
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Video Coding Using 3D Dual-Tree Wavelet
Transform

Beibei Wang, Yao Wang, Ivan Selesnick, Anthony Vetro

TR2007-015 January 2007

Abstract

This work investigates the use of the 3D dual-tree discrete wavelet transform (DDWT) for video
coding. The 3D DDWT is an attractive video representation because it isolates image patterns
with different spatial orientations and motion directions and speeds in separate subbands. How-
ever, it is an over complete transform with 4:1 redundancy when only real parts are used. We
apply the noise-shaping algorithm proposed by Kingsbury to reduce the number of coefficients.
To code the remaining significant coefficients, we propose two video codecs. The first one ap-
plies separate 3D set partitioning in hierarchical trees (SPIHT) on each subset of the DDWT
coefficients (each forming a standard isotropic tree). The second codec exploits the correlation
between redundant subbands, and codes the subbands jointly. Both codecs do not require mo-
tion compensation and provide better performance than the 3D SPIHT codec using the standard
DWT, both objectively and subjectively. Furthermore, both codecs provide full scalability in
spatial, temporal, and quality dimensions. Besides the standard isotropic decomposition, we
propose an anisotropic DDWT, which extends the superiority of the normal DDWT with more
directional subbands without adding to the redundancy. This anisotropic structure requires sig-
nificantly fewer coefficients to represent a video after noise shaping. Finally, we also explore the
benefits of combining the 3D DDWT with the standard DWT to capture a wider set of orienta-
tions.
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ABSTRACT

This work investigates the use of the 3-D dual-tree discrete
wavelet transform (DDWT) for video coding. The 3-D DDWT
is an attractive video representation because it isolates im-
age patterns with different spatial orientations and motion di-
rections and speeds in separate subbands. However, it is an
overcomplete transform with 4:1 redundancy when only real
parts are used. We apply the noise shaping algorithm pro-
posed by Kingsbury to reduce the number of coefficients. To
code the remaining significant coefficients, we propose two
video codecs. The first one applies separate 3-D set partition-
ing in hierarchical trees (SPIHT) [2] on each subset of the
DDWT coefficients (each forming a standard isotropic tree).
The second codec exploits the correlation between redundant
subbands, and codes the subbands jointly. Both codecs do not
require motion compensation and provide better performance
than the 3-D SPIHT codec using the standard DWT, both ob-
jectively and subjectively. Furthermore, both codecs provide
full scalability in spatial, temporal and quality dimensions.
Besides the standard isotropic decomposition, we propose an
anisotropic DDWT, which extends the superiority of the nor-
mal DDWT with more directional subbands without adding
to the redundancy. This anisotropic structure requires sig-
nificantly fewer coefficients to represent a video after noise
shaping. Finally, we also explore the benefits of combining
the 3-D DDWT with the standard DWT to capture a wider set
of orientations.

1. INTRODUCTION

Video coding based on 3-D wavelet transforms has the po-
tential of providing a scalable representation of a video in
spatial resolution, temporal resolution, and quality. For this
reason, extensive research efforts have been undertaken to de-
velop efficient wavelet-based scalable video codecs. Most of
these studies employ the standard separable discrete wavelet
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transform. Because directly applying the wavelet transform
in the time dimension does not lead to an efficient represen-
tation when the underlying video contains objects moving
in different directions, motion compensated temporal filter-
ing is deployed in state-of-the-art wavelet-based video coders
[5, 6, 7, 8]. Motion-compensation can significantly improve
the coding efficiency, but it also makes the encoder very com-
plex. Furthermore, the residual signal resulting from block-
based motion compensation is very blocky and cannot be rep-
resented by a frame-based 2D DWT efficiently. Hence, the
newest scalable video coding standard [9] still uses block-
based transforms for coding the residual.

An important recent development in wavelet-related re-
search is the design and implementation of 2-D multiscale
transforms that represent edges more efficiently than does the
separable DWT. Kingsbury’s dual-tree complex wavelet trans-
form (DT-CWT) [3] and Do’s Contourlet transform [10] are
examples. The DT-CWT is an overcomplete transform with
limited redundancy (2m :1 for m-dimensional signals). This
transform has good directional selectivity and its subband re-
sponses are approximately shift-invariant. The 2-D DT-CWT
has given superior results for image processing applications
compared to the DWT [3, 1]. In [4], the authors developed a
subpixel transform domain motion estimation algorithm based
on the 2-D DT-CWT, and a maximum phase correlation tech-
nique. These techniques were incorporated in a video codec
that has achieved a performance comparable to H.263 stan-
dard.

Selesnick and Li described a 3-D version of the dual-tree
wavelet transform and showed that it possesses some mo-
tion selectivity [11]. The design and the motion-selectivity of
dual-tree filters are described in [11] and [12]. Although the
separable transforms can be efficiently computed, the separa-
ble implementations of multidimensional (M−D) transforms
mix edges in different directions which leads to annoying vi-
sual artifacts when the coefficients are quantized. The 3-D
DDWT is implemented by first applying separable transforms
and then combining subband signals with simple linear oper-
ations. So even though it is non-separable and free of some of
the limitations of separable transforms, it inherits the compu-
tational efficiency of separable transforms.



A core element common to all state-of-the art video coders
is motion-compensated temporal prediction, which is the main
contributor to the complexity and error-sensitivity of a video
encoder. Because the subband coefficients associated with the
3-D DDWT directly capture moving edges in different direc-
tions, it may not be necessary to perform motion estimation
explicitly. This is our primary motivation for exploring the
use of the 3-D DDWT for video coding.

The major challenge in applying the 3-D complex DDWT
for video coding is that it is an overcomplete transform with
8:1 redundancy. In our current study, we choose to retain only
the real parts of the wavelet coefficients, which still leads to
perfect reconstruction, while retaining the motion selectivity.
This reduces the redundancy to 4:1 [11].

