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Abstract
A person’s gait is a characteristic that might be employed to iden-
tify him/her automatically. Conventionally, automatic techniques
for gait-based identification of subjects employ video and image
processing to characterize gait. In this paper we present an Acous-
tic Doppler Sensor(ADS) based technique for the characterization
of gait. The ADS is very inexpensive sensor that can be built us-
ing off-the-shelf components, for under $20 USD at today’s prices.
We show that remarkably good gait recognition is possible with the
ADS sensor.

1. INTRODUCTION

“Gait” is defined as a person’s manner of walking. In her seminal
studies, Murray [1] proposed that the totality of a person’s gait,
including the entire cycle of motion, is a unique and identifying
characteristic. In another early study, Johansson [2] attached lights
to the joints of human subjects and demonstrated that observers
could recognize the subjects from just the moving light display.

In this paper we deal with the topic of automatic identification
of subjects through observation of their gait (we will generically
refer to this topic as “gait recognition”). Gait is by nature a very
variable phenomenon, affected by varied factors such as the attire
of the subject, the speed of walking, or even their state of mind
[12], making it generally difficult to recognize automatically. Even
in the best scenario where the subject is walking with a measured
regular stride, gait recognition can be affected by the view point
and the orientation of the sensor used to take measurements.

Traditionally, the identification of gait has been considered a
visual phenomenon – it is a characteristic of a person that must be
seen to be recognized. Correspondingly, most current algorithms
for automatic identification of gait work from visual imagery, such
as video or image data. The procedure typically begins by spot-
ting, tracking and obtaining a silhouette of the subject in the field
of view.

A set of features are then obtained from the silhouettes. “Model-
based” feature extraction methods impose human-like structures,
that are represented as stick models (e.g. [3], [4]), ellipse-based
representations (e.g. [5]), etc. Physiologically-motivated features
such as joint angles, limb spacing etc. are then derived from the
models. “Model-free” feature extraction methods simply attempt
to derive features from the silhouettes through a variety of dimen-
sionality reduction methods, e.g through self-similarity plots [6],
Euclidean distances from key frames [7], direct normalization of
the silhouettes [8], extraction of additional spatio-temporal repre-
sentations [9], etc. Recognition of the subject is performed using
classifiers such as K-nearest neighbours, HMMs etc.

In the visual paradigm, gait is captured through a sequence
of images, each of which represents an instantaneous capture of
static pose, rather than movement. Any measurements of move-
ment must be deduced from the sequence of poses. An alternative
approach to gait recognition does not use visual information, but
captures gait-related motion (rather than pose) directly through a
continuous wave (CW) radar [10] [11]. A high-frequency EM tone
is incident on the walking subject. The motion of the walker in-
duces a Doppler shift in the frequency of the reflected tone, which
is detected at a sensor. Thus, rather than instantaneous pose, the
CW radar captures instantaneous velocities of moving body parts.

Conventional wisdom is that high frequencies, such as those
used in radars, are required for adequate Doppler-based measure-
ment of the low velocities that compose gait-related motion. In this
paper, we present an acoustic Doppler based gait recognition sys-
tem that works from low-frequency ultrasonic tones, rather than
EM radar. The device can be built at very low cost using off-the-
shelf acoustic devices and low-frequency audio-range sampling.
We demonstrate that the proposed mechanism can provide highly
accurate gait recognition, even using only simple signal processing
schemes that are conventionally employed for radio communica-
tion, and an equally simple Bayesian classifier.

The paper is organized as follows section 2 describes the Doppler
principle underlying the proposed ultrasonic sensing mechanism
for gait. Section 3 describes the acoustic Doppler sensor (ADS)
used, Section 4 describes the signal processing used to extract
measurements from the signal captured by signal and Section 5
presents experimental evidence of the effectiveness of the device.
Section 6 discusses the benefits and limitations of the ADS as com-
pared to the traditional techniques.

