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Abstract— A simple, novel, and general method is presented
in this paper for approximating the sum of independent or
arbitrarily correlated lognormal random variables (RV) by a
single lognormal RV. The method is also shown to be applicable
for approximating the sum of lognormal-Rice and Suzuki RVs
by a single lognormal RV. A sum consisting of a mixture of the
above distributions can also be easily handled. The method uses
the moment generating function (MGF) as a tool in the approx-
imation and does so without the extremely precise numerical
computations at a large number of points that were required by
the previously proposed methods in the literature. Unlike popular
approximation methods such as the Fenton-Wilkinson method
and the Schwartz-Yeh method, which have their own respective
short-comings, the proposed method provides the parametric
flexibility to accurately approximate different portions of the
lognormal sum distribution. The accuracy of the method is
measured both visually, as has been done in the literature, as well
as quantitatively, using curve-fitting metrics. An upper bound on
the sensitivity of the method is also provided.

Index Terms— lognormal distribution, correlation, Suzuki dis-
tribution, lognormal-Rice distribution, moment methods, char-
acteristic function, moment generating function, approximation
methods, co-channel interference.

I. INTRODUCTION

THE attenuation due to shadowing in wireless channels
is often modeled by the lognormal distribution [1], [2].

Hence, in the analysis of wireless systems, one often encoun-
ters the sum of lognormal random variables (RV). For ex-
ample, it characterizes the total co-channel interference (CCI)
power from all the transmissions in neighboring cells. The
lognormal distribution is also of interest in outage probability
analysis [2, Chp. 3] and in ultra wide band systems [3]. Given
the importance of the lognormal sum distribution in wireless
communications as well as in other fields such as optics
and reliability theory, considerable efforts have been devoted
to analyze its statistical properties. While exact closed-form
expressions for the lognormal sum probability distribution
functions (PDF) are unknown, several analytical approxima-
tion methods have been proposed in the literature [4]–[9].
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The methods proposed in the literature can be broadly clas-
sified into two categories. The methods by Fenton-Wilkinson
(F-W) [4], Schwartz-Yeh (S-Y) [5], and Beaulieu-Xie [6]
approximate the lognormal sum by a single lognormal RV. The
permanence of the lognormal PDF lends further credence to
these methods [10], [11]. The methods by Farley [2], [5], Ben
Slimane [7], and Schleher [8] instead compute a compound
distribution based on the properties of the lognormal RV. The
compound distribution can be specified in several ways. For
example, the methods in [5], [7] specify the approximating
distribution in terms of strict lower bounds of the cumulative
distribution function (CDF), while [8] partitions the range of
the lognormal sum into three segments, with each segment
being approximated by a distinct lognormal RV.

Beaulieu et al. [6], [12] have studied in detail the accuracy
of several of the above methods, and have shown that all
the methods have their own advantages and disadvantages
– none is unquestionably better than the others. The F-W
method is inaccurate for estimating the CDF for small values
of the argument, while the S-Y method is inaccurate for
estimating the complementary CDF (CCDF) for large values
of the argument. The Farley’s method and, more generally,
the formulae derived in [7] are strict bounds on the CDF that
can be loose approximations for certain typical parameters
of interest. The methods also differ considerably in their
complexity. For example, the S-Y method involves solving
non-linear equations and requires an iterative procedure to
handle the sum of more than two RVs. Only the F-W method
offers a closed-form solution for calculating the underlying
parameters of the approximating lognormal PDF.

That the MGF (CF) of a sum of independent RVs can be
written as the product of the MGFs (CFs) of the individual
RVs [13] is another property that has been exploited by
methods proposed in the literature [6], [11]. However, as
we discuss below, the methods require extremely accurate
numerical computation at a sufficiently large number of points
and are quite involved.1 Moreover, the CF-based methods
proposed so far are fundamentally limited to the case in which
the lognormal RVs are independent.

Barakat [11] applied an inverse Fourier transform to the
product of the lognormal CFs to determine the PDF of
lognormal sum. The individual lognormal CFs were computed
numerically using a Taylor series expansion. However, the
oscillatory property of the Fourier integrand as well as the slow
decay rate of the lognormal PDF tail, made the numerical eval-

1While the CF is a special case of the MGF, we choose to treat the two as
separate to keep the discussion clear.

1536-1276/07$25.00 c© 2007 IEEE



MEHTA et al.: APPROXIMATING A SUM OF RANDOM VARIABLES WITH A LOGNORMAL 2691

uation difficult and inaccurate [6]. Also, given the numerical
approach, no analytical expressions of the approximate distri-
bution were provided. A similar approach was also suggested
by Anderson [14]. Beaulieu-Xie’s [6] elegant and conceptually
simple method calculates the composite CDF by numerically
evaluating the inverse Fourier transform of the lognormal sum
at several points. The very high numerical precision required
is achieved using a modified Clenshaw-Curtis method. The
composite CDF is then plotted on ‘lognormal paper’, in which
the lognormal PDF appears as a straight line. The parameters
of the approximating lognormal distribution are determined
by minimizing the maximum (minimax) error in a given
interval. While the method is optimal in the minimax sense
on lognormal paper, this does not imply optimality in directly
matching the probability distribution.

