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Abstract
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speakeŕs face are recorded as the speaker talks. The frequency of the tone is modified by the
velocity of the facial structures it is reflected by. The received ultrasonic signal thus contains an
entire spectrum of frequencies representing the set of all velocities of facial components. The
pattern of frequencies in the reflected signal is observed to be typical of the speaker. The cap-
tured ultrasonic signal is synchronously analyzed with the corresponding voice signal to extract
specific characteristics that can be used to identify the speaker. Experiments show that the infor-
mation this can result in significant improvements in speaker identification accuracy both under
clean conditions and in noise.
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ABSTRACT

In this paper we present a novel use of an acoustic Doppler sonar
for multi-modal speaker identification. An ultrasonic emitter directs
a 40kHz tone toward the speaker. Reflections from the speaker’s face
are recorded as the speaker talks. The frequency of the tone is mod-
ified by the velocity of the facial structures it is reflected by. The re-
ceived ultrasonic signal thus contains an entire spectrum of frequen-
cies representing the set of all velocities of facial components. The
pattern of frequencies in the reflected signal is observed to be typical
of the speaker. The captured ultrasonic signal is synchronously ana-
lyzed with the corresponding voice signal to extract specific charac-
teristics that can be used to identify the speaker. Experiments show
that the information this can result in significant improvements in
speaker identification accuracy both under clean conditions and in
noise.

Index Terms— Speaker Recognition, Speaker Verification, Ul-
trasonic Doppler Sensor.

1. INTRODUCTION

The problem of speaker identification has traditionally been treated
as one of audio classification, e.g. [1, 2]. The speech from the
speaker is parameterized into sequences of feature vectors. The se-
quences of feature vectors are classified as belonging to a particular
speaker using some classification mechanism. Research has primar-
ily focused either on deriving newer and more descriptive features
from the audio [3, 4], on the classification mechanisms and models
employed [5, 6]

It has lately been recognized that speaker identification perfor-
mance can be greatly enhanced by augmenting measurements from
the speech signal with input from other sensors, in particular a cam-
era. A variety of techniques have been proposed to integrate infor-
mation extracted from the video with that obtained from the audio.
The most obvious is to combine evidence from a face-recognition
classifier that operates on the video to evidence from the speaker ID
system that works on the audio [7]. Other techniques have explicitly
to derive speaking-related features, such as characterizations of lip
configurations, facial texture around the lips [8] etc.

Other secondary sensors such as Pmics and GEMS sensors have
been been proposed in the literature to provide measurements that
augment audio signals; however they have largely been used for
speech recognition, since they primarily produce readings that repre-
sent relatively noise-free readings of the some aspects of the speech
signal (such as a filtered version of the speech, or the excitation to
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the vocal tract) and do not provide any additional information about
the speaker that is not contained in the speech signal itself. Addition-
ally, many of them must be mounted on the person of the speaker and
are not appropriate for use in most speaker identification/verification
scenarios.

In this paper we propose the use of an entirely different type
of secondary sensor for speaker ID – an acoustic Doppler sonar
(ADS). The ADS is an inexpensive far-field sensor that can obtain
measurements of movements of a talker’s face. The ADS has previ-
ously been used successfully for voice activity detection [9]. It has
also been shown that Doppler readings can be effectively used as
secondary measurements to improve automatic speech recognition
in noise [10]. Here we show that they can be effectively used for
speaker identification as well.

The ADS consists of a high-frequency ultrasound emitter and an
acoustic transducer that is tuned to the transmitted frequency. An
ultrasound tone output by the emitter is reflected from the speaker’s
face and undergoes a Doppler frequency shift that is proportional to
normal velocity of the portion of the face that it is reflected by. The
reflected “Doppler” signal thus contains an spectrum of frequencies
that represent the motion of the speakers cheeks, lips, tongue, etc.
The pattern of movements of facial muscles while speaking is typical
of the talker. By characterizing the velocities of these movements,
the Doppler signal thus represents a signature that is quite specific
to the person. Importantly, the information present in the Doppler
signal is not directly also represented in the audio itself.

In Section 2 we describe the basic hardware setup of the ADS.
Our setup, built with off-the shelf components, costs only a few dol-
lars (US); if replicated on a large scale it can be made far cheaper. In
Section 3 we briefly discuss the Doppler principle that accounts for
the information in the measurements. In Section 4 we describe the
signal processing we employ to extract information from the Doppler
signal.

In Section 5 we describe the classification mechanism that we
employ to combine the evidences from the Doppler and the audio
signal. We use a simple Bayesian mechanism within which we com-
bine the likelihoods of features derived from the Doppler and audio
signals with with exponential weighting [11]. We describe experi-
ments in Section 6 which show that this mechanism can result in sig-
nificantly improved speaker ID than that obtained with audio alone.
Finally in Section 7 we present our conclusions.