2. THE DOPPLER EFFECT AND GAIT MEASUREMENT

The Doppler effect is the phenomenon whereby the frequency of
a wave that is perceived by an observer who is moving relative
to a source is different from that originally emitted by the source.
So also, if the source and observer are collocated and the emitted
wave is reflected by a moving target, the frequency of the reflected
signal perceived by the observer is different from that originally
emitted. Specifically, if a sound source emits a frequency f that is
reflected by an object moving with velocity v with respect to the
emitter, the frequency f̂ sensed by a listener collocated with the
emitter is shifted with respect to the original frequency f , and is
given by

f̂ =
vs + v

vs − v
f ≈

(
1 +

2v

vs

)
f, (1)

where vs is the speed of sound in the medium. The approximation
to the right in Equation (1) holds true if v � vs. If the signal is



reflected by multiple objects moving with different velocities, the
signal that is sensed will contain multiple frequencies, one from
each object.

A human body is an articulated object, comprising a number of
rigid bones connected by joints. Figure 1 illustrates this through
an articulated model of various poses of a human walking. During
the act of walking the structure moves cyclically from peak stride,
where most parts are moving at the overall velocity of the walker
(and have minimal velocity relative to one another), to midstride,
where the left arm and leg may be moving in opposition to the right
arm and leg. From the perspective of an observer directly ahead
of the walker, the velocities of the various parts would appear to
vary cyclically, where the amplitude of the cycles depends on the
distance of the part from its “hinge”. For instance, the velocity of
the foot would be observed to undergo larger swings than a point
just below the knee.

mid stride  (all parts  moving  relative  to  one  another)

peak   stride  (most  parts  not  moving  in  relation  to  one  another)

Figure 1: Articulated model of a walking person

When a continuous tone is incident on a walking person, the
reflected signal contains a spectrum of frequencies arising from
the Doppler shifts of the carrier tone by the velocities of various
moving body parts. Figure 2 shows the spectrum of the reflected
signal obtained at peak and mid strides when a 40kHz ultrasonic
tone is incident on a walker. As expected, at peak stride, the re-
flected signal shows a relatively narrow band of frequencies with
a distinct peak representing the average velocity of the walker. A
second peak representing the reflection of the carrier frequency
from other static objects is also observed. At mid stride all parts of
the body are moving with respect to one another and the reflected
signal shows a wider range of frequencies without a clear peak
besides the reflected carrier signal.
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Figure 2: Doppler spectra of peak and mid stride

Figure 3 shows spectrographic representations of reflections of
a 40kHz tone incident on two walkers, as they walk toward and
away from the ultrasonic sensor. In the figures the horizontal axes
represent time, the vertical axes represent frequency and the colour
at any point represents the energy of the signal at that time and
frequency. The figures thus show how the spectra of the reflected
signals change as a function of time. We observe cyclic patterns in
the spectrograms. Each cycle represents a stride.

Time (secs) Time (secs)3 30 0

40kHz

40kHz
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Toward 
Sensor

Away  
from 
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Figure 3: Doppler spectrograms for two walkers. Top left: Walker
A walking towards sensor. Bottom left: Walker A walking away
from sensor. Top right: Walker B walking towards sensor. Bottom
right: Walker B walking away from sensor.

The patterns observed in the spectrograms in figure 3 are typi-
cal of the walker. The spectrograms for both walkers exhibit sim-
ilar cyclic behavior, but the energy distribution in spectrograms
are very different. This difference results from the physical char-
acteristics of the individuals and the rate at which their articula-
tors move – these physical features are responsible for induced
the Doppler shifts in the reflected signals. It is this difference in
Doppler spectral signatures that we utilize to identify the walker.

3. THE ACOUSTIC DOPPLER SONAR

We utilize the Doppler effect of gait on ultrasound signals to iden-
tify walkers. Our “acoustic Doppler sensor” (ADS) is built pri-
marily from off-the shelf components and may be plugged into
the sound card of any standard PC for signal capture. The entire
device can be constructed for less than $20 in the lab.