To reduce the number of coefficients necessary for repre-
senting an image, Kingsbury proposed an iterative projection-
based noise shaping (NS) scheme [1], which modifies previ-
ously chosen large coefficients to compensate for the loss of
small coefficients. We have found that noise shaping applied
to the 3-D DDWT can yield a more compact set of coefficients
than from the 3-D DWT [13]. The fact that noise shaping can
reduce the number of coefficients to below that required by
the DWT (for the same video quality) is very encouraging.

To code the retained coefficients, we must specify both the
locations and amplitudes (sign and magnitude) of the retained
coefficients. 3-D SPIHT is a well-known embedded video
coding algorithm [2], which applies the 3-D DWT to a video
directly, without motion compensation, and offers spatial-,
temporal-, and PSNR-scalable bitstreams. The 3-D DDWT
coefficients can be organized into four trees, each with the
same structure as the standard DWT. Our first DDWT-based
video codec (referred as DDWT-SPIHT) applies 3-D SPIHT
to each DDWT tree. This codec gives better rate-distortion
(R-D) performances than the 3-D DWT.

With the standard non-redundant DWT, there is very lit-
tle correlation among coefficients in different subbands and
DWT-based wavelet coders all code different subbands sep-
arately. Because the DDWT is a redundant transform, we
should exploit the correlation between DDWT subbands in
order to achieve high coding efficiency. Through statistical
analysis of the DDWT data, we found that there is strong
correlation about locations of significant coefficients, but not
about the magnitude and signs.

Based on the above findings, we developed another video
codec referred to as DDWTVC. It codes the significant bits
across subbands jointly by vector arithmetic coding, but codes
the sign and magnitude information using context-based arith-
metic coding within each subband. Compared to the 3-D
SPIHT coder on the standard DWT, the DDWTVC also offers
better rate-distortion performance, and is superior in terms of
visual quality [14]. Compared to the first proposed DDWT-
SPIHT, DDWTVC has comparable and slightly better perfor-
mance.

As with the standard separable DWT, the 3-D DDWT ap-

plies an isotropic decomposition structure, i.e., for each stage,
the decomposition only continues in the low frequency sub-
band LLL, and for each subband the number of decomposi-
tion levels is the same for all spatial and temporal directions.
However, not only the low frequency subband LLL, but also
subbands LLH, HLL, LHL, etc, include important low fre-
quency information, and may benefit from further decompo-
sition. Typically, more spatial decomposition stages produce
noticeable gain for video processing. But additional tempo-
ral decomposition does not bring significant gains and incurs
additional memory cost and processing delay.

If a transform allows decomposition only in one direction
when a subband is further divided, it will generate rectangu-
lar frequency tilings, and is thus called anisotropic [15, 16].
Based on these observations, we propose a new anisotropic
DDWT, and examine its application to video coding. The ex-
perimental results show that the new anisotropic decompo-
sition is more effective for video representation in terms of
PSNR versus the number of retained coefficients.

Although the DDWT has wavelet bases in more spatial
orientations than the DWT, it does not have bases in the hor-
izontal and vertical directions. Recognizing this deficiency,
we propose to combine the 3-D DDWT and DWT, to capture
directions represented by both the 3-D DDWT and the DWT.
Combining the 3-D DWT and DDWT shows slight gains over
using 3-D DDWT alone.

To summarize the main contributions, the paper mainly
focuses on video processing using a novel edge and motion
selective wavelet transform, the 3-D DDWT. In this paper,
we demonstrate how to select the significant coefficients of
the DDWT to represent video. Two iterative algorithms for
coefficient selection, noise shaping and matching pursuit, are
examined and compared. We propose and validate the hy-
pothesis that only a few bases of 3-D DDWT have significant
energy for an object feature. Based on these properties, two
video codecs using the DDWT are proposed and tested on
several standard video sequences. Finally, two extensions of
the DDWT are proposed and examined for video representa-
tion.

The paper is organized as follows. Section 2 briefly intro-
duces the 3-D DDWT and its advantage. Section 3 describes
how to select significant coefficients for video coding. Sec-
tion 4 investigates the correlation between wavelet bases at
the same spatial/temporal location for both the significance
map and the actual coefficients. Section 5 describes the two
proposed video codecs based on the DDWT, and compares
the coding performance to 3-D SPIHT with the DWT. The
scalability of the proposed video codec is discussed in section
6. Section 7 describes the new anisotropic wavelet decompo-
sition and how to combine 3-D DDWT and DWT. The final
section summarizes our work and discusses future work for
video coding using the 3-D DDWT.



2. 3-D DUAL-TREE WAVELET TRANSFORM

The design of the 3-D dual-tree complex wavelet transform
is described in [11]. At the core of the wavelet design is a
Hilbert pair of bases,ψh andψg, satisfyingψg(t) = H(ψh(t)).
They can be constructed using a Daubechies-like algorithm
for constructing Hilbert pairs of short orthonormal (and biorthog-
onal) wavelet bases. The complex 3-D wavelet is defined as
ψ(x, y, z) = ψ(x)ψ(y)ψ(z), whereψ(x) = ψh(x)+j ψg(x).
The real part ofψ(x, y, z) can be represented as:

ψa=RealPart{ψ(x, y, z)}
=ψ1(x, y, z)− ψ2(x, y, z)− ψ3(x, y, z)− ψ4(x, y, z)

(1)

where
ψ1(x, y, z) = ψh(x) ψh(y) ψh(z) (2)

ψ2(x, y, z) = ψg(x) ψg(y) ψh(z) (3)

ψ3(x, y, z) = ψg(x) ψh(y) ψg(z) (4)

ψ4(x, y, z) = ψh(x) ψg(y) ψg(z) (5)

Note thatψ1(x, y, z), ψ2(x, y, z), ψ3(x, y, z), ψ4(x, y, z) are
four separable 3-D wavelet bases, and each can produce one
DWT tree containing 1 low subband and 7 high subbands.
Becauseψa is a linear combination of these four separable
bases, the wavelet coefficients corresponding toψa can be
obtained by linearly combining the four DWT trees, yielding
one DDWT tree containing 1 low subband, and 7 high sub-
band.

