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Abstract
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ABSTRACT

In this paper we present an example-driven algorithm that
allows the recovery of wide regions of lost spectral compo-
nents in bandlimited signals. We present a generative spec-
tral model which allows the extraction of salient informa-
tion from audio snippets, and then apply this information to
enhance the bandwidth of bandlimited signals.

1. INTRODUCTION

With the advent of network-enabled audio systems we have
also entered a new era of poor audio quality! We now fre-
quently experience devices like cell phones, or chat pro-
grams that due to networking limitations transfer audio with
suboptimal bandwidths. Although undoubtedly this limi-
tation will be resolved in time there is currently a desire
for audio enhancing post-processing. In this paper we will
present a novel way of bandwidth expansion and contrast its
abilities with known and obvious approaches.

The paper is structured as follows. We first present the
problem at hand and then proceed to explain some methods
that have been used to resolve it in the past. We then present
the computational core that we will use and how to apply
it in this particular problem. We conclude by presenting
results and performance comparisons and discussion some
of the elements regarding future work in this subject.

2. BANDWIDTH EXPANSION

2.1. Problem definition

Audio signals such as music are best appreciated in full
bandwidth. A low frequency response and the presence of
high frequencies are universally understood to be elements
of high quality audio. Quite often though this wide fre-
quency content is not available. We often find signals sam-
pled at a low sampling rate (thereby losing high frequency
information), or signals that undergo some processing or
distortion which removes certain frequency regions. The
goal of bandwidth expansion is to recover the missing fre-
quency band information. Although is isn’t the only case,

the most common one is that of recovering missing high fre-
quencies (usually when we attempt resampling from a low
sample rate to a higher one). As one might expect coming
up with the missing frequency data is not straightforward.
This is information which is lost and cannot be inferred.

The problem of bandwidth expansion has hitherto been
considered chiefly in the context of speech signals. Tele-
phone bandwidth speech signals typically only contain fre-
quency components between 300Hz and about 3500Hz (the
exact frequencies vary for landlines and cellphones, but re-
main below 4kHz in all cases). Bandwidth expansion tech-
niques attempt to fill in the frequency components below the
lower cutoff and above the upper cutoff, in order to deliver
a fuller-bodied sounding signal to the listener. The goal has
been primarily that of enriching the perceptual quality of the
signal, and not so much high-fidelity reconstruction of the
missing frequency bands.

2.2. Data agnostic methods

The simplest methods for expanding the spectrum of a sig-
nal do so by applying a memory-less nonlinearity, such as a
sigmoid or a rectifier, to the signal [1]. This has the prop-
erty of aliasing low-frequency components into high fre-
quencies. The synthesized high-frequency components are
rendered more natural through spectral shaping and other
smoothing methods and added back to the original band-
limited signal. Although these methods do not make any
explicit assumptions about the data, they are only effective
at extending existing harmonic structures in a signal and are
ineffective for broadband sounds such as fricated speech or
drums, whose spectral textures at high frequencies different
from those at lower ones.

2.3. Example-driven methods

Theexample-driven approach attempts to derive unseen fre-
quencies in the signal from their statistical dependencies
on the observed frequencies. These dependencies are vari-
ously captured through codebooks [2], coupled HMM struc-
tures [3], Gaussian mixture models [4] etc., the parame-
ters of which are typically learned from a corpus of parallel



broadband and narrow-band recordings. In order to capture
both the spectral envelope and the finer harmonic structure
the signal is typically represented through linear predictive
models that can be extended into unseen frequencies and
excited with the excitation of the original signal itself.

2.4. Limitations of current methods

All of these methods are directed primarily towards mono-
phonic signals such as speech,i.e. signals that have been
generated by a single source and can be expected to ex-
hibit consistency of spectral structures within any analy-
sis frame. For instance, the signal in any frame of voiced
speech includes the contributions of the harmonics of only
a single pitch frequency. It may be expected that aliasing
through non-linearities can correctly extrapolate this har-
monic structure into unobserved frequencies. Similarly, the
formant structures evident in the spectral envelopes repre-
sent a single underlying phoneme. It may hence be expected
that one could learn a dictionary of these structures (that
may be represented through codebooks, GMMs, etc.) from
example data, which could thence be used to predict unseen
frequency components.