Figure 4 shows the block diagram of the acoustic Doppler de-
vice we use for gait recognition. It comprises an ultrasound emit-
ter, an oscillator and an ultrasonic sensor. In our setup, the emitter
is an off-the shelf MA40A3S ultrasound emitter with a resonant
frequency of 40kHz. The oscillator is a PIC10F206 microcon-
troller that has been programmed to produce a square wave with a
duty cycle of 50% on one of its pins. Since the emitter is highly
resonant, it produces a nearly perfect sinusoid even when excited
by a square wave. The receiver is an MA40A3R ultrasound sen-
sor that can sense frequencies in a narrow frequency band around
40kHz, with a 3dB bandwidth of less than 3000Hz. The relatively
narrow bandwidth of the sensor ensures that it does not pick up
out-of-band noise. The signal captured by the sensor is multiplied



by a 36kHz tone, also produced by a PIC microcontroller. Multi-
plication may be achieved programatically using the PIC processor
itself, or through a separate analog multiplier. Signal components
outside the 0-8kHz range in the multiplied signal are filtered out
by a low-pass filter. The low-pass filtered signal is then fed to the
sound card of a PC for signal capture. In practice, the low pass fil-
ter shown can be omitted since most sound-cards have and an an-
tialiasing filter that can take care of removing the high frequency
components.

Figure 4: The Acoustic Doppler Sensor

The device is set up such that the emitted ultrasound tone is
incident directly upon the walker, at about waist height. The re-
flected signal (the “Doppler signal”) is captured by the ultrasonic
sensor. The gait-related Doppler-shifted frequencies in the re-
ceived signal lie mainly in the 40kHz ± 2Hz range. The narrow-
band receiver automatically attenuates frequencies outside this range.
The signal is heterodyned down to a centre frequency of 4kHz by
the multiplier and low-pass filter, and finally sampled at 16kHz at
16-bit precision.

The MA40A3S transmitter has a diameter that is approximately
equal to the wavelength of a 40kHz tone and has a beamwidth of
about 60o. Targets outside the beam are not sensed through di-
rect reflection. The MA403R sensor also has a similar beamwidth
further reducing the effect of reflections from objects outside the
beam. The range at which reliable readings may be obtained de-
pends on level of the voltage used to drive the PIC processor (and
thereby the voltage level of the 40kHz signal generated by it). With
a voltage level of 5V, we have been able to obtain reliable Doppler
readings from distances of up to 15m. Greater ranges may be ob-
tained using oscillators that can generate signals of higher peak-
to-peak voltage. As the range increases, readings may however be
corrupted by the incidental movement of other objects within the
beam.

4. GAIT RECOGNITION

In order to recognize a subject from Doppler measurements of
their gait, we follow a two-step process. In the first signal-processing
step we compute a set of “features” from the Doppler signal. In
the second we classify these features using a Bayesian classifier.
We describe both steps below.

4.1. Signal Processing

The spectrographic representations shown in Figures 2 and 3 can,
in fact, be viewed as velocity spectra of a subject’s gait. Each fre-
quency in the signal represents the Doppler shift of the carrier fre-
quency by a specific velocity. The energy in the frequency compo-
nent is the sum energy of reflections from all body parts moving at
that velocity. The spectrogram thus has all the information relating
to the patterns of gait-related velocities of a subject’s limbs. In ear-
lier EM-radar-based approaches to gait recognition [11], (transfor-
mations of) the spectral vectors comprising the spectrogram have
themselves been directly used as characterizations of gait. How-
ever, for the acoustic Doppler sensor, we find that that direct char-
acterization of these spectra as features does not result in the best
gait recognition. Better performance is obtained by demodulat-
ing the captured Doppler signal to emphasize the contribution of
various velocities.