This paper makes the following contributions. First, we
present a general method that uses the MGF as a tool to ap-
proximate the distribution of a sum of independent lognormal
RVs by a single lognormal RV. The method is motivated by an
interpretation of the metrics used by the F-W and S-Y methods
as weighted integrals of the PDF. By using an approximate
and short Gauss-Hermite expansion of the lognormal MGF,
the proposed method circumvents the requirement for very
precise numerical computations at a large number of points.
It is not recursive, it is numerically stable and, as we show,
very accurate. The method also offers considerable flexibility
compared to previous approaches in matching different regions
of the probability distribution.

Second, we show that our method is also a powerful tool
for accurately approximating the sum of correlated lognormal
RVs by a single lognormal RV. Third, we show that the
proposed method is comprehensive enough to also approxi-
mate – by a lognormal RV – the sum of independent Suzuki
RVs [15] and, more generally, the sum of lognormal-Rice
RVs. It does so more accurately than previously proposed
methods, as we discuss later. The proposed method can also
handle the sum of a mixture of lognormal RVs, Suzuki RVs,
and lognormal-Rice RVs. Finally, we compare the accuracy
of the proposed lognormal approximation method with others
using curve-fitting metrics defined over a region of interest.
A general sensitivity analysis is also provided in the paper
to study the impact of errors or changes in parameters on the
accuracy of the method, and an upper bound for the sensitivity
is derived. The proposed method has applications in spectral
efficiency analysis of cellular systems [16], co-channel inter-
ference modeling, determining cell coverage in interference-
limited cells [2], and signal outage probability evaluation in
dispersive environments when different multipaths undergo
different shadowing. Another useful application is cooperative
networks in which the channels between the relays and the
source/destination have different shadowing gains [17].

The paper is organized as follows: Section II reviews the
lognormal sum approximation methods in the literature and
makes a key observation about their behaviors. Section III
motivates and defines the method proposed in this paper for
the case of independent lognormal RVs. Section IV handles the
case of the sum of correlated lognormal RVs, and Section V
handles the sum of Suzuki or lognormal-Rice RVs. Numerical
examples are used in Section VI to compare it with other

methods and to demonstrate its accuracy. Section VII con-
siders the accuracy of lognormal sum approximation methods
in a specified region of interest, and derives an upper bound
for the sensitivity of the method. The conclusions follow in
Section VIII.

II. UNDERSTANDING LOGNORMAL

SUM APPROXIMATION METHODS

Let Y1, . . . , YK be K independent, but not necessarily
identical, lognormal RVs with PDFs denoted by p

Yk
(x), for

1 ≤ k ≤ K , respectively. Then each Yk can be written as
100.1Xk such that Xk is a Gaussian random variable with
mean μ

Xk
dB and standard deviation σ

Xk
dB, i.e., Xk ∼

N (μXk
, σ2

Xk
). Since the K lognormal RVs are independently

distributed, the PDF of the lognormal sum
∑K

k=1 Yk is given
by

p(�K
k=1 Yk)(x) = pY1(x) ⊗ pY2(x) ⊗ . . . ⊗ pYK (x), (1)

where ⊗ denotes the convolution operation.
General closed-form expressions for the sum PDF are not

known. However, it has been recognized that the lognormal
sum can be well approximated by a new lognormal RV Y =
100.1X , where X is a Gaussian RV with mean μ

X
and variance

σ2
X

. The pdf of Y takes the form

pY (y) =
ξ

yσ
X

√
2π

exp− (ξ loge y − μ
X

)2

2σ2
X

, (2)

where ξ = 10/ loge 10 is a scaling constant. Thus, the problem
is now equivalent to estimating the lognormal moments μ

X

and σ2
X

given the corresponding statistics of the constituent
lognormal RVs, {Yk}K

k=1.
The Fenton-Wilkinson (F-W) method computes the values

of μ
X

and σ2
X

by exactly matching the first and second central
moments of Y with those of

∑K
k=1 Yk:∫ ∞

0

ypY (y)dy =
K∑

k=1

∫ ∞

0

ypYk
(y)dy, (3a)

∫ ∞

0

(y − μY )2pY (y)dy =
K∑

k=1

∫ ∞

0

(y − μYk
)2pYk

(y)dy,

(3b)

where μ
Y

and μ
Yk

are the means of Y and Yk, respectively.
While the F-W method accurately models the tail portion
(large values of Y ) of the lognormal sum PDF, it is quite
inaccurate near the head portion (small values of Y ) of the
sum PDF, especially for large values of σXk

[12]. Since the
F-W method computes the logarithmic moments μ

X
and σ

X

by matching the linear moments μ
Y

and σ
Y

, the mean square
error in μ

X
and σ

X
increases with a decrease in the spread of

the mean values or an increase in the spread of the standard
deviations of the summands [18]. The method breaks down
for σXk

> 4 dB when it tries to model the behavior of

10 log10

(∑K
k=1 Yk

)
[2].