However, on more complex signals such as music that
may contain multiple independent spectral structures from
multiple sources, these methods are usually less effective
for two reasons: i) Audio such as music often contains mul-
tiple independent harmonic structures. Simple extension of
these structures through non-linearities etc. will introduce
undesirable artifacts such as spurious spectral peaks at har-
monics of beat frequencies. ii) Spectral patterns from the
multiple sources can co-occur in a nearly unlimited number
of ways in the signal. It would not be possible to capture all
possible combinations of these patterns in a single dictio-
nary. Explicit characterization of individual sources through
dictionaries is not practical since every possible combina-
tion of entries from these dictionaries must be considered
during bandwidth expansion.

In the method we describe in the next section of this
paper we resolve the issue of polyphony by automatically
separating out spectrally consistent components of complex
sounds through the use of a latent variable model. This now
allows us to expand the frequencies of individual compo-
nents separately and recombining them, thereby avoiding
both above problems.

3. BANDWIDTH EXPANSION USING A LATENT
COMPONENT ANALYSIS

In this section we will first introduce a spectral decomposi-
tion model which is appropriate for inferring missing spec-
tral data and then we will demonstrate how this model can
be used to solve the problem at hand.

3.1. Latent component analysis

The model of latent component analysis can be seen as a
multi-state generalization of the magnitude spectrum. Let
us assume that we have a time seriesx(t) with a correspond-
ing time-frequency decompositionX(ω, t). X(ω, t) may be
obtained, for instance, through a Short-time Fourier Trans-
form (STFT). The magnitude of the transform|X(ω, t)| can
be interpreted as a scaled version of two-dimensional prob-
ability distributionP (ω, t) describing the allocation of fre-
quencies across time. The marginals of this distribution
alongω andt will represent, respectively, the average spec-
tral magnitude and the energy envelope ofx(t).

We shall try to decomposeP (ω, t) into the sum of multi-
ple independent components:P (ω, t) =

∑
z
P (z)Pz(ω, t),

whereP (z) is the weight of thezth componentPz(ω, t)
in the mixture. Further, we assume that the components
Pz(ω, t) can be entirely characterized by their average spec-
trum, i.e. the frequency marginalP (ω|z), and their energy
envelope,i.e. the time marginalP (t|z). This leads us to the
following decomposition forP (ω, t):

P (ω, t) =
∑

z

P (z)P (ω|z)P (t|z) (1)

Equation 1 represents a latent-variable decomposition
with parametersP (z), P (ω|z) and P (t|z). All of these
terms can be estimated using the following Expectation-
Maximization algorithm. During the E-step we estimate:

R(ω, t, z) =
P (z)P (ω|z)P (t|z)∑

z′ P (z′)P (ω|z′)P (t|z′)
(2)

and during the M-step we obtain a refined set of estimates:

P (z) =
∑

∀ω

∑

∀t

P (ω, t)R(ω, t, z) (3)

P (ω|z) =

∑
∀t

P (ω, t)R(ω, t, z)

P (z)
(4)

P (t|z) =

∑
∀ω

P (ω, t)R(ω, t, z)

P (z)
(5)

Iterations of the above equations will result in good esti-
mates of all the unknown quantities. It should be noted that
this algorithm can be seen as a probabilistic specialization
of the well known SVD decomposition in the case where the
inputs are 2-D histograms or distributions instead of matri-
ces. It is also numerically equivalent to the Non-negative
Matrix Factorization algorithm.