2. THE ACOUSTIC DOPPLER SONAR

Figure 1 shows the acoustic Doppler sodar augmented microphone
that we have used in our work. It has three components. The central
component is a conventional acoustic microphone. To one side of it
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Fig. 1. The Doppler-augmented microphone used in our experi-
ments. The two devices taped to the sides of the central audio mi-
crophone are a high-frequency emitter and a high-frequency sensor.

is a ultra-sound emitter that emits a 40Khz tone. To the other side is a
high-frequency transducer (receiver) that is tuned to capture signals
around 40Khz. The microphone and transmitter are well-aligned,
and placed directly pointed to the mouth. Both the emitter and re-
ceiver have a diameter that is approximately equal to the wavelength
of the emitted 40kHz tone, and thus have a beamwidth of about 60o,
making them quite directional. Signals emitted by the 40Khz trans-
mitter are reflected by the fact and captured by the receiver. It must
be noted that the receiver also captures high-frequency harmonics
from the speech and any background noise; however these are sig-
nificantly attenuated with respect to the level of the reflected Doppler
signal in most standard operating conditions. The cost of the entire
setup shown in the Figure is not significantly greater than that of
the acoustic microphone itself: the high-frequency transmitter and
receiver both cost less than a dollar. The transmission and capture
of the Doppler signal can be performed concurrently with that of
the acoustic signal by a standard stereo sound card. Since the high-
frequency transducer is highly tuned and has a bandwidth of only
about 4Khz, the principle of band-pass sampling may be applied,
and the signal need not be sampled at more than 12Khz (although in
our experiments we have sampled the signal at 96Khz).

3. DOPPLER EFFECT ON SIGNALS REFLECTED FROM
A TALKER’S FACE

The Doppler sonar operates on the Doppler’s effect, whereby the fre-
quency perceived by a listener who is in motion relative to the signal
emitter is different from that emitted by the source. Specifically if
the source emits a frequency f that is reflected by an object mov-
ing with velocity v with respect to the transmitter, then the reflected

signal sensed at the emitter f̂ is given by

f̂ =
vs + v

vs − v
f (1)

were vs is the velocity of the sound in the medium. If the signal
is reflected by multiple objects moving at different velocities then
multiple frequencies will be sensed at the receiver.

The human face is an articulated object with multiple compo-
nents capable of moving at different velocities. When a person speaks
the articulators including but not limited to the lips, tongue, jaw
cheeks etc. move with velocities that depend on facial construction
and are typical of the speaker. The ultrasonic signal reflected off the
face of a subject has multiple frequencies each associated with one
of the moving components. This reflected signal can be mathemati-
cally modeled as

d(t) =

N�

i=1

ai(t)cos(2πfi(t) + φi) + Ψspeaker (2)

where fi is the frequency of the reflected signal from the ith articu-
lator, which is dependent on vi velocity of the component. fc is the
transmitted ultrasonic frequency. ai(t) is a time-varying reflection
coefficient that is related to the distance of the articulator from the
sensor. φi is an articulator-specific phase correction term. The term
within the summation in Equation 2 represents the sum of a number
of frequency modulated signals, where the modulating signals fi(t)
are the velocity functions of the articulators. We do not, however,
attempt to resolve the individual velocity functions via demodula-
tion. The quantity Ψspeaker is a speaker specific term that accounts
for the baseline reflection from the speaker’s face. It represents a
crude zeroth order characterization of the bumps and valleys in the
face and is not related to motion. Figure 2 shows a typical Doppler
signal captured by the receiver on our Doppler sensor. The overall
characteristics of this signal may be assumed to be typical of the
speaker.

Fig. 2. A speech signal and its spectrogram, and the corresponding
Doppler signal and its spectrogram.

4. SIGNAL PROCESSING

Two separate signals are captured by the Doppler augmented mi-
crophone – the microphone in the center captures the speech signal,
whereas the ultrasonic transducer captures the Doppler signal. Both
signals are originally sampled at 96 kHz in stereo. Since the ultra-
sonic sensor is highly frequency selective, the effective bandwidth
of the Doppler signal is less than 8kHz, centered at 40 kHz. We
therefore heterodyne the signal from the Doppler channel down by
36 kHz so that the signal is now centered at 4 kHz. Both the audio
and Doppler signals are then resampled to 16 kHz.