We note that the Doppler signal is, in fact, the sum of sev-
eral frequency modulated signals – each moving body part mod-
ulates the frequency of the incident tone according to its velocity.
We therefore demodulate the Doppler signal using a standard pro-
cedure for FM demodulation, comprising differentiation and AM
demodulation of the signal. The effect of the demodulation may
be explained as follows.

If we model the walker’s structure as consisting of N moving
parts, such that the ith part has a time-varying velocity vi, the
signal d(t) sensed by the receiver is the sum of the reflections from
all parts and can be written as :

d(t) =
∑

i

ai sin

(
2πfc

(
t +

2

vs

∫ t

0

vi(τ)dτ
)

+ φi

)
(2)

Equation (2) utilizes the approximate form of the Doppler equation
given in Equation (1). ai is the amplitude of the signal reflected
by the ith component and is related to its distance from the sensor.
Although ai is also time-varying, the changes are relatively slow
compared to the cosine terms. φi is a phase term representing
the relative phase differences between the signals reflected by the
various body parts in motion. fc is the carrier frequency. Note that
as a result of the heterodyning in the final stage of the circuit in
Figure 4, fc is in fact 4kHz and not 40kHz.

To frequency demodulate d(t), we differentiate it and ampli-
tude demodulate the differentiated signal by multiplying it by a
sinusoid of frequency fc and low pass filtering it. This process
yields y(t):

y(t) = LPF
(
sin(2πfct)

d
dt

d(t)
)

= −
∑

i 2πaifc

(
1 + 2vi(t)

vs

)
sin

(
2πfc
vs

∫ t

0
vi(τ)dτ + φi

)
(3)

where LPF represents the low-pass-filtering operation. We have
assumed here that the time derivative of ai is negligible compared
to other terms. Note that each velocity-related frequency compo-
nent of y(t) is no multiplicatively enhanced by the velocity itself.

Traditionally Doppler sensors have been used to track targets
(cars, air-planes). In target tracking applications it is usually nec-
essary to extract information about each target, and hence to track
all corresponding Doppler shifts. In contrast, here, although we
have multiple articulators (arms, legs, hips and various joints) all
moving simultaneously, we are not interested in tracking them



individually. Our goal is to use this information collectively to
characterize the gait and perform recognition. Thus, although the
demodulated signal y(t) actually represents an ensemble of fre-
quency demodulated signals, no further decomposition is required.

The demodulated signal y(t) is segmented into frames of 64ms.
The frames are relatively wide due to the slow varying nature
of the signal. Adjacent frames overlap by 50%. Frames are ta-
pered by a Hamming window and their Fourier spectra computed
through a 1024-point FFT. A 513-point power spectrum is derived
from the Fourier spectra. The power spectral vectors are com-
pressed by a logarithm and decorrelated through a Discrete Cosine
Transform (DCT) to obtain a cepstral vector. Only the first 40 co-
efficients of the cepstral vectors are retained. Each 40-dimensional
cepstral vector is augmented by a 1st order difference vector com-
puted as the difference between vectors on either side of it. The
resulting 80-dimensional vectors are the final set of feature vectors
used to represent the signal.

4.2. Bayesian Classification

We model the distribution of the feature vectors obtained from the
Doppler signal for any walker w by a Gaussian Mixture Model
(GMM):

P (X|w) =
∑

i

cw,iN (X; µw,i, σw,i) (4)

where X represents a feature vector, P (X|w) represents the dis-
tribution of feature vectors for walker w, N (X; µ, σ) represents
the value of a multivariate Gaussian with mean µ and variance σ
at a point X , and µw,i, σw,i and cw,i represent the mean, variance
and mixture weight respectively of the ith Gaussian in the distribu-
tion for walker w. This model ignores any temporal dependencies
between the vectors and models them as iid.

We represent the two cases of the walker approaching and mov-
ing away from the sensor separately and model them by separate
GMMs. The parameters of both GMMs are learned from a small
set of training recordings for the walker using the Expectation
Maximization algorithm.