The Schwartz-Yeh (S-Y) method instead matches the
moments in the log-domain, i.e., it equates the first
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and second central moments of 10 log10 Y with those of
10 log10(

∑K
k=1 Yk):∫ ∞

0

(log10 y) p
Y
(y)dy =

∫ ∞

0

(log10 y) p
(�K

k=1 Yk)
(y)dy,

(4a)∫ ∞

0

(10 log10 y − μX )2 pY (y)dy =∫ ∞

0

(10 log10 y − μX′ )2 p(�K
k=1 Yk)(y)dy, (4b)

where μ
X

and μ
X

′ are the mean values of X = 10 log10 Y

and X
′
= 10 log10

∑K
k=1 Yk, respectively. While the match is

exact for K = 2, an approximate iterative technique needs
to be used for K > 2. The unknowns μ

X
and σ

X
are

evaluated numerically. The S-Y method is more involved than
the F-W method because the expectation of the logarithm
sum cannot be directly written in terms of the moments of
the summands. As mentioned, the S-Y method is inaccurate
near the tail portion of the distribution function and can
significantly underestimate small values of the CCDF [12].

Since the moments can be interpreted as weighted integrals
of the PDF, both the F-W method and the S-Y method can be
generalized by the following system of equations:∫ ∞

0

wi(y)p
Y
(y)dy =

∫ ∞

0

wi(y)p
(�K

k=1 Yk)
(y)dy,

for i = 1 and 2. (5)

The F-W method uses the weight functions w1(y) = y and
w2(y) = (y − μ

Y
)2, both of which monotonically increase

with y. Thus, approximation errors in the tail portion of the
sum PDF are penalized more. This explains why the F-W
method tracks the tail portion well. On the other hand, the S-
Y method employs the weight function w1(y) = log10 y and
w2(y) = (10 log10 y − μ

X
)2. Due to the singularity of log10 y

at y = 0, mismatches near the origin are severely penalized by
both these weight functions. Compared to the F-W method,
the S-Y method also accords a lower penalty to errors in the
PDF tail. For these reasons, it does a better job tracking the
head portion of the distribution function. However, both the F-
W and the S-Y methods use fixed weight functions and offer
no way of overcoming their respective shortcomings.

Similarly, Schleher’s cumulants matching method [8] ac-
cords polynomially increasing penalties to the approximation
error in the tail portion of the PDF. This is because the
first three cumulants are, in effect, the first three central
moments. By plotting the x-axis in dB scale on lognormal
paper, the Beaulieu-Xie method also gives more weight to the
tail portion.

The weighted integral interpretations of these approximation
methods motivates the flexible and simple lognormal sum
approximation method proposed in the next section that also
exploits the desirable properties of the MGF.

III. LOGNORMAL SUM APPROXIMATION USING

GAUSS-HERMITE EXPANSION OF MGF

A. Motivation

The simplicity of the F-W method arises from the fact that
the mean and variance of a sum of independent RVs can be

0 0.5 1 1.5 2
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

x

|w
(x

)|

F−W (mean: x)

F−W (variance: x2)
S−Y |log

10
(x)|

MGF exp(−0.1x)
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Fig. 1. Weight functions employed by F-W, S-Y, and the proposed MGF-
based method.

written directly as the sum of the mean and variance of the
individual RVs. The MGF of the sum of independent RVs
also possesses this desirable property, in that it can be written
directly in terms of the MGFs of the individual RVs.

The MGF of the RV Y is defined as

ΨY (s) =
∫ ∞

0

exp(−sy)p
Y
(y)dy. (6)

It can be seen from (6) that the MGF can also be interpreted
as the weighted integral of the PDF pY (y), with the weight
function being the exponential function exp(−sy), which
monotonically decreases (in y) for real and positive values
of s. Varying Re(s) from 0 to ∞ provides a mechanism
for adjusting, as required, the penalties allocated to errors
in the head and tail portions of the sum PDF. Figure 1
compares the absolute values of the various weight functions
discussed above, in log-scale. Moreover, since the lognormal
RVs {Yk}K

k=1 are independently distributed, the MGF of the
lognormal sum

∑K
k=1 Yk can be written as

Ψ
(�K

k=1 Yk)
(s) =

K∏
k=1

Ψ
Yk

(s). (7)

Based on the discussion above, we can see that the MGF
possesses two desirable properties. First, the MGF is a
weighted integral of the PDF with an adjustable parameter,
s. Second, the MGF of the sum PDF can be easily expressed
as the product of the MGFs of the individual independent
RVs. These two properties render the MGF as a preferable
candidate for the lognormal sum approximation problem, as
we show below.

B. MGF-based Lognormal Sum Approximation

The development of the MGF-based lognormal sum ap-
proximation method requires a closed-form expression for
the MGF of lognormal RV. While no general closed-form
expression for the lognormal MGF is available, for real s,
it can be readily expressed by a series expansion based on
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Gauss-Hermite integration.2 The MGF of a lognormal RV Y
for real s can be written as

ΨY (s) =
∫ ∞

0

exp(−sy)
ξ

yσ
X

√
2π

exp
[
− (ξ loge y − μX )2

2σ2
X

]
dy,

=
∫ ∞

−∞

1√
π

exp

[
−s exp

(√
2σz + μ

ξ

)]
exp(−z2)dz,

=
N∑

n=1

wn√
π

exp

[
−s exp

(√
2σ

X
an + μ

X

ξ

)]
+ RN ,

(8)

where μ
X

and σ
X

are the mean and standard deviation of
the Gaussian RV X = 10 log10 Y . The final expression is the
Gauss-Hermite series expansion of the MGF function, N is
the Hermite integration order, and RN is a remainder term that
decreases as N increases. The weights, wn, and abscissas, an,
for N up to 20 are tabulated in [20, Tbl. 25.10]. From it, we
can define the Gauss-Hermite representation of the MGF by
removing RN as follows:

Ψ̂Y (s; μ
X

, σ
X

) �
N∑

n=1

wn√
π

exp

[
−s exp

(√
2σ

X
an + μ

X

ξ

)]
.