To obtain the remaining DDWT subbands, we take in ad-
dition to the real part ofψ(x)ψ(y)ψ(z), the real part ofψ(x)
ψ(y)ψ(z), ψ(x)ψ(y)ψ(z), ψ(x)ψ(y)ψ(z), where the over-
line represents complex conjugation. This gives the following
orthonormal combination matrix:



ψa(x, y, z)
ψb(x, y, z)
ψc(x, y, z)
ψd(x, y, z)


 =

1
2




1 −1 −1 −1
1 −1 1 1
1 1 −1 1
1 1 1 −1







ψ1(x, y, z)
ψ2(x, y, z)
ψ3(x, y, z)
ψ4(x, y, z)




(6)

By applying this combination matrix to the four DWT
trees, we obtain four DDWT trees, containing a total of 4 low
subbands and 28 high subbands. Each high subband has a
unique spatial orientation and motion.

Figure 1 shows the isosurfaces of a selected wavelet from
both the DWT (left) and the DDWT (right). Like a contour
plot, the points on the surfaces are points where the function
is equal-valued. As illustrated in Figure 1, the wavelet asso-
ciated with the separable 3-D transform has the checkerboard
phenomenon, a consequence of mixing of orientations. The
wavelet associated with the dual-tree 3-D transform is free of
this effect.

Fig. 1. Isosurfaces of a typical 3-D DWT (left) basis and a
typical 3-D DDWT (right) basis.

Figure 2 shows all the wavelets in a particular temporal
frame for both the DWT and DDWT. In Figure 2 (b), the
wavelets in each row correspond to 7 high subbands contained
in one DDWT tree. For 3-D DDWT, each subband corre-
sponds an image pattern with a certain spatial orientation and
motion direction and speed. The motion direction of each
wavelet is orthogonal to the spacial orientation. Note that the
wavelets with the same spatial orientation in Figure 2 (b) have
different motion directions and/or speeds. For example, the
second and third wavelets in the top row move in opposite
directions. As can be seen, the 3-D DWT can represent the
horizontal and vertical features well, but it mixes two diago-
nal directions in a checker-board pattern. The 3-D DDWT is
free of the checkerboard effect, but it does not represent the
vertical and horizontal orientations in pursuit of other direc-
tions. The 3-D DDWT has many more subbands than the 3-D
DWT (28 high subbands instead of 7, 4 low subbands instead
of 1). The 28 high subbands isolate 2-D edges with different
orientations that are moving in different directions.

(a)3-D DWT

(b)3-D DDWT

Fig. 2. Typical wavelets associated with (a) the 3-D DWT and
(b) 3-D DDWT in the spatial domain.

Because different wavelet bases of the DDWT represent
object features with different spatial orientations and motions,



it may not be necessary to perform motion compensated fil-
tering, which is a major contributor to the computational load
of a block-based hybrid video coder and wavelet-based coders
using separable DWT. If a video sequence contains differently
oriented edges moving in different directions and speeds, co-
efficients for the wavelets with the corresponding spatial ori-
entation and motion patterns will be large. By applying the
3-D DDWT to a video sequence directly, and coding large
wavelet coefficients, we are essentially representing the un-
derlying video as basic image patterns (varying in spatial ori-
entation and frequency) moving in different ways. Such a rep-
resentation is naturally more efficient than using a separable
wavelet transform directly, with which a moving object in an
arbitrary direction that are not characterized by any specific
orientation and/or motion will likely contribute many small
coefficients associated with wavelets. Directly applying the
3-D DDWT to the video is also more computationally effi-
cient than first performing motion estimation and then apply-
ing a separable wavelet transform along the motion trajectory,
and finally applying a 2-D wavelet transform to the prediction
error image. Finally, because no motion information is coded
separately, the resulting bitstream can be fully scalable.

For the simulation results presented in the paper, 3-level
wavelet decompositions are applied for both the 3-D DDWT
and 3-D DWT. The 3-D DWT uses the Daubechies (9, 7)-tap
filters. For the DDWT, the Daubechies (9, 7)-tap filters are
used at the first level, and Qshift filters in [3] are used beyond
level 1.

3. ITERATIVE SELECTION OF COEFFICIENTS

For video coding, the 4:1 redundancy of the 3-D DDWT (real
parts) [11] is a major challenge. However, an overcomplete
transform is not necessarily ineffective for coding because
a redundant set provides flexibility in choosing which basis
functions to use in representing a signal. Even though the
transform itself is redundant, the number of the critical coef-
ficients that must be retained to represent a video signal ac-
curately can be substantially smaller than that obtained with
standard non-redundant separable transform.

The selection of significant coefficients from nonorthogo-
nal transforms, like DDWT, is very different from the orthog-
onal transforms, like DWT. Because the bases are not orthog-
onal, one should not simply keep all the coefficients that are
above a certain threshold and delete those that are less than
the threshold. In this section, we compare the efficiency of
two coefficient selection schemes, matching pursuit and noise
shaping.

3.1. Matching Pursuit Algorithm

Matching Pursuit (MP) is a greedy algorithm to decompose
any signal into a linear expansion of waveforms that are se-
lected from a redundant dictionary of functions [17, 18]. These

waveforms are selected to best match the signal structures.
The matching pursuit (MP) algorithm is well-known for video
coding with overcomplete representations [19].