Now let us examine what these new multiple marginals
can represent and where the strength of this algorithm lies
when it comes to spectral analysis. Consider the spectro-
gram in figure 1. It is a spectrogram from a piece of mu-
sic which includes multiple piano notes performed at the
same time. On the left we display the frequency marginals
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Figure 1: Latent variable frequency marginals extracted
from a piano spectrogram.

P (ω|z) we extracted from this input. One can see that the
marginals are a set of magnitude spectra that characterize
the various harmonic series in that signal. This type of anal-
ysis effectively creates a set of additive dictionary elements
that can describe the analyzed signal. The time marginals
P (t|z) describe how the relative contribution of these dic-
tionary elements change with time, and the priorsP (z) spec-
ify the overall contribution of each dictionary element to the
signal.

3.2. Bandwidth expansion procedure

As demonstrated in the previous section a latent component
analysis can be very useful in encapsulating the structure
of a complex input. We will now use this property to help
us perform bandwidth expansion using an example-based
approach. The outline of our process is as follows:

1. Given a signalx(t) with arbitrary missing frequency
bands, obtain a high-quality signalg(t) which is spec-
trally close to the desired result.

2. Compute|G(ω, t)|, a magnitude time-frequency rep-
resentation ofg(t), and estimate from it a set of fre-
quency marginalsPG(ω|z).

3. Compute|X(ω, t)|, a magnitude time-frequency rep-
resentation ofx(t), and using the already known fre-
quency marginalsPG(ω|z) try to estimate an appro-
priatePX(z) and PX(t|z). Perform the estimation
using only theω ’s where|X(ω, t)| is significant.

4. Now perform|Ŷ (ω, t)| =
∑

z
PX(z)PG(ω|z)PX(t|z)

which will reconstruct|X(ω, t)| using the high-quality
frequency marginals from the high-quality example.

5. Transform|Ŷ (ω, t)| back to the time domain to obtain
ŷ(t), a high-quality version ofx(t) according tog(t).

Now let us examine at these steps in more detail. For
a given inputx(t) which has missing frequency bands we
need to obtain a signalg(t) which will serve as an example

of what the output should sound like (in terms of quality).
For example in the case of speech it would help to use a
high-quality recording of the speaker at hand, in the case
of music one should use examples of high-quality record-
ings of music with similar instrumentation, etc. There is
no right or wrong choice of an example sound, however a
careful selection will result in better results than otherwise.
This point is true for all example-driven bandwidth expan-
sion schemes. While, due to space limitations we cannot
elaborate further, we will nevertheless stress its importance.

We denote the magnitude STFT of the low and high
quality signals by|X(ω, t)| and|G(ω, t)| respectively. Us-
ing the aforementioned algorithm we perform a latent vari-
able analysis of|G(ω, t)| and extract a set of frequency
marginalsPG(ω|z). We use a sufficiently large number of
states forz (usually around 300 states) to ensure we have
an extensive frequency marginal ‘dictionary’ for this type
of recording.PG(ω|z) can be seen as a set of spectra that
additively compose high-quality recordings of the type ex-
pressed ing(t).

We now have to use the known high-quality frequency
marginalsPG(ω|z) to improve the quality ofx(t). The as-
sumption is that the unobserved high-quality version ofx(t)
(let us call thisy(t)) is composed out of very similar dictio-
nary elements asg(t). That is we can assume that:

|Y (ω, t)| ≈
∑

z

PY (z)PG(ω|z)PY (t|z) (6)

Under this assumption we can also assume that:

|X(ω, t)| ≈
∑

z

PX(z)PG(ω|z)PX(t|z), ∀ω ∈ Ω (7)

whereΩ is the set of available frequency bands ofx(t). In
the above equation it is easy to estimatePX(z) andPX(t|z)
using the update equations (3,5) and keepingPG(ω|z) fixed
to the already known values. SincePX(z) andPX(t|z) are
not frequency specific we can estimate them using only a
small subset of the available frequencies.