(9)
The lognormal sum

∑K
k=1 Yk can now be approximated

by a lognormal RV Y = 100.1X , where X ∼ N (μ
X

, σ2
X

),
by matching the MGF of Y with the MGF of the lognormal
sum

∑K
k=1 Yk at two different, real and positive values of s,

namely, s1 and s2. This sets up the following system of two
independent equations to calculate μ

X
and σ2

X
:

N∑
n=1

wn√
π

exp

[
−si exp

(√
2σ

X
an + μ

X

ξ

)]
=

K∏
k=1

Ψ̂Yk
(si; μXk

, σ
Xk

), for i = 1 and 2, (10)

where μXk
and σXk

are the known lognormal moments of
the lognormal RV Yk = 100.1Xk , i.e., Xk ∼ N (μXk

, σ2
Xk

).
Note that the right hand side of the above two equations is
a constant number that needs to be calculated only once.
These non-linear equations in μ

X
and σ

X
can be readily

solved numerically using standard functions such as fsolve
in Matlab and NSolve in Mathematica.

Better estimates of μ
X

and σ
X

are obtained by increasing
the Hermite integration order N ; on the other hand, reducing
N decreases the computational complexity. We have found
N = 12 to be sufficient to accurately determine the values of
μ

X
and σ

X
; this is small compared to the 20-40 terms required

to achieve numerical accuracy in the S-Y method [21]. Fur-
thermore, unlike the S-Y method, no iteration in K is required
– the right hand side of (10) can be computed right at the
beginning of the method at s = s1 and s = s2.

Most importantly, as highlighted before, the penalty for
PDF mismatch can be adjusted by choosing s appropriately.
Increasing s penalizes more the errors in approximating the

2Naus [19] has derived a formula for the MGF of the sum of two lognormal
RVs. While the formula can be extended to handle the sum of an even number
of lognormal RVs, it only applies to the special case of an even number of
identical and independent RVs, and is in the form of an infinite series.

head portion of the sum PDF, while reducing s penalizes errors
in the tail portion, as well. The inevitable trade-off that needs
to be made in approximating both the head and tail portions
of the PDF, can now be done depending on the application.
For example, when the lognormal sum arises because various
signal components add up [3], the main performance metric
is the outage probability. For this, the head of the CDF needs
to be computed accurately. On the other hand, when the
lognormal sum appears as a denominator term, for example,
when the powers from co-channel interferers add up in the
signal to noise plus interference ratio calculation, it is the tail
portion of the CCDF that needs to be calculated accurately.
The proposed method can handle both of these applications
by using different matching pairs (s1, s2). Guidelines for
choosing (s1, s2) are elaborated upon in Sections VI and VII.

IV. SUM OF CORRELATED

LOGNORMAL RANDOM VARIABLES

Correlated lognormal RVs often arise in cellular systems
because the shadowing of inter-cell interferers is correlated
with a typical site-to-site correlation coefficient of 0.5 [22],
[23]. The correlated sum case has been investigated in [9],
[24]–[26], and extensions to the F-W [24], [25], S-Y [26],
and Cumulants [24] methods have been proposed to handle
it. But, Farley’s method, the Beaulieu-Xie method, and the
bounds in [7] do not apply to the sum of correlated lognormal
RVs. Outage probability bounds, which, in effect, specify a
compound distribution, are derived in [9] using the arithmetic-
geometric mean inequality and can handle the correlated sum
case. However, the basic limitations of the various methods
still apply – the S-Y extension cannot accurately estimate
small values of the CCDF [27]3, the F-W extension again
cannot accurately estimate small values of the CDF, and the
bounds are loose for larger logarithmic variances.

We now consider the general case of K correlated log-
normal RVs, {Yk}K

k=1, with corresponding Gaussian RVs,
{Xk}K

k=1, which have an arbitrary correlation matrix C. We
derive the set of two equations that will yield the parameters
for the approximating lognormal RV.

When K lognormal RVs, {Yk}K
k=1, are correlated, the

corresponding Gaussian RVs, Xk = 10 log10 Yk follow the
joint distribution

pX(x) =
1

(2π)K/2 |C|1/2
exp

(
− (x− µ)†C−1(x − µ)

2

)
,

(11)
where C is the covariance matrix and µ is the vector of means
of the Gaussian RVs. The MGF of Y1 + · · ·+YK can then be
written as:

Ψ(c)

(�K
k=1 Yk)(s) =∫ ∞

−∞

1

(2π)K/2 |C|1/2

K∏
k=1

exp
(
−s

[
exp

(
xk

ξ

)])
× exp

(
− (x − µ)†C−1(x − µ)

2

)
dx, (12)

3The outage probability was used in [27] to compare the different methods.
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where |.| denotes the determinant and (.)† denotes the Her-
mitian transpose.