With the matching pursuit (MP) algorithm, the significant
coefficients are chosen iteratively. Starting with all the orig-
inal coefficients for a given signal, the one with the largest
magnitude is chosen. The error between the original signal
and the one reconstructed using the chosen coefficient is then
transformed (without using the previously chosen basis func-
tion). The largest coefficient is then chosen from the resulting
coefficients, and a new error image is formed and transformed
again. This process repeats until the desired number of coef-
ficients are chosen.

Because only one coefficient is chosen in each iteration,
the computation is very slow. Our simulations (see Sec. 3.3)
show that the matching pursuit only has slight gain over using
theN largest original DDWT coefficients directly.

3.2. Noise Shaping algorithm

For nonorthogonal transform like the DDWT, deleting insignif-
icant coefficients can be modelled as adding noise to the other
coefficients. In [20], the effect of additive noise in oversam-
pled filter bank systems is examined. Much of the algebra for
the overcomplete DDWT transform analysis is similar with
the polyphase domain analysis in [20]. Recognizing this, Reeve
and Kingsbury proposed an iterative projection-based noise
shaping (NS) scheme [1]. As illustrated in Figure 3, the coef-
ficients are obtained by running the iterative projection algo-
rithm with a preset initial threshold, and gradually reducing it
until the number of remaining coefficients reachesN , a target
number. In each iteration, the error coefficients are multiplied
by a positive real numberk and added back to the previously
chosen large coefficients, to compensate for the loss of small
coefficients due to thresholding.

NS requires substantially fewer computations than MP, to
yield the set of coefficients that can yield the same representa-
tion accuracy. This is because with NS, many coefficients can
be chosen in one iteration (those that are larger than a thresh-
old), whereas with MP, only one coefficient is chosen in each
iteration.

Fig. 3. Noise Shaping algorithm

Kingsbury and Reeves have shown that noise shaping ap-
plied to 2-D DT-CWT can yield a more compact set of coeffi-
cients than from the 2-D DWT [1]. Our research [13] verifies



that NS has the similar effect on video data transformed with
the 3-D DDWT. Our simulation results in section 3.3 show
that the NS algorithm leads to significantly more accurate rep-
resentation of the original signal than the MP algorithm with
the same number of coefficients, while requiring significantly
less computation.

3.3. Simulation results

For a given number of coefficients to retain,N , the results
designated below as DWT and DDWTw/o NS are obtained
by simply choosing theN largest ones from the original co-
efficients. DDWTMP is obtained by selecting coefficients
with MP. With DDWT NS, the coefficients are obtained by
running the iterative projection noise shaping algorithm with
a preset initial threshold 256.0, and gradually reducing it until
the number of remaining coefficients reachesN . The reduc-
ing step is set as 1. The energy compensation parameterk
is set as 1.8, which gives the best performance for all tested
video sequences experimentally. Figure 4 compares the re-
construction quality (in terms of PSNR) using the same num-
ber of retained coefficients (original values without quanti-
zation) using different methods. Because the MP algorithm
takes tremendous computation to deduce a large set of coef-
ficients, this comparison is done using a small size (80x80x80
pixels) video sequence. The DDWT MP provides only marginal
gain over simply choosing the largestN coefficients (DDWTw/o NS).
On the other hand, DDWTNS yielded much better image
quality (5-6 dB higher) than DDWTw/o NS with the same
number of coefficients.
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Fig. 4. PSNR (dB) vs. number of non-zero coefficients for the
DDWT using noise shaping (DDWTNS, top curve), using
matching pursuit (DDWTMP, middle curve), without noise
shaping (DDWTw/o NS, lower curve) for a small size test
sequence.

Figure 5 compares the reconstruction quality (in terms of
PSNR) using the same number of retained coefficients us-
ing different methods (except for DDWTMP) for two stan-

dard test sequences. The testing sequence “Foreman” is QCIF
and “Mobile-Calendar” is CIF. Both sequences have the same
frame rate 30fps and 80 frames are used for simulations.
Figure 5 shows that although the raw number of coefficients
with 3-D DDWT is 4 times more than DWT, this number
can be reduced substantially by noise shaping. In fact, with
the same number of retained coefficients, DDWTNS yields
higher PSNR than DWT. For “Foreman”, 3-D DDWTNS has
a slightly higher PSNR than the DWT (0.3-0.7 dB), and is
4-6 dB better than DDWTw/o NS. For “Mobile-Calendar”,
the DDWT NS is 1.5-3.4 dB better than the DWT. The su-
periority of DDWT for “Mobile-Calendar” sequence can be
attributed to the many directional features with different ori-
entations and consistent small motions in the sequence.
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Fig. 5. PSNR (dB) vs. number of non-zero coefficients for the
DDWT using noise shaping (DDWTNS, upper curve), the
DWT (middle curve), and the DDWT without noise shaping
(DDWT w/o NS, lower curve).

Figure 5 shows that with DDWTNS, we can use fewer
coefficients to reach a desired reconstruction quality than DWT.
However, this does not necessarily mean that DDWTNS will
require fewer bits for video coding. This is because we need



to specify both the location as well as the value of each re-
tained coefficient. Because DDWT has 4 times more coeffi-
cients, specifying the location of a DDWT coefficient requires
more bits than specifying that of a DWT coefficient. The suc-
cess of a wavelet-based coder critically depends on whether
the location information can be coded efficiently. As shown in
Sec.4.1, there are strong correlations among the locations of
significant coefficients in different subbands. The DDWTVC
codec to be presented in Sec 5.2 exploits this correlation in
coding the location information.

4. THE CORRELATION BETWEEN SUBBANDS

Because the DDWT is a redundant transform, the subbands
produced by it are expected to have non-negligible correla-
tions. Since wavelet coders code the location and magnitude
information separately, we examine the correlation in the lo-
cation and magnitude separately.