Once the parameters of the Gaussian mixture models for all
walkers are learned, subsequent recordings are classified using a
simple Bayesian classifer. Let {X} represent the set of feature
vectors obtained from a Doppler recording of a subject. The sub-
ject is recognized as a walker ŵ according to the rule:

ŵ = argmaxwP (w)
∏

X∈X

P (X|w) (5)

where P (w) represents the a priori probability of walker w. Typ-
ically, P (w) is assumed to be uniform across all subjects, since it
may not be reasonable to make any assumptions about the identity
of the walker a priori. Since separate GMMs are used to model the
cases of the subject approaching or moving away from the sensor,
the classifier not only identifies the subject but also, implicitly, the
direction of their movement.

The simple Bayesian formulation above can also be applied to
identify classes of subjects, rather than individual subjects. For
instance, one may attempt to identify gender of the classifier. In
this case separate GMMs would be learnt for the two genders.

5. EXPERIMENTS

Experiments were conducted to evaluate the proposed acoustic
Doppler based gait recognition technique. Data was collected in
different settings and locations. This was done to reduce the im-
pact of background scatter and to check what effect it might have
on the accuracy and performance of the algorithm. A total of 30
subjects were asked to walk towards and away from the sensor.
The distance walked by the subjects was approximately 5m in each
direction, at a distance of 2-7m from the sensor. Roughly half of
the subjects were female and the rest were male.Subjects varied in
height from 1.5m to 1.93m in height.

A total of 20 recordings were obtained from each subject, ten
each of the subject approaching and walking away from the sen-
sor. Each recording was approximately 3 seconds long. Half the
recordings were used for training and the other half was used for
testing. Separate Gaussian mixture distributions were trained for
the approach and away cases from the corresponding five training
recordings

Although the previous sections of this paper have been pre-
sented primarily from the perspective of identifying individual sub-
jects through their gait, the same principle can, in fact, be used
to recognize classes of subjects or motion, simply by learning
the distributions for the classes from the ensemble of all training
recordings for that class. For the experiments reported here, two
additional classification tasks were attempted in addition to sub-
ject identification. In the first, a classifier was built to distinguish
between approach (subjects walking toward the sensor) and away
(subjects walking away from the sensor). In the second a classifier
was trained to distinguish between male and female subjects1.

The results of the classification are presented under the columns
titled “FM DEMOD” in Table 1.

The acoustic Doppler sensor is observed to be highly accurate
at identifying walkers from their gait, identifying the subject and
correctly well over 90% of the time. It is also able to determine
if the walker is approaching the sensor or moving away from it.
This accuracy can be improved to 100% if we couple classification
readings with the reflected energy contours. It is interesting to note
that it is significantly better than random at identifying the gender
of the walker from the gait.

In a second experiment, cepstral features (inclusive of differ-
ence vectors) were derived directly from the spectrum of the Doppler
signal, without FM demodulating it. This would correspond to the
kind of features used in [11]. The aim of this experiment was
to establish the utility of the FM demodulation described in Sec-
tion 4.1. These results are reported in the columns under “With-
out DEMOD” in table 1. We note that the results obtained with-
out demodulation are much worse than those obtained when the
Doppler signal is FM demodulated, except for the “Approach vs.
away” experiment. In this latter case improvements are not to be
expected from the demodulation since the classifier mainly identi-
fies whether the bulk of the spectral energy has shifted above the
carrier frequency or below it – a pattern that is not modified by
the demodulation – rather than the actual spectral contours in the
signal.

1Note that in principle both direction and gender are directly inferrable
from the results of the subject identification experiment, since toward and
away movements were separately modelled for each subject, and a sub-
ject’s identity also includes their gender. However for the experiments
reported in this paper, generic classifiers were trained



Table 1: Classification results for acoustic Doppler sensor. The “FM DEMOD” columns show the results obtained with features computed
from FM demodulated signals. The “Without DEMOD” columns show results obtained with features derived directly from the spectra of
the Doppler signal.