Let Csq be the square root of the correlation matrix C, i.e.,
C = CsqC

†
sq. In general, let the eigen-decomposition of C be

UΛU†, where U is the eigen-space of C and the diagonal
matrix Λ contains the eigenvalues of C. Then Csq = UΛ1/2.
When the decorrelating transformation x =

√
2Csqz + µ is

used, xk is given by

xk =
√

2
K∑

j=1

c′kjzj + μk, k = 1, . . . , K, (13)

where c′kj is the (k, j)th element of Csq. Therefore, the MGF
equation becomes

Ψ(c)

(�K
k=1 Yk)(s) =∫ ∞

−∞
· · ·
∫ ∞

−∞

1
πK/2

K∏
k=1

exp

⎛⎝−s

⎡⎣exp

⎛⎝√
2

ξ

K∑
j=1

c′kjzj +
μk

ξ

⎞⎠⎤⎦⎞⎠
× exp

(−z†z
)
dz1dz2 . . . dzK . (14)

Taking the Gauss-Hermite expansion with respect to z1 yields

Ψ(c)

(�K
k=1 Yk)(s) =∫ ∞

−∞
· · ·
∫ ∞

−∞

1
π(K−1)/2

exp

(
−

K∑
i=2

|zi|2
)

N∑
n1=1

wn1√
π

×
K∏

k=1

exp

⎛⎝−s

⎡⎣exp

⎛⎝√
2

ξ

K∑
j=2

c′kjzj +
√

2
ξ

c′k1an1 +
μk

ξ

⎞⎠⎤⎦⎞⎠
× dz2 . . . dzK + R

(1)
N , (15)

where R
(1)
N is a remainder term that decreases as N increases.

Proceeding in a similar manner for z2, . . . , zK , we get

Ψ(c)

(�K
k=1 Yk)(s) =

N∑
nK=1

· · ·
N∑

n1=1

wn1 . . . wnK

πK/2

×
K∏

k=1

exp

(
−s

[
exp

(√
2

ξ

K∑
l=1

c′klanl
+

μk

ξ

)])
+ R

(K)
N ,

(16)

where R
(K)
N is the remainder term. Rearranging the terms and

dropping the remainder term result in the following definition
of the MGF approximation function Ψ̂(c)

(�K
k=1 Yk)(s; µ,C):

Ψ̂(c)

(�K
k=1 Yk)(s; µ,C) �

N∑
n1=1

· · ·
N∑

nK=1

[
K∏

k=1

wnk√
π

]

× exp

⎛⎝−s
K∑

k=1

⎡⎣exp

⎛⎝√
2

ξ

K∑
j=1

c′kjanj +
μk

ξ

⎞⎠⎤⎦⎞⎠ . (17)

Therefore, the sum, Y1 + · · · + YK , of K correlated log-
normal RVs can be approximated by a single lognormal RV,
Y = 100.1X , using the following two equations:

Ψ̂Y (si; μX
, σ

X
) = Ψ̂(c)

(�K
k=1 Yk)(si; µ,C), at i = 1 and 2,

(18)

where Ψ̂(c)

(�K
k=1 Yk)(s; µ,C) is given by (17) and

Ψ̂Y (s; μ
X

, σ
X

) is given by (9). The value of N = 12
was found to be accurate for the correlated case, as well.

For the special case of the sum of two zero-mean lognormal
RVs with correlation coefficient ρ and variance σ dB, the MGF
approximation function can be written in closed-form in terms
of ρ as

Ψ̂(c)
(Y1+Y2)(s; . . .) �

N∑
n=1

N∑
m=1

wnwm

π
exp

(
−s

[
exp

(√
2σam

ξ

)

+ exp

(√
2(1 − ρ2)σan +

√
2σρam

ξ

)])
. (19)

V. SUM OF INDEPENDENT SUZUKI OR

LOGNORMAL-RICE RANDOM VARIABLES

The Suzuki RV is a product of a lognormal RV and a
Rayleigh fading RV. When a line-of-sight component is also
present, we instead get a lognormal-Rice RV, which is a
product of a lognormal RV and a Ricean-fading RV, and can
be written as

W = Z 100.1X , (20)

where Z is a Ricean RV with unit power and Rice-coefficient
κ. The lognormal-Rice PDF takes the integral form

p
W

(w) =
∫ ∞

0

2w(κ + 1)
y2

exp
(
−κ − (κ + 1)

w2

y2

)
× I0

(
2w

y

√
κ(κ + 1)

)
p

Y
(y)dy, (21)

where Y = 100.1X has the lognormal probability distribution
given by (2). Setting κ = 0 results in a Suzuki distribution.

Sums of lognormal-Rice or Suzuki RVs arise, for example,
when the short-term fading is also taken into account in the
co-channel interference power calculation or in the calculation
of the total instantaneous power received in a frequency-
selective channel, when the multipaths undergo independent
Ricean/Rayleigh fading and lognormal shadowing.