OncePX(z) andPX(t|z) are estimated we can perform
a full-bandwidth reconstruction of our high-quality magni-
tude spectrogram estimate:

|Ŷ (ω, t)| =
∑

z

PX(z)PG(ω|z)PX(t|z) (8)

The final step is to obtain the time seriesŷ(t) from |Ŷ (ω, t)|.
This can be done in a variety of ways which we have not
compared conclusively. The most direct method is that of
using the estimated high-quality magnitude spectrum|Ŷ (ω, t)|
to modulate the original low-quality phase spectrum∠X(ω, t)
and performing an inverse STFT. In our experiments this ap-
proach has worked adequately well albeit with some minor
phase artifacts. A more careful approach is to appropriately
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Figure 2: Comparison of VQ and latent variable methods
with polyphonic sources. Note how the VQ cannot perform
as well since it cannot use multiple elements to describe the
additive mixture. It instead alternates between spectra of
individual notes from the training data.

manipulate∠X(ω, t) or synthesize entirely a phase spec-
trum to minimize any phase artifacts. Due to space and time
constraints we postpone the investigation of these issues to
future publications.

Finally it should be noted that there are additional op-
tions for reconstructinĝy(t). After equation (8) we can per-
form |Ŷ (ω, t)| = |X(ω, t)|, ∀ω ∈ Ω, i.e. we can retain the
original spectrum in all observed frequencies. Alternately,
we can even use a weighted average ofŷ(t) andx(t) to ob-
tain the final result. Again, these are open questions which
warrant further investigation which is however outside the
scope of this paper.

4. RESULTS

We illustrate the advantages of this technique for bandwidth
expansion with the example shown in figure 2. The leftmost
plot displays the original signal, a set of three piano notes
which overlap in time. This sound was then bandlimited
so that it only had energy in the650Hz − 1600Hz region
(second plot from the left). As an example high-bandwidth
sound we used a recording of the same piano playing vari-
ous notes. We extracted a dictionary of 300 elements using
both a VQ and a latent variable model. The two right plots
display the results of fitting each dictionary to the input.
One can see that the VQ model is having trouble dealing
with the overlapping notes since the fitting operation uses
a nearest neighbor approach which cannot combine dictio-
nary elements to approximate the input. On the other hand
the latent variable model is very effective at picking multi-
ple dictionary elements to approximate the areas with con-
current notes. Comparing the final results once can easily
see that the latent variable model has produced a superior
reconstruction as compared to a more standard VQ model.

This ability of the latent variable model to deal with
overlapping dictionary elements is what makes this an ap-

propriate model for complex sources such as music. Tradi-
tionally bandwidth expansion is evaluated on speech which
is a monophonic source where dictionary elements can be
used in succession. In more complex sources the dictionary
elements are not present in isolation. This complicates the
extraction of an accurate dictionary and the subsequent fit-
ting for the reconstruction. The latent model being a linear
additive model doesn’t exhibit any problems in extracting
or fitting overlapping dictionary elements and it thus better
suited for these problems.

To evaluate the performance of this approach we run
multiple examples and performed subjective listening tests
on a variety of bandwidth expansion cases. It was generally
agreed upon listeners that this approach performed well for
most cases. Since the results cannot be accuretely repre-
sented on paper they are available as soundfiles at:

http://www.merl.com/people/paris/be.html

5. CONCLUSIONS

In this paper we presented an example-based process to cre-
ate high-bandwidth versions of low bandwidth recordings.
We introduced the idea of a latent variable model for spec-
tral analysis and demonstrated its value for extracting and
fitting spectral dictionaries from time-frequency distribu-
tions. We showed how these dictionaries can be used to map
high-bandwidth elements to bandlimited recordings and how
to create bandwide reconstructions. As compared to the pre-
dominantly monophonic approaches to this problem we’ve
shown how this technique performs well with complex sig-
nals such as music where dictionary elements are often lin-
early added.

The authors would like to acknowledge the assistance of
Madhusudana Shashanka in preparing this work.
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