c(2 +
2wi

wc

+
2wj

wc

+
wiwj

w2
c

+
w2

i

2w2
c

+
w2

j

2w2
c

)

≈ 2A2
w

2

c (23)

lim
fc
fN

→∞

γ
i
j = A

2
w

2

c(
wiwj

w2
c

−
w2

i

2w2
c

−
w2

j

2w2
c

)

≈ 0 (24)

Therefore,

lim
fc
fN

→∞

ψ(sR(t)) ≈ KR +

N
∑

i=1

N
∑

j>i

2A2
w

2

ccos
[

(wi −wj)t
]

(25)

An asymptotic expression for ψ(sL(t)) can also be found
by using the same previous analysis.

lim
fc
fN

→∞

ψ(sL(t)) ≈ KL +

N
∑

i=1

N
∑

j>i

2A2
w

2

ccos
[

(wi −wj)t
]

(26)

The third term ψc(sR(t), sL(t)) can be derived by putting
sR(t) and sL(t) in (11). Here, we skip some derivation steps
for brevity and give the final result:

ψc(sR(t), sL(t)) =

N
∑

i=1

N
∑

j=1

C
j
i cos

[

(wi + wj)t
]

(27)

+ C
i
jcos

[

(2wc +wi − wj)t
]

where

C
j
i = −A

2
w

2

c (2 +
2wi

wc

−
2wj

wc

−
wiwj

w2
c

+
w2

i

w2
c

+
w2

j

w2
c

)

C
i
j = A

2(wiwj +
w2

i

2
+
w2

j

2
) (28)

Again, taking the limit as fc

fN
→ ∞, ψc(sR(t), sL(t)) can

be approximated as follows

lim
fc
fN

→∞

ψc(sR(t), sL(t)) ≈

N
∑

i=1

N
∑

j=1

(−2A2
w

2

c )cos
[

(wi + wj)t
]

(29)

+
[A2

2

(

wi + wj

)2]

cos
[

(2wc + wi − wj)t
]



Note that if fc � 2fN , then 2w2
c � (wi+wj)

2

2 for all i, j.
Therefore the second term in (29) can be neglected resulting
in

lim
fc
fN

→∞

ψc(sR(t), sL(t)) ≈

N
∑

i=1

N
∑

j=1

(−2A2
w

2

c )cos
[

(wi +wj)t
]

.

(30)

Finally, collecting the terms in (25), (26) and (30), an
approximate asymptotic expression for ψ(sb(t)) can be found

ψ(sb(t)) ≈D +

N
∑

i=1

N
∑

j>i

4A2
w

2

ccos
[

(wi − wj)t
]

(31)

−

N
∑

i=1

N
∑

j=1

2A2
w

2

ccos
[

(wi +wj)t
]

It is clear from (31) that the spectrum of ψ(sb(t)) spans
from 0 to 2fN . An arbitrary baseband signal with a high-
est 3dB frequency component fN = (fH − fL)/2 can
be approximated as a sum of N sinusoids with frequencies
0 ≤ f1 < f2 < ... < fN that have a separation ∆f in the
limit lim∆f→0. Hence, it is concluded from the above analysis
that the corresponding output bandpass signal from the TK
operator will span from 0 to fH − fL as long as the center
frequency fc � (fH − fL).

The result from Proposition 2 can be exploited to suppress
NBI regardless of its frequency location in a bandpass UWB
system. Since the bandwidth of a narrowband interferer is very
small compared to the center frequency of an UWB system,
any arbitrary NBI in the system will only have low-frequency
components after the TK operation. These components can
then be eliminated by using a HPF.

Proposition 3: For a physical bandpass transmission sys-
tem, if there exists a strong NBI in the environment, such
that NBI power is much higher than both the corresponding
transmission signal and the background noise, and that it
is modeled as a single-tone interferer, then TKED strictly
outperforms ED.

Proof: Consider a scenario in which there is only one
single-tone interferer with frequency f1

i(t) = A1sin(2πf1t). (32)

Let the unknown bandpass signal to s(t) to have unity power
and be the sum of two sinusoids with frequencies f1 and f2
without loss of generality.

s(t) = sin(2πf1t) + sin(2πf2t). (33)

Consider the case when H1 is true, i.e. the unknown signal is
present in the received signal:

r(t) = s(t) + i(t) + n(t) (34)

in which n(t) denotes the background WGN. We assume that
NBI is the dominant noise in the system and it has much
higher relative power compared to the WGN as well as the
unknown signal (i.e. A1 � 1, σ2), which is usually the case
in an UWB transmission systems when there is strong NBI in
the environment. With these assumptions, the received signal
can be approximated as

r(t) ≈ A1sin(2πf1t) + sin(2πf2t). (35)

r(t) is first passed through a LNA followed by a BPF as in
the classical ED and then fed into a TK energy operator. The
output of the TK operator is the same as (15) except that
A2 = 1 in this case.