To approximate the sum of these RVs by a lognormal, an
extension of the F-W-based moment matching technique was
proposed in [28]. Another technique is a two-step approxima-
tion process in which each of the lognormal-Rice or Suzuki
RVs is first approximated by a lognormal RV (by equating
the means and variances), and then the sum of the lognormal
RVs is again approximated by a single lognormal RV using
the F-W or the S-Y methods. The sum of Suzuki RVs has
also been approximated by another Suzuki RV in [29]. Exact
formulae are available in the literature that express the outage
probability of a sum of lognormal-Rice RVs in the form of
a single integral, which is evaluated numerically [30], [31].
However, these do not address the problem of approximating
the sum by a single lognormal RV.

The method proposed in the previous sections applies to the
sum of lognormal-Rice RVs as follows. Using Gauss-Hermite
integration and neglecting the remainder term results in the
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following MGF approximation for the kth RV [32]

Ψ̂Sk
(s; μk, σk, κk) �

N∑
n=1

wn(1 + κk)/
√

π

1 + κk + s exp
(√

2σkan

ξ + μk

ξ

)
× exp

⎛⎝−
sκk exp

(√
2σkan

ξ + μk

ξ

)
1 + κk + s exp

(√
2σkan

ξ + μk

ξ

)
⎞⎠ , (22)

where μk and σk are the logarithmic mean and logarithmic
standard deviation of the shadowing component, and κk is
the Rice factor of the kth summand.

Therefore, the sum of K lognormal-Rice RVs, S1+· · ·+SK ,
can be approximated by a single lognormal RV, Y = 100.1X ,
by the following two equations

Ψ̂Y (si; μX
, σ

X
) =

K∏
k=1

Ψ̂Sk
(si; μk, σk, κk), at i = 1 and 2,

(23)
where, as before, μX and σX are the unknowns. The num-
ber Ψ̂Sk

(si; μk, σk, κk) consists entirely of known quantities
and is evaluated only twice at s1 and s2 using (22), while
Ψ̂Y (si; μX , σX ) is given by (9).

It can be seen that the mixture case, in which not all of the
RVs follow the same type of distribution, can now be readily
handled by using, as required, the corresponding expressions
for the approximate MGFs for lognormal, lognormal-Rice, or
Suzuki RVs.

VI. NUMERICAL EXAMPLES

In the examples below, we plot the CDF and CCDF and use
these results to provide guidelines on choosing generic values
for s1 and s2 that work well in many cases. Small values of
the CDF reveal the accuracy in tracking the head portion of
the PDF, while small values of the CCDF reveal the accuracy
in tracking the tail portion of the PDF.

A. Sum of Independent Lognormal RVs

Figure 2 plots the CDF and the CCDF of the sum of 6
independent lognormal RVs using Monte Carlo simulations,
and compares it with the proposed method and the F-W and
S-Y approximations. All the summands have a logarithmic
variance of σ = 6 dB and a mean of μ = 0 dB. It can be
seen that the proposed method matches the head portion of
the CDF very well when (s1, s2) = (1.0, 0.2) and is more
accurate than both the F-W and the S-Y methods. While the
S-Y method diverges from the actual CCDF in this scenario,
the proposed method, for (s1, s2) = (0.001, 0.005), matches
the simulation results well, and is similar to the F-W method in
terms of accuracy. (The proposed method is more accurate for
RV values below 400, while the F-W method is more accurate
for RV values above 400.) We shall see that the same values
of s1 and s2, used above, are accurate in several scenarios.

Figure 3 studies the accuracy of the approximation as the
variance, σ, is varied from 4 dB to 12 dB. It shows the CDF
for K = 6 with μ = 0 dB for the summands. The effect of
increasing the number of summands, K , is shown in Figure 4,
which plots the CDF for different K . It can be seen from these
two figures that (s1, s2) = (1.0, 0.2) again provides a good

10
−1

10
0

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

Sum of lognormal RVs

C
D

F
 a

nd
 C

C
D

F

Proposed

FW

SY

Simulation

CDF CCDF

Fig. 2. Comparison of accuracy of CDF and CCDF computed using the F-
W, S-Y, and proposed methods for approximating the sum of six independent
lognormal RVs (σ = 6 dB and μ = 0 dB).
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Fig. 3. Effect of variance, σ [dB], on the accuracy of approximating the
CDF of the sum of independent lognormal RVs (K = 6, s1 = 0.2, s2 = 1.0,
μ = 0 dB).

fit for various values of σ and K for approximating the head
portion of the PDF. The F-W method is not shown due to its
significant inaccuracy. It can be seen that the proposed method
matches the simulation results well and is more accurate
than the S-Y method. Similarly, (s1, s2) = (0.001, 0.005) is
suitable for approximating the tail of the CCDF.

B. Sum of Correlated Lognormal RVs

We now consider the sum of K correlated lognormal RVs,
with the correlation matrix set as:

C =

⎡⎢⎢⎢⎣
1 ρ · · · ρK−1

ρ 1 · · · ρK−2

. . .
ρK−1 ρK−2 · · · 1

⎤⎥⎥⎥⎦ , (24)

where ρ is the correlation coefficient between any two suc-
cessive RVs. The logarithmic mean of the RVs is 0 dB.