4.1. Correlation in Significant Maps

We hypothesize that although the 3-D DDWT has many more
subbands, only a few subbands have significant energy for an
object feature. Specifically, an oriented edge moving with a
particular velocity is likely to generate significant coefficients
only in the subbands with the same or adjacent spatial orien-
tation and motion pattern. On the other hand, with the 3-D
DWT, a moving object in an arbitrary direction that are not
characterized by any specific wavelet basis will likely con-
tribute to many small coefficients in all subbands. To validate
this hypothesis, we compute the entropy of the vector con-
sisting of the significance bits at the same spatial/temporal
location across 28 high subbands. The significance bit in a
particular subband is either 0 or 1 depending on whether the
corresponding coefficient is below or above a chosen thresh-
old. The entropy of the significance vector will be close to 28
if there is not much correlation between the 28 subbands. On
the other hand, if the pattern that describes which bases are
simultaneously significant is highly predictable, the entropy
should be much lower than 28. Similarly, we calculate the
entropy of the significance bits across the 7 high subbands of
DWT, and compare it to the maximum value of 7.

Figure 6 compares the vector entropy for significant maps
among the DWT, DDWTNS and DDWTw/o NS, for vary-
ing thresholds from 128 to 8. The results shown here are for
the top scale only - other scales follow the same trend. We see
that, with DDWT, even without noise shaping, the vector en-
tropy is much lower than 28. Moreover, noise shaping helps
reduce the entropy further. In contrast, with DWT, the vector
entropy is close to 7 at some threshold values. This study val-
idates our hypothesis that the significance maps across the 28
subbands of DDWT are highly correlated.
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Fig. 6. The vector entropy of significant maps using the 3-
D DWT, the DDWT NS and the DDWTw/o NS, for the top
scale.

4.2. Correlation in Coefficient Values

In addition to the correlation among the significance maps
of all subbands, we also investigate the correlation between
the actual coefficient values. Strong correlation would sug-
gest vector quantization or predictive quantization among the
subbands. Towards this goal, we compute the correlation ma-
trix and variances of the 28 high subbands. Figure 7 illus-
trates the correlation matrices for the finest scale, for both
the DDWT w/o NS and DDWTNS. We note that the cor-
relation patterns in other scales are similar to this top scale.
From these correlation matrices, we find that only a few sub-
bands have strong correlation, and most other subbands are
almost independent. After noise shaping, the correlation be-
tween subbands is reduced significantly. A greater number of
subbands are almost independent from each other. It is inter-
esting to note that, for the “Foreman” sequence (which has
predominantly vertical edges and horizontal motion), bands
9-12 (the four subbands in the third column of Figure 2 ) are
highly correlated before and after noise shaping. These four
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Fig. 7. The correlation matrices of the 28 subbands of 3-D
DDWT w/o NS (left) and DDWTNS (right). The grayscale
is logarithmically related to the absolute value of the correla-
tion. The brighter colors represent higher correlation.

bands have edges close to vertical orientations but all mov-
ing in the horizontal direction. For “Mobile-Calendar”, these
four bands also have relatively stronger correlations before
noise shaping, but this correlation is reduced after noise shap-
ing. Figure 8 illustrates the energy distribution among the 28

(a)Foreman (QCIF)

(b)Mobile Calendar (CIF)

Fig. 8. The relative energy of 3-D DDWT 28 subbands with
(the right column in each subband) and without noise shaping
(the left column)

subbands for the top scale with and without noise shaping.
The energy distribution pattern depends on the edge and mo-
tion patterns in the underlying sequence. For example, the
energy is more evenly distributed between different subbands
with “Mobile-Calendar”. Further more, noise shaping helps
to concentrate the energy into fewer subbands.

5. DDWT-BASED VIDEO CODING

In this section, we present two codecs: DDWT-SPIHT and
DDWTVC. Both codecs do not perform motion estimation.
Rather, the 3-D DDWT is first applied to the original video di-
rectly and the noise-shaping method is then used to deduce the
significant coefficients. The two codecs differ in their ways
to code the retained DDWT coefficients. The DDWT-SPIHT
codec directly applies the well-known 3-D SPIHT codec on
each of the four DDWT trees. Hence it does not exploit
the correlation cross subbands in different trees. The second
codec, DDWTVC, exploits the inter-subband correlation in
the significance maps, but code the sign and magnitude infor-
mation within each subband separately.

5.1. DDWT-SPIHT Codec

Recall that the DDWT coefficients are arranged in four sub-
band trees, each with a similar structure as the standard DWT.
So it is interesting to find out how an existing DWT-based
codec works on each of the four 3-D DDWT trees. The 3-
D SPIHT [2] is a well-known wavelet codec, which utilizes
the 3-D DWT property that an insignificant parent does not
have significant descendants with high probability (parent-
children probability). To examine such correlation across dif-
ferent scales in 3-D DDWT, we evaluated the parent-children
probability, shown in Figure 9. We can see that there is strong
correlation across scales with 3-D DDWT, but compared to
3-D DWT, the correlation is weeker. After noise shaping, this
correlation is further reduced.
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Fig. 9. Probability that an insignificant parent does not have
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Based on the similar structure and properties with DWT,
our first DDWT-based video codec applies 3-D SPIHT [2] to
each DDWT tree after noise shaping. As will be seen in the
simulation results presented in Sec.5.3, this simple method,
not optimized for DDWT statistics, already outperforms the
3-D SPIHT codec based on the DWT. This shows that DDWT
has the potential to significantly outperform DWT for video
coding.

5.2. DDWTVC Codec

In DDWTVC, the noise-shaping method is applied to deter-
mine the 3-D DDWT coefficients to be retained, and then a bit
plane coder is applied to code the retained coefficients. The
low subbands and high subbands are coded separately, each
with three parts: significance map coding, sign coding and
magnitude refinement.