Different signal processing schemes are applied on the Doppler
and speech signals. We describe these below:

4.1. Doppler

The frequency characteristics of the Doppler signal vary slowly, since
the articulators that modulate its frequency are relatively slow-moving.
To capture the frequency characteristics of the Doppler signal we
therefore segment it into relatively long analysis frames of 40 ms.
Adjacent frames overlap by 75%, such that 100 such frames are ob-
tained every second. Each frame is Hamming windowed and a 1024-
point Fourier transform performed on it to obtain a 513-point power
spectral vector. The power spectrum is logarithmically compressed
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and a Discrete Cosine Transform (DCT) is applied to it. The first
40 DCT coefficents are retained to obtain a 40-dimensional cepstral
vector. Each cepstral vector is then augmented by a difference vector
as follows:

ΔCd[n] = Cd[n + 2]− Cd[n− 2]

cd[n] = [Cd[n]T ΔCd[n]T ]T (3)

where Cd[n] represents the cepstral vector of the nth analysis frame,
ΔCd[n] is the corresponding difference vector and cd[n] is the aug-
mented 80-dimensional cepstral vector. The augmented vectors are
finally used for classification.

4.2. Audio

The speech signal is parameterized similarly to the Doppler signal,
with the exception of the size of the analysis frames. The signal
is segmented into frames of 20 ms. Adjacent frames overlap by
10ms, resulting in 100 analysis frames per second. The window
shifts have been chosen to have frame-wise synchrony between the
Doppler and audio channels in our setup; however this is not essen-
tial. The frames are Hamming windowed and analyzed by a 512-
point FFT to obtain a 257 point power spectrum. Although it is
conventional in speech recognition to integrate the power spectrum
down to a Mel-frequency spectrum, we did not obtain any signifi-
cant advantage from the process in the work reported here. In the
experiments reported later in this paper the power spectrum was not
integrated into a Mel-frequency spectrum. The power spectrum is
logarithmically compressed and a DCT computed from it to obtain
a 40-dimensional cepstral vector. The cepstral vector is augmented
by a difference vector that is computed as the component-wise dif-
ference of the cepstral vectors from immediately adjacent frames as:

ΔCa[n] = Ca[n + 1]− Ca[n− 1]

ca[n] = [Ca[n]T ΔCa[n]T ]T (4)

5. CLASSIFIERS

We use a simple Bayesian formulation for speaker identification. For
each speaker, we learn a separate distribution for the feature vectors
from each of the two channels (Doppler and speech). For the pur-
pose of modeling these distributions, we assume that the sequence of
feature vectors from any channel to be IID. Specifically, we assume
that the distribution of both speech and Doppler feature vectors for
any speaker w is a Gaussian mixture of the form:

P (A|w) =
i

ca
w,iN (A; μa

w,i, R
a
w,i) (5)

P (D|w) =
i

cd
w,iN (D; μd

w,i, R
d
w,i) (6)

where A and D represent a random feature vectors derived from
speech and Doppler signals respectively. P (A|w) and P (D|w) rep-
resent the distribution of speech and Doppler feature vectors for
speaker w, respectively. N (X; μ, R) represents the value of a mul-
tivariate Gaussian with mean μ and covariance R at a point X;
μa

w,i, R
a
w,i and ca

w,i represent the mean, covariance matrix and mix-

ture weight respectively of the ith Gaussian in the distribution of
speech feature vectors for speaker w, while μd

w,i, R
d
w,i and cd

w,i rep-

resent the mean, covariance matrix and mixture weights for the ith

Gaussian in the distribution of Doppler features for the speaker. All

parameters of all distributions are learned from a small amount of
joint Doppler+speech recordings from the speaker.

Classification is performed using a simple Bayesian classifier.
Let {A D} represent the set of all speech and Doppler feature vec-
tors obtained from any test recording of a subject. The subject is
recognized as a speaker ŵ according to the rule:

ŵ = argmaxwP (w)
A,D∈A D

P (A|w)αP (D|w)1−α
(7)

where P (w) represents the a priori probability of the speaker w.
We assume the probability to be uniform for all the subjects. α is a
positive weight term that lies between 0 and 1.0 and represents the
confidence we have in the likelihood obtained from the audio mea-
surements. It can be estimated from a held-out test set. More typi-
cally, α must be varied with the background noise level: increasing
noise can affect the speech signal (or Doppler signal, if the noise has
very high frequencies and is energetic enough to be captured by the
ultrasonic sensor), and consequently, α must be varied to increase
reliance on the Doppler signal as the relative dependability of the
speech signal reduces.

Figure 3 shows the block diagram of the overall Speaker Iden-
tification system that combines evidence from both the Doppler and
speech channels.

ADS
Data Acquisition

Processing and 
Feature 

Extraction

Pattern Matching

Audio 
Speaker 
Models

Pattern Matching

Feature  Fusion
and Decision

Doppler 
Speaker 
Models

Decisionalpha

Fig. 3. Overall scheme for combining evidences from speech and
Doppler measurements for speaker ID.