In order to compare the performances of ED and TKED
under strong NBI, a measure called deflection coefficient [9]
can be utilized. The deflection coefficient for a binary detection
problem in which the variance is identical for both hypotheses
is defined as

d2 =

(

E(T ;H1) −E(T ;H0)
)2

var(T ;H0)
(36)

where T denotes the test statistics and E(.) is the expectation
operator. It is easy to see from (36) that d2 is the ratio of the
distance between the expected values to the variance of the
test statistics provided that the variance is the same under both
hypotheses. Detection performance increases with increasing
d2. Let TED and TTKED denote the test statistics of ED and
TKED respectively. For a strong NBI, it can easily be shown
that

lim
A1→∞

var(TED;H0)≈var(TED;H1)

≈ var(TTKED;H0)≈var(TTKED;H0) ≈ 0 (37)

Therefore the the performances of ED and TKED in a strong
NBI environment can be compared by just comparing the
distance between the expected values of test statistics under
both hypotheses. Greater the distance, better the detection
performance. For this purpose, another measure can be defined
as follows:

η2 =
(

E(T ;H1) − E(T ;H0)
)2
. (38)

Detection performance increases with increasing η2. Now
suppose that a simple DC-Removal circuitry is used as a HPF
in TKED (Fig. 2), and the window length is predefined such
that τ = N12πf1 = N22πf2 where N1 and N2 are integers.
Let η2

ED and η2
TKED denote the performance measures for ED

and TKED respectively. Then for a strong single-tone NBI,
using the signal models in (32) and (35), η2 for both detectors
can be obtained after some calculation as

η2
ED ≈

1

2
(39)

η2
TKED ≈

3

2
A2

1w
2
1w

2
2 +

1

4
A2

1w
4
1 +

1

4
A2

1w
4
2 (40)

where w1 = 2πf1 and w2 = 2πf2. Note that the assumption,
(A1+1) ≈ A1, made in (35) is incorporated in (40), where all
the terms include the coefficient A1 which is the amplitude of
NBI. However, it should be kept in mind that (40) is only an
approximation for A1 � 1 and η2

TKED will still be nonzero
when there is no NBI in the system. It can easily be seen
from (39) and (40) that η2

TKED is strictly greater than η2
ED for

physical bandpass scenarios considered throughout this work.
In fact, η2

TKED can be made smaller than η2
ED only for a

very small subspace of w1 and w2 which is impossible to
exist in physical bandpass systems. Therefore, the designed
detector (TKED) is expected to give improved performance at
all times compared to a classical energy detector (ED) when
there is a strong narrowband interferer in the environment.

For the NBI to degrade the UWB detector performance sig-
nificantly, NBI must have a very high relative power compared



to the UWB signal do be detected. In conclusion, the added
preprocessing blocks, TK and HPF in Fig. 2, act as a NBI
suppresser, or in other words as a wideband signal enhancer.
Although the signal models considered throughout this section
are not UWB, it is simpler to analytically derive the TK
effect on NBI using these signal models since the conclusion
holds as long as the unknown signal bandwidth ∆fs is greater
than the total bandwidth of narrowband interferers ∆fnbi, i.e.
∆fs > ∆fnbi. In fact, the performance improvement of TKED
over ED increases with increasing ∆fs/∆fnbi ratio, since
the signal energy will be spanned over a wider bandwidth
preserving more cross-term components after HPF. This result
requires tedious mathematical calculations and it is omitted in
this paper. However, the intuition and the methodology is the
same as the analysis carried out in (10-40)1.