5.2.1. Coding of Significance Map

As has been shown in Sec. 4.1, there are significant corre-
lations between the significance maps across 28 high sub-
bands, and the entropy of the significance vector is much
smaller than 28. This low entropy prompted us to apply adap-
tive arithmetic coding for the significance vector. To utilize
the different statistics of the high subbands in each bit plane,
individual adaptive arithmetic codec is applied for each bit
plane separately. Though the vector dimension is 28, for each
bit plane, only a few patterns appear with high probabilities.
So only patterns appearing with sufficiently high probabili-
ties (determined based on training sequences) are coded us-
ing vector arithmetic coding. Other patterns are coded with
an escape code followed by the actual binary pattern.

For the four low subbands, vector coding is used to ex-
ploit the correlation among the spatial neighbors (2 x 2 re-
gions) and four low subbands. The vector dimension in the
first bit plane is 16. If a coefficient is already significant in a
previous bit plane, the corresponding component of the vec-
tor is deleted in the current bit plane. After the first several bit
planes, the largest dimension is reduced to below 10. As with
the high subbands, only symbols occurring with a sufficiently
high probability are coded using arithmetic coding. Differ-
ent bit planes are coded using separate arithmetic coders and
different vector sizes.

The proposed video coder codes 3-D DDWT coefficients
in each scale separately. As illustrated in figure 9, 3-D DDWT
does not have strict parent-children relationship as does the
3-D DWT [2]. Noise shaping destroys such a relationship
further. So the spatial-temporal orientation trees used in 3-D
SPIHT [2] are only applied in the finest stage, which has a lot
of zero coefficients.

5.2.2. Coding of Sign Information

This part is used to code the sign of the significant coeffi-
cients. Our experiments show that four low subbands have
very predicable signs. This predictability is due to the partic-
ular way the 3-D DDWT coefficients are generated. Recall
the orthonormal combination matrix for producing the 3-D
DDWT given in Equation 2. Because the original DWT low-
subbands are always positive (because they are low-pass fil-
tered values of the original image pixels) and the coefficients
in different low-subbands have similar values at the same lo-
cation, based on the combination matrix, the low subband in
the first DDWT tree is almost always negative, and the other
three low subbands in the other three DDWT trees are almost
all positive. We predict the signs of significant coefficients in
low subbands according to the above observation, and code
the prediction errors using arithmetic coding.

For high subbands, we have found that the current co-
efficient tends to have the same sign as its neighbor in the
low pass direction, but have the opposite sign to its high pass
neighbor. (In a subband which is horizontally low-pass and
vertically high-pass, the low pass neighbors are those to the
left and right, and high pass neighbors are those above and
below.) The prediction from the low pass neighbor is more
accurate than that from the high pass neighbor. The coded
binary valued symbol is the product of the predicted and real
sign bit. To exploit the statistical dependencies among adja-
cent coefficients in the same subband, we apply the similar
sign context models of 3-D embedded wavelet video (EWV)
[21].

5.2.3. Magnitude Refinement

This part is used to code the magnitudes (0 or 1) of signifi-
cant coefficients in the current bit plane. Because only a few
subbands have strong correlation as demonstrated in Sec. 4.2,
the magnitude refinement is done in each subband individu-
ally. The context modelling is used to explore the dependence
among the neighboring coefficients. Context models similar
to the EWV method [21] are applied to 3-D DDWT here.

5.3. Experimental Results of DDWT Video Coding

In this section, we evaluate the coding performance of the two
proposed codecs, DDWT-SPIHT and DDWTVC. The com-
parisons are made to 3-D SPIHT [2] using DWT (to be re-
ferred as DWT-SPIHT). None of these codecs use motion
compensation. Only the comparisons of luminance compo-
nent Y are presented here. Two CIF sequences “Stefan” and
“Mobile-calendar” and a QCIF sequence “Foreman” are used
for testing. All sequences have 80 frames with a frame rate of
30 fps. Figure 10 compares the R-D performances of DWT-
SPIHT and the two proposed video codecs, DDWTVC and
DDWT-SPIHT.



Figure10 illustrates that both DDWT-SPIHT and DDWT-
VC outperform DWT-SPIHT for all video sequences. Com-
pared to DDWT-SPIHT, DDWTVC gives comparable or bet-
ter performance for tested sequences. For a video sequence
which has many edges and motions, like “Mobile-calendar”,
DDWTVC outperforms DWT-SPIHT more than 1.5 dB. DDW-
TVC improves up to 0.8dB for the “Foreman” and 0.5 dB
better PSNR for “Stefan”. Considering that DDWT has four
times raw data than 3-D DWT, these results are very promis-
ing.
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Fig. 10. The R-D performance comparison of DDWT-SPIHT,
DDWTVC and DWT-SPIHT

Subjectively, both DDWTVC and DDWT-SPIHT have bet-
ter quality than DWT-SPIHT for all tested sequences. Coded

frames by DDWTVC and DWT-SPIHT for a frame from the
“Stefan” sequence are shown in Figure 11. We can see that
DDWTVC preserves edge and motion information better than
DWT-SPIHT; DWT-SPIHT exhibits blurs in some regions and
when there are a lot of motions. The visual differences here
are consistent with those in other sequences.

(a)The 16th frame in “Stefan” reconstructed from DDWTVC

(b)The 16th frame in “Stefan” reconstructed from DWT-SPIHT

Fig. 11. The subjective performance comparison of
DDWTVC and DWT-SPIHT for “Stefan”

Recall that the DDWT-SPIHT codec exploits the spatial
and temporal correlation within each subband while coding
significance, sign, and magnitude information. The DDWTVC
codec also exploits within subband correlation when coding
the sign and magnitude information. But for the significance
information, it exploits the inter-subband correlation, at the
expense of the intra-subband correlation. Our simulation re-
sults suggest that the exploiting inter-band correlation is equally,
if not more, important as exploiting the intra-band correla-



tion. The benefit from exploiting the inter-band correlation
is sequence dependent. A codec that can exploit both inter-
band and intra-band correlation is expected to yield further
improvement. This is a topic of our future research.