6. EXPERIMENTS AND RESULTS

Experiments were conducted to evaluate the usefulness of the Doppler
signal as a secondary source of information for speaker ID. All ex-
periments were conducted on a corpus of joint Doppler and audio
recordings collected at Mitsubishi Electric Research Labs. A total
of 50 native and non-native speakers were made to record 75 sen-
tences each from the TIMIT corpus. Recordings were obtained in
a sound-proofed room. All data from a speaker were recorded in
a single session, although speakers were allowed to take breaks to
avoid vocal fatigue. The Doppler-augmented microphone was ad-
justed prior to each session to point directly at the speaker’s face.

The recorded data for each speaker were divided into two sets, a
training set of 37 utterances and a test set of 38 utterances. Gaussian
mixture densities comprising 4 Gaussians were trained for both the
Doppler and Speech from each speaker. Increasing the number of
Gaussians further was not observed to result in improvements on
this set.

A number of experiments were conducted to evaluate speaker
ID performance. In a first “base” experiment speaker ID tests were
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run on the clean test recordings for each speaker. Since the Doppler
measurements are “secondary” measurements that are not affected
by audio noise (particularly since the sensitivity of the Doppler sen-
sor to far-field noise is low), they may also be expected to improve
speaker ID performance under noisy conditions. To test this hy-
pothesis additional experiments were conducted after corrupting the
speech channels (only) of the test data with babble and white noise
to 0db and 10dB SNR. In each case α, the parameter that governs the
relative contribution of speech and Doppler to the classification was
varied. Table 1 shows the results obtained in each case for different
values of α.

Table 1. Speaker Recognition Accuracy

Clean Speech Babble White
α 0 dB 10 dB 0 dB 10 dB

0 81.63 81.63 81.63 81.63 81.63
0.2 99.41 51.36 80.53 51.21 72.45
0.5 99.63 13.59 58.49 19.10 40.41
0.8 99.34 1.84 32.99 8.30 15.36
1 99.19 0.22 17.34 3.97 7.71

Surprisingly, we observe that speaker ID performance using just
the Doppler signal (α = 0) is quite high, at 81.63%. On clean
speech, while the speaker ID performance with speech alone is quite
high, augmenting the speech signal with the Doppler at α = 0.5 re-
sults in further improvement, reducing the error by 54% relative to
that obtained with speech alone.

The addition of any noise at all to the speech results in dramatic
reduction of performance of speech-only speaker identification. In
all cases we are simply better off depending only on the Doppler
data for speaker ID (α = 0). The results are however, not surpris-
ing since the Doppler signal itself was not corrupted. Nevertheless,
considering the relative insensitivity of the Doppler sensor to noise,
it may be expected that in real-life noisy scenarios, the use of sec-
ondary Doppler information could improve speaker ID performance
significantly.

7. DISCUSSION

We note overall that the Doppler sonar is an effective secondary
sensor that can effectively augment speech signals for greatly im-
proved speaker identification. The type of information captured by
the sonar is fundamentally different from that in the speech signal
itself. Consequently, it is able to augment the speech signal and im-
prove speaker ID performance even in clean conditions. Under noisy
conditions, the Doppler information may be expected to be of even
higher value.

Further, we speculate that in combination with a camera it might
result in greater improvements still. Although the Doppler sonar
captures features related to the talker’s physiognomy just as a cam-
era does, the features captured by it are fundamentally different. A
camera captures a series of static images, and any image represents
a snapshot of instantaneous pose. The velocities of various parts of
the face must be arrived at by differentiation. The Doppler sensor, on
the other hand captures instantaneous velocities. Thus, the Doppler
measurements are orthogonal to those obtained by the camera, and
the Doppler sensor may, in fact, be complimentary to the camera.

The Doppler sensor also does not have some of the problems
associated with cameras: since the sensor is active (the ultrasonic
is being beamed on the face), it does not require external signal

sources, unlike cameras that cannot work in the dark. Since we cap-
ture the movements of the entire face, and reflections from objects
farther from the face are typically very attenuated, there is no need to
explicitly extract face-related components from the signal. Feature
extraction is also not a problem – the simple technique described
in Section 4 suffices. Since the emitter and receiver are collocated
some of the registration/lighting issues associated with cameras do
not occur.

The Doppler sensor nevertheless is susceptible both to reflec-
tions from clutter and other generators of signals in the frequency
range it operates on. As part of future work, we will be addressing
the issue of eliminating clutter from the signal. Further, variations
in the angle of the speakers face affect measurements – the sensed
velocities depend on the angle of the face. We expect that we can
normalize out some of these variations at least through the use of
adaptive transformations of the captured spectra, and through the
use of multiple ultrasonic receivers. These and other issues will the
topics of future research.
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