The CDF obtained from the proposed technique is compared
with simulation results in Figure 5 for the case of sum of
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Fig. 4. Effect of number of summands, K , on the accuracy of approximating
the CDF of the sum of independent lognormal RVs (σ = 12 dB, μ = 0 dB).
In all cases, (s1, s2) = (1.0, 0.2). The F-W method is not shown due to its
significant inaccuracy.
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Fig. 5. Comparison of the accuracy of the techniques for the case of sum
of correlated lognormal RVs for different correlation coefficients, ρ (K = 4,
σ = 8 dB, and μ = 0 dB). In all cases, (s1, s2) = (1.0, 0.2).

four correlated lognormal RVs, each with σ = 8 dB and
μ = 0 dB. Also plotted are the CDFs from the F-W and
S-Y extensions [24]. Two values of correlation coefficient
are considered: ρ = 0.3 and ρ = 0.7. It can be seen
that the proposed method can accurately track the CDF of
the correlated lognormal sum, and is marginally better than
the S-Y extension method. The F-W extension is the least
accurate of all the methods. In case of the CCDF, the figure
for which is not shown here, the accuracy of the proposed
method is comparable to that of the F-W extension, and the
S-Y extension is the least accurate. As expected, for larger
correlation coefficients, all the methods can accurately track
the CDF and the CCDF. The proposed method is also accurate
when K is varied (figure not shown). As K decreases, the
accuracy of the F-W and S-Y methods improves.
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Fig. 7. Effect of number of Suzuki RVs on the accuracy of approximating
the CDF for σ = 6 dB. (In all cases s1 = 0.2, s2 = 1.0).

C. Sum of Independent Suzuki and Lognormal-Rice RVs

The effect of the Rice-coefficient, κ, is examined in Fig-
ure 6, which plots the CDF and the CCDF of the sum of 6
lognormal-Rice RVs with a lognormal variance of 6 dB. We
can see that both the CDF and the CCDF can be accurately
approximated by the proposed method. The accuracy of the
approximation improves as κ decreases.

Figure 7 plots the CDF of a sum of different numbers of
independent Suzuki RVs using parameters obtained from (23)
and compares them with Monte Carlo simulation results. It can
be seen that the proposed method accurately approximates the
sum of Suzuki RVs by a single lognormal RV. The result holds
for K = 2, 4, and 8 summands.

VII. ACCURACY IN A REGION OF INTEREST AND

SENSITIVITY ANALYSIS

We now quantitatively measure the accuracy and sensitivity
of the method in a region of interest, in which the accuracy
needs to be emphasized. For example, [6] uses the minimax
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criterion for the error in a region to fit its parameters, while
Schleher’s method advocates three parameter sets for three
regions. We now show that the proposed method, with its two
free parameters s1 and s2, provides the parametric flexibility
to accurately model the behavior in a region of interest, for
various parameter sets. This is done in this section using two
common metrics that measure the relative deviation of the
CDF or the CCDF curves in a region of interest.

Let F c
(s1,s2)(.) denote the CCDF and F(s1,s2)(.) denote

the CDF of the lognormal distribution that approximates
the sum of lognormal or lognormal-Rice RVs. Let H and
Hc denote the empirically observed CDF and CCDF of the
sum. These are obtained by Monte Carlo simulations. Let
y1, . . . , yn denote n reference points in the region of interest.
The accuracy metrics for CDF and CCDF are defined by:

Mcdf =
R∑

i=1

ei

|H(yi) − F(s1,s2)(yi)|
H(yi)

, (25)

Mccdf =
R∑

i=1

ec
i

|Hc(yi) − F c
(s1,s2)(yi)|

Hc(yi)
, (26)

where ei and ec
i are the relative error weights for CDF

and CCDF, respectively, to emphasize different accuracies in
tracking different reference points. The weights are normalized
such that

∑R
i=1 ei = 1 and

∑R
i=1 ec

i = 1.
The effect of σ on the accuracy possible in approximating

the CDF and CCDF is studied in Figure 8. The error weights
are set as ei = ec

i = 1/R, for all i. As an example, the
region of interest for Mcdf is defined to be from y1 = 0 dB to
yR = 10 dB, with the reference points spaced 1 dB apart
(R = 11). The region of interest for Mccdf is defined to
be from 15 dB to 25 dB, with the reference points again
spaced 1 dB apart. In Figure 8(a), the Mcdf, is plotted for
the F-W and S-Y methods, and the proposed method. Two
scenarios are considered for the proposed method. In the
first scenario, the values of s1 and s2 are allowed to be
optimized. This represents the best achievable accuracy of the
proposed method for a given set of system parameters. An
unconstrained Nelder-Mead non-linear maximization, easily
implementable using Matlab’s fminsearch function, was
used for this purpose. In the second scenario, Mcdf achieved
by the proposed method, when s1 and s2 are fixed at 1.0
and 0.2, is plotted. For the CDF metric, the S-Y method is,
as expected, more accurate than the F-W method, while the
proposed method with either fixed or optimized s1 and s2

values, is the most accurate of all methods for any given σ. As
σ increases, the highest achievable accuracy of the proposed
method and the S-Y method increases, while that of the F-W
method decreases.