6. SCALABILITY OF DDWTVC

Scalable coding refers to the generation of a scalable (or em-
bedded) bit stream, which can be truncated at any point to
yield a lower-quality representation of the signal. Such rate-
scalability is especially desirable for video streaming appli-
cations, in which many clients may access the server through
access links with vastly different bandwidths.

The main challenge in designing scalable coders is how to
achieve scalability without sacrificing the coding efficiency.
Ideally, we would like to achieve rate-distortion (R-D) opti-
mized scalable coding, i.e., at any rate R, the truncated stream
yields the minimal possible distortion for that R.

One primary motivation for using 3-D wavelets for video
coding is that wavelet representations lend themselves to both
spatial and temporal scalability, obtainable by ordering the
wavelet coefficients from coarse to fine scales in both space
and time. It is also easy to achieve quality scalability by rep-
resenting the wavelet coefficients in bit planes and coding the
bit planes in order of significance. Because the 3-D DWT is
an orthogonal transform, the R-D optimality is easier to ap-
proach by simply coding the largest coefficients first.

To generate an R-D optimized scalable bit stream using
an overcomplete transform like 3-D DDWT, it will be neces-
sary to generate a scalable set of coefficients so that each ad-
ditional coefficient offers a maximum reduction in distortion
without modifying the previous coefficients. However, with
the iterative noise-shaping algorithm, the selected coefficients
do not enjoy this desired property, because the noise shap-
ing algorithm modifies previously chosen large coefficients to
compensate for the loss of small coefficients. With the coef-
ficients derived from a chosen threshold, the DDWTVC pro-
duces a fully scalable bit stream, offering spatial, temporal
and quality scalability over a large range. But the R-D perfor-
mance is optimal only for the highest bit rate associated with
this threshold.

Results in Figure 10 are obtained by choosing the best
noise-shaping threshold among a chosen set, for each target
bit rate. Specifically, the candidate thresholds are 128, 64, 32
for different bitrates respectively. Our experiments demon-
strate that at low bit rate (less than 1Mbps for CIF), the co-
efficients set retained by noise shaping threshold 128 offers
best results, and threshold 64 works best when the bit rate is
between 1 and 2 Mbps. If the bit rate is above 2 Mbps, the
codec uses coefficients obtained by threshold 32.

Figure 12 illustrates the reconstruction quality (in terms
of PSNR) at different bitrates for different final noise shaping
thresholds. In this simulation, the encoded bitstreams, which
are obtained by choosing different final noise shaping thresh-
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Fig. 12. Comparison of the reconstruction quality (in terms
of PSNR) at different bitrates for different final noise shaping
thresholds

olds, are truncated at different decoding bitrates. The trunca-
tion is such that the decoded sequence has the same temporal
and spatial resolution but different PSNR (SNR scalability).
As expected, each noise shaping final threshold is optimal
only for a limited bit rate range. For example, the final thresh-
old 32 gives highest PSNR between 2500-3000 kbps, and
threshold 64 outperforms other thresholds from 1000 kbps
to 2000 kbps. If we choose one low final threshold, for ex-
ample, threshold 32 (theo curve), the maximum degradation
from best achievable quality at different rate is about 1 dB or
so. Considering that it is fully scalable, the 1 dB is a coding
efficiency penalty for full scalability. Note that the coding re-
sults for all the thresholds are obtained by using the statistics
collected for coefficients obtained with the threshold of 64.
Had we used the statistics collected for the the actual thresh-
old used, the performance for thresholds other than 64 would
have been better.

7. EXTENSIONS OF THE 3-D DDWT

7.1. The 3-D Anisotropic Dual-tree Wavelet Transform

In the previous codec designs, the 3-D DDWT utilizes an
isotropic decomposition structure in the same way as the con-
ventional 3-D DWT. It is worth pointing out that not only the
low frequency subband LLL, but also subbands LLH, HLL,
LHL, etc, include important low frequency information. In
addition, more spatial decomposition stages normally pro-
duce noticeable gain for video processing. On the other hand,
less temporal decomposition stages can save memory and pro-
cessing delay. Based on these observations, we propose a
new anisotropic wavelet transform for 3-D DDWT. The pro-
posed anisotropic DDWT extends the superiority of normal
isotropic DDWT with more directional subbands without adding
to the redundancy.

The anisotropic DDWT we introduce here follows a par-



ticular rule in dividing the frequency space: when a subband
is in the low frequency end in any one direction, it will be
further divided in this direction, until no more decomposition
can be done.

In the DDWT, different frequency tilings lead to different
orientation of wavelets [11]. Figure 13 illustrates the orienta-
tion of three subbands of isotropic 2-D DDWT. The wavelets
that have the subband indexed as 1, 2 and 3 have orientations
of approximately -45, -75 and -15 degrees as shown in the
figure 13 (for clarity, only 1 decomposition level is shown be-
low).

Fig. 13. Typical wavelets associated with the isotropic 2-D
DDWT. The top row illustrates the wavelets in the spatial do-
main, the second row illustrates the (idealized) support of the
spectrum of each wavelet in the 2-D frequency plane.

Figure 14 demonstrates the 2-D frequency tiling of the
isotropic and anisotropic wavelet transform respectively for 2
levels of decomposition in each direction. In figure 14 (b),
the original LH and HL subbands are further divided into two
corresponding rectangular subbands. In both Figures 14 (a)
and (b), wavelets that have the subbands indexed as 1, 2 and
3 have orientation of approximately -45, -75 and -15 degrees.
But in Figure 14 (b), anisotropic wavelets corresponding to
subband 4 to 7 have some additional orientations of -81, -63,
-9, -27 degrees.