B. Effect of TK Operator on AWGN

It was shown in [7] that if the input to a TK energy
operator ψ(.) is a zero-mean, stationary Gaussian noise n(t)
with autocorrelation R(τ) and power spectral density P (w),
then the output will again be a stationary noise with

E
[

ψ(n)
]

= −2R(2)(0) =
1

π

∫

R

w2P (w)dw (41)

var
[

ψ(n)
]

= 3
[

R(2)(0)
]2

+R(0)R(4)(0). (42)

It is seen from (41) and (42) that both moments increase
with increasing frequency. Therefore the analysis is frequency-
dependant and very tedious. It was also shown in [7] that the
predicted performance of the TK operator is highly improved
if the signal is pre-filtered using a bandpass filter before
feeding it to a TK operator. Note that TK is a highly nonlinear
operator and the exact mathematical expressions for the noise
statistics after TKED is analytically intractable. However, an
intuitive reasoning can be made by considering the BPF
employed before the TK operator in Fig. 2 and the results
in IV-A. Since the unknown signal bandwidth is known a
priori and the received signal is pre-filtered using a BPF, the
bandwidths occupied by the signal (∆fs) and the noise (∆fn)
will be almost identical after BPF. Hence, according to the
analysis in IV-A, the TK operator will enhance both of them
the same amount. Therefore it can be concluded that for the
case in which there is only WGN in the system (no NBI),
the TKED will not result in any performance loss compared
to a classical ED. This conclusion will also be verified by
simulations in the next section.

C. System Performance Analysis

The same notation in (7) can be used to analyze the perfor-
mance of the proposed receiver. Since the main goal is to test
the interference-plus-noise hypothesis (H0) against a signal-
plus-interference-plus-noise hypothesis (H1), it is important
to derive the test statistics for both hypotheses. For a given
time, let s, i and n denote the unknown wideband signal, the
NBI and the Gaussian noise in the system, respectively. Note
that the time index is ignored for simplicity without loss of

1Alternatively, the same analysis can also be carried out by using Fourier
Transform. However, it is analytically simpler to use real sinusoids in order
to visualize and prove the main intuition.

generality. Suppose the NBI is a single-tone interferer with
unknown frequency and the HPF used in TKED is a simple
DC-Removal circuitry. Now, consider the case where H0 is
true, i.e. there is no unknown wideband signal present in the
received signal. Then the output of the TK operator is

ψ(i+ n) = ψ(i) + ψ(n) + ψc(i, n) (43)

where ψ(i) is the zero-frequency term resulting from single-
tone interferer (NBI), ψ(n) is the noise term and ψc(i, n) is
the noise+NBI cross-term. After passing ψ(i+ n) through
the HPF, the zero-frequency interference term ψ(i) is totally
removed from the system. The remaining high-pass filtered
terms are denoted by ψ(n)h and ψc(i, n)h. The final output
from the square-law device and the integrator is then

y(t) =
1

τ

∫ t

t−τ

|ψ(n)h + ψc(i, n)h|
2dt. (44)

The same analysis can be carried out for the case where H1

is true, i.e. the unknown wideband signal is present in the
received signal. In this case, the output of the TK operator is

ψ(s+ i+ n) = ψ(s) + ψ(i) + ψ(n) (45)
+ ψc(s, i) + ψc(s, n) + ψc(n, i)

in which ψ(s), ψc(s, i) and ψc(s, n) are the signal term, the
signal + NBI cross-term and the signal + noise cross-
term, respectively. Again employing HPF with the remaining
components in TKED, the final result can be written as

y(t) =
1

τ

∫ t

t−τ

|ψ(s)h + ψ(n)h + ψc(s, i)h (46)

+ ψc(s, n)h + ψc(n, i)h|
2dt

where the subscript h denotes the high-pass filtered terms. The
probability density functions (pdfs) of the test statistics for H0

and H1 hypotheses cannot be derived, therefore the perfor-
mance is analytically intractable. However, the the results from
Sections IV-A and IV-B are enough to justify the superiority
of TKED over ED.

V. SIMULATIONS

In order to visualize the effects of the proposed receiver
blocks in a strong NBI environment, the spectrum of the
received signal components are plotted at three different
stages of the designed detector (TKED). A modulated raised
cosine pulse with a carrier frequency of 2GHz and duration
Tp = 16ns, which has a 3dB bandwidth of 500 MHz, is
employed as the unknown UWB signal to be detected. In
order to illustrate the generality of our analysis in Section
IV-A, NBI is modeled as a narrowband Gaussian process with
a bandwidth of 40MHz. Fig. 4 depicts the spectrum of the
received signal components for an energy-to-interference-plus-
noise ratio (EINR) of 25.4dB and interference-to-noise ratio
(INR) of 8.1dB at three different stages of TKED: 1) input
signal to TK in Fig. 4(a), 2) after TK in Fig. 4(b), 3) after HPF
in Fig. 4(c). It is clear from Fig. 4(a) and Fig. 4(b) that TK
shifts the spectrum of the received signal components towards
low frequencies as was discussed in Section IV-A. The input
spectrum in Fig. 4(a) spans from 1.75MHz to 2.25Mhz,
whereas the output spectrum in Fig. 4(b) ranges from 0 to



500MHz which verifies our analysis in Section IV-A. Fig.
4(c) illustrates the effect of the HPF by which most of the
NBI component is suppressed.