Similarly, figure 8(b) plots the CCDF accuracy metric,
Mccdf, for the three methods. As before, two scenarios for
the proposed method are considered – when s1 and s2 are
optimized to determine the best achievable accuracy and when
s1 and s2 are fixed at 0.001 and 0.005. These values of
s1 and s2 were used in several of the previous figures. As
before, for any given σ, the proposed method, with fixed or
optimized s1 and s2, is the most accurate. It can be seen
that the highest achievable accuracy of the proposed method
and the accuracy of the S-Y method improves as σ increases.
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Fig. 8. Comparison of the accuracies, as a function of σ, of the proposed
method and the F-W and S-Y methods. The range of interest is 0–10 dB, in
steps of 1 dB, for Mcdf and is 15–25 dB, in steps of 1 dB, for Mccdf (K = 4,
μ = 0 dB).

While the F-W method is as accurate as the proposed method
for σ ≤ 6.5 dB, it becomes the least accurate of the three
methods for σ > 10.2 dB.

A. Sensitivity Analysis

Another topic of interest is the sensitivity of the proposed
method to perturbations (or errors) in the MGF. These can
arise due to the truncation errors, changes in the value of s1

or s2 or in the underlying parameter values, etc. A forward
sensitivity analysis procedure [33], which measures the change
in the accuracy metric of interest relative to a small change
in the underlying MGFs, is provided in the Appendix. For
simplicity, we focus on the case in which the lognormal RVs
are independent and identically distributed. The analysis can
be easily generalized to other cases. The results are shown
graphically in Figure 9, which plots the upper bound on
the sensitivity of the CDF accuracy metric (derived in the
Appendix) as a function of the standard deviation, σ. Also
plotted are results from simulations. It can be seen that the
upper bound is loose for small σ, but becomes tighter for
larger σ.
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Fig. 9. Sensitivity of proposed method (measured by perturbations in the
CDF accuracy metric) to small perturbations in the constituent MGFs (K = 4,
μ = 0 dB, and (s1, s2) = (1.0, 0.2)).

VIII. CONCLUSIONS

We proposed a simple and novel method to approximate
the sum of several lognormal random variables with a single
lognormal random variable. The method was motivated by
the interpretation of the MGF as a weighted integral of
the PDF. The MGF is a tool that provides the parametric
flexibility needed to approximate, as accurately as required,
different portions of the PDF. The method was shown to
be general enough to cover the cases of independent (but
not necessarily identical) lognormal RVs, arbitrarily correlated
lognormal RVs, and independent lognormal-Rice and Suzuki
RVs. It was shown to accurately model both the CDF and the
CCDF of the lognormal sum distribution over a wide range of
lognormal variances and means, and for different numbers of
interferers. The proposed method was more accurate than the
F-W and S-Y methods by one to two orders of magnitude. An
upper bound for the sensitivity of the method, as measured by
a perturbation in the accuracy metrics relative to a perturbation
in the constituent MGFs, was also derived.

APPENDIX

SENSITIVITY ANALYSIS

We are interested in evaluating the relative impact of a
perturbation, δ, in the MGF of each of the lognormal RVs
on the accuracy metric. From (25), it can be seen that
the sensitivity, which is defined as limδ→0

|dMcdf|
δ , is upper

bounded by:

lim
δ→0

|dMcdf|
δ

≤
R∑

i=1

ei

H(yi)
lim
δ→0

|dF(s1,s2)(yi)|
δ

, (27)

where dF(s1,s2)(yi) is the perturbation in the CDF at yi.
The CDF of lognormal approximation with mean μ

X
dB

and variance σ
X

dB, which implicitly depend on the matching

points s1 and s2, is F(s1,s2)(yi) = 1 − Q
(

10 log10 yi−μ
X

σ
X

)
.

Therefore, for small δ, we have

|dF(s1,s2)(yi)|
δ

=
1√

2πσ2
X

exp
[
− (10 log10 yi − μX )2

2σ2
X

]
×
∣∣∣∣σX

dμ
X

δ
+ (10 log10 yi − μ

X
)
dσ

X

δ

∣∣∣∣ . (28)

From (10), it can be shown that the small perturbation δ in
the MGF, Ψ̂Yk

(.; ., .), and the perturbations in values of μX

and σ
X

are related as follows:

G
[
dμ

X
/δ

dσX /δ

]
= K

[
Ψ̂Yk

(s1; μ0, σ0)K−1

Ψ̂Yk
(s2; μ0, σ0)K−1

]
, (29)

where G = −
[
fμ(s1) fσ(s1)
fμ(s2) fσ(s2)

]
and

fσ(s) =
√

2s

ξ

N∑
n=1

wnan√
π

× exp

(√
2σX an + μX

ξ
− s exp

(√
2σX an + μX

ξ

))
,

fμ(s) =
s

ξ

N∑
n=1

wn√
π

× exp

(√
2σX an + μX

ξ
− s exp

(√
2σX an + μX

ξ

))
.

Hence, the relative variations in the mean and standard devi-
ation are given by[

dμ
X

/δ
dσ

X
/δ

]
= KG−1

[
Ψ̂Yk

(s1; μ0, σ0)K−1

Ψ̂Yk
(s2; μ0, σ0)K−1

]
. (30)

Combining the above equation with (28) and substituting in
(27) yields the expression for the sensitivity.
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