Experiment No. Evaluated FM DEMOD Without DEMOD
Correctly Classified Percent correct Correctly Cassified Percent Correct

Walker identification 300 275 91.66 216 72.0
Approach vs. away 300 289 96.33 289 96.33

Male vs. Female 300 242 80.66 206 68.66

6. DISCUSSION AND FUTURE WORK

Our experiments show that the proposed acoustic Doppler based
gait recognition mechanism can be surprisingly good at multi-
ple gait-recognition tasks, including fine-resolution tasks such as
walker identification and coarse tasks such as recognizing the gen-
der of the walker. The results must however be considered with
a caveat – all subjects walked with a normal stride more or less
directly towards or away from the sensor. It remains to be de-
termined if the mechanism would be equally effective if the gait
mode were to vary (e.g. if subjects were to walk hurriedly or run).
The tolerance of the sensing mechanism to variations in direction
of approach is yet unclear. Since all recordings of a subject were
obtained in a single session there was no variation in the cloth-
ing of subjects between training and test. The sensitivity of the
mechanism to variations in clothing remains to be evaluated.

Regardless we believe that the ADS-based gait classifier is a
promising avenue for future exploration. In particular, we hypoth-
esize that Doppler-based gait recognition might be used synergisti-
cally with vision-based gait recognition systems since the two are
almost complimentary in their capabilities and drawbacks:
1. Direction of approach: Vision-based systems works best when
the subject is walking in a plane perpendicular to the vector from
the subject to the camera, so that the entire range of movement
of arms and legs can be captured. Doppler-based systems, on the
other hand, are most effective when the subject is moving directly
towards the sensor as velocities perpendicular to the vector to the
sensor are undetectable.
2. Background effects: Vision-based algorithms are highly depen-
dent on the ability to extract and track the silhouette of the subject
accurately. Various phenomena such as shadows, the layout of the
background, etc. can all affect accurate tracking. On the other
hand, Doppler-based devices are relatively insensitive to constant
background effects, as these can usually be eliminated as clutter.
3. Secondary Moving Components in the scene: Both vision and
Doppler-based mechanisms are affected by secondary moving ob-
jects in the range of the sensor. However, in vision-based algo-
rithms it is possible to remove secondary objects by tracking and
segmenting out the target walker, contingent to the availability and
use of a suitable algorithm. It is currently however not possible to
isolate secondary motion present in the field of view of the ultra-
sonic sensor.
4. Operating Conditions: Unless the sensor is capable of capturing
video in low/no light conditions it is not possible for vision based
gait sensor to operate in such conditions. The ADS can however
operate in low/no light conditions.

One advantage of the ADS lies in its cost – we estimate that if
produced in bulk ADS devices could be manufactured for under

$5 USD (as of 2007). Their energy consumption is also minimal.
Consequently they can be deployed in remote sensing application
where recovery of the device may or may not be possible.

One restriction of the ADS is its range. Geisheimer et. al. [10]
state that they are able to detect gait at a distances of over 100m
using an EM radar. However, by being acoustic in nature, the ADS
has a much lower range of the order of 10m. While it is possible
to increase its range by increasing the energy of the emitted ultra-
sonic signal, the exact extent to which it may be extended is as yet
unknown.

There is still great scope to improve the performance of the
ADS sensor beyond that demonstrated in this paper. Our current
models do not utilize temporal patterns in the recordings. By mod-
elling temporal patterns in the spectra explicitly, significantly im-
proved classification may be expected. We currently employ only
one sensor. By capturing the reflected signals using multiple sepa-
rated sensors greater robustness to direction of approach and noise
may be expected. We also believe that it is possible to identify
multiple subjects walking simultaneously using signal processing
techniques such as those in [13]. All of these issues are currently
under investigation.
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