(a) Input Signal

(b) After TK

(c) After HPF (Zoomed)

Fig. 4. Spectrum of received signal components in TKED

Next, computer simulations are performed to compare the
detection performance of the designed receiver with different
receiver architectures. Note that the specifications of HPF
employed in TKED are design criteria and different types
of HPF can be designed depending on the unknown signal
bandwidth and NBI, however there is no optimal design

since the parameters of NBI that may exist in the system
are unknown and can be nonstationary. Here, we employ
two different HPFs for comparison purposes. The first one
is a simple DC removal circuitry and the second one is a
sixth-order Butterworth filter with a 3dB cut-off frequency of
30MHz, where the corresponding detectors are called TKED1

and TKED2, respectively. The receiver types compared in the
simulations with their abbreviations are described in Table I.
As it was discussed before, matched-filter (MF) is considered
as the benchmark receiver for comparison purposes. The same
modulated raised cosine pulse shown in Fig. 4 is employed as
the unknown UWB signal to be detected for all scenarios. Inte-
gration window length is set to be equal to pulse duration, i.e.
τ = Tp = 16ns. Energy-to-interference-plus-noise ratio (EINR)
loss with respect to MF is considered as the performance
criteria for a given false-alarm rate (PFA) and probability
of detection (PD). For this reason, PD curves are plotted
for different receivers. The detection thresholds for different
detectors for a given PFA are computed numerically based on
10000 Monte-Carlo runs. This is a reasonable method for real
physical scenarios when there are no closed-form expressions
for the decision statistics, so that the threshold can be defined
adaptively by assuming there is no signal present for a certain
amount of time length. After the threshold selection, 1000
Monte-Carlo simulations are performed for each EINR to
find the corresponding PD.

TABLE I
COMPARED RECEIVER TYPES

Abbreviation Receiver Description
ED Energy detector

TK + ED Proposed detector with no HPF
TK + DC Removal + ED TKED1

TK + Butterworth HPF + ED TKED2

MF Matched filter

Fig. 5. No NBI present in the system (INR = −∞ dB)

In Fig. 5, performance of different detectors are compared
for a given PFA of 10−3 when there is no NBI present in
the system, i.e. background noise is the only performance
degrader. As it is clearly seen from the figure, even when
there is only background noise in the system, TKED improves



Fig. 6. Strong NBI present in the system (INR = 7.55dB)

the performance over ED by ∼ 0.7dB for a PD = 0.95.
This slight improvement is the result of signal + NBI and
signal + noise cross-terms adding positively to the signal
energy, i.e. test statistics under H1. These results verify the
discussion in Section IV-B, i.e. TK has the same effect on
wideband noise as on the UWB signal. Note also that using a
HPF has no effect on the performance since there is no NBI
in the system.

Fig. 6 compares the detection performance of detectors
under a strong NBI condition. In this scenario, there is still
background noise whose power is the same as in Fig. 5
in addition to the strong NBI (Fig. 4). Note that INR =
7.55dB, which indicates that NBI is the dominant performance
degrader in the system. In this case, for a PD = 0.95,
performance improvement of TK over ED is much significant
(∼ 3.5dB) and this improvement does even get better (∼ 5dB)
when a HPF is incorporated, where the performance is almost
identical to that of MF, i.e. EINR loss with respect to MF is
only ∼ 0.5dB. This is the performance improvement obtained
by our proposed detector architecture, TKED shown in Fig. 2.

Finally, Fig. 7 compares the EINR losses of ED and TKED
with respect to MF, for increasing NBI power (INR), given
PFA = 10−3 and PD = 0.95. It is clear from Fig. 7 that the
performance of the designed detector (TKED) approaches to
that of the MF under strong NBI environment as expected,
whereas the performance of the classical ED degrades with
increasing INR.

VI. CONCLUSION

In this work, we have designed a novel ED based receiver,
which we refer to as TKED, for UWB systems that is capable
of suppressing NBI regardless of its frequency location. This
is made possible at low-cost by incorporating two additional
preprocessing blocks to a classical ED. These preprocess-
ing blocks are easy to implement and can be implemented
in analog domain resulting in a practical and cost-effective
receiver architecture. By implementing TKED as an UWB
signal receiver, the need for existing complex NBI suppression
techniques such as frequency estimation and notch filtering are
eliminated without sacrificing any detection performance.

Fig. 7. EINR loss with respect to MF
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