In 3-D the number of subbands and orientations increases
more dramatically. With the original 3-D DDWT, the fre-
quency space is always partitioned as cubes. For each level
of decomposition, the LLL subband is further divided into
eight cubes. The number of subbands increases by 7. For
an N level decomposition, the total number of subbands is
7N + 1. On the other hand, for the anisotropic DDWT, the
frequency space is partitioned into cuboids. The subbands of
DDWT are further divided. The total number of subbands is
(Nr + 1) (Nc + 1) (Nt + 1), whereNr, Nc andNt are de-
composition levels for row, column and temporal direction,
respectively. Usually we use same number of decomposi-
tion levels for the two special directions and allow different
levels for the temporal direction. The additional subbands
with different orientations add to the flexibility of the orig-

(a)Isotropic tiling

(b)Anisotropic tiling

Fig. 14. 2-D anisotropic dual-tree wavelets for 2 levels of
decomposition in each direction (from one tree).

inal isotropic DDWT. Asides from the different decomposi-
tion within a single tree, all other implementations are just the
same as DDWT [11], and the redundancy is not increased.

Figure 15 demonstrates the structure of 3-D isotropic and
proposed anisotropic transforms in spacial and temporal do-
main. Both structures applied two wavelet decomposition lev-
els. In the isotropic structure, only the low subband LLL
is decomposed each time. But the anisotropic structure de-
composes all subbands except the highest frequency subband
HHH into new subbands. We applied noise shaping on the
new anisotropic structure of 3-D DDWT, and compared to the
original isotropic 3-D DDWT and the standard 3-D DWT. In
this experiment, three wavelet decomposition levels are ap-
plied in each direction for both video sequences. The 3-D
DDWT and DWT filters are the same as in section 2.

Figure 16 show that the 3-D DDWT, both isotropic and
anisotropic structures, achieve better quality (in terms of PSNR)
than the standard 3-D DWT, with the same number of retained
coefficients. To achieve the same PSNR, the anisotropic struc-
ture needs about 20% fewer coefficients on average than the
isotropic structure. With the same number of retained coef-
ficients, DDWT NS yields higher PSNR than DWT. The
anisotropic structure (DDWT anisotropic NS) outperforms
the isotropic structure (DDWT isotropic NS) by 1-2 dB.



(a)Isotropic decomposition

(b)Anisotropic decomposition

Fig. 15. Comparison of isotropic decomposition and
anisotropic decomposition.

7.2. Combining 3-D DDWT and DWT

The 3-D DDWT isolates different spatial orientations and mo-
tion directions in each subband, which is desirable for video
representations. In terms of 2-D orientation, the DDWT are
oriented along six directions:±75◦,±45◦, and±15◦. Unfor-
tunately, the DDWT does not represent the vertical and hor-
izontal orientations (±0◦, and±90◦) in pursuit of other di-
rections. Recognizing this deficiency, we propose to combine
the 3-D DDWT and DWT, to capture directions represented
by both.

Considering that the horizontal and vertical orientations
are usually dominant in natural video sequences, we gave the
DWT priority to represent the video sequences. We assume
the horizontal and vertical features in the video sequences will
be represented by large DWT coefficients. So we apply DWT
at first and only keep the coefficients over a certain thresh-
old. Then we apply the DDWT on the residual video, and the
noise shaping is used to select the significant DDWT coeffi-
cients of the residual video. This is illustrated in Figure 17.
Recognizing that the DWT subband has a normalized energy
that is four times that of the DDWT subband, we use 1000 as
the threshold for chosing significant 3-D DWT coefficients,
and use 256 as the initial noise shapping threshold for DDWT
coefficients.

The simulation results of combining DWT and DDWT are
shown in Figure 18. The isotropic structure is used in the sim-
ulations. Figure 18 illustrates that the combined DDWT and
DWT achieves slightly better quality (in terms of PSNR) than
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Fig. 16. Comparison of the reconstruction quality (in
terms of PSNR) using the same number of retained co-
efficients with the isotropic DDWT with noise shaping
(DDWT isotropicNS, upper curve) and the anisotropic
DDWT with noise shaping (DDWTanisotropicNS, middle
curve) and DWT (lower curve).

Fig. 17. The structure of combing 3-D DDWT and DWT

the 3-D DDWT alone, with the same number of retained coef-
ficients. To achieve the same PSNR, the combined transform
needs up to 8% fewer coefficients than the 3-D DDWT alone.

8. CONCLUSION

We demonstrated that the 3-D DDWT has attractive proper-
ties for video representation. Although the 3-D DDWT is an
overcomplete transform, the raw number of coefficients can
be reduced substantially by applying noise shaping. The fact
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Fig. 18. Comparison of the reconstruction quality (in terms
of PSNR) using the same number of retained coefficients with
DDWT (DDWT NS, upper curve) and the combined DDWT
and DWT(DDWTDWT NS, lower curve). The DDWT co-
efficients are obtained by noise shaping in both cases.

that noise shaping can reduce the number of coefficients to
below that required by the DWT (for the same video quality)
is very encouraging. The vector entropy study validates our
hypothesis that only a few basis functions have significant en-
ergy for an object feature. The relatively low vector entropy
suggests that the whereabouts of significant coefficients may
be coded efficiently by applying vector arithmetic coding to
the significance bits across subbands. The fact that coefficient
values do not have strong correlation among the subbands, on
the other hand, indicates that the benefit from vector coding
the magnitude bits across the subbands may be limited.

Based on our investigation, two new video codecs, DDWT-
SPIHT and DDWTVC, using the 3-D Dual-tree wavelet trans-
form are proposed and tested on standard video sequences.
The DDWT-SPIHT applies 3-D SPIHT on each DDWT tree
to exploit the correlation within each subband. The 3-D DDWT
video codec (DDWTVC) applies adaptive vector arithmetic
coding across subbands to efficiently code the significance
bits jointly. This vector coding successively exploits the cross-

band correlation in significance bits. But the spatial depen-
dence of significance bits in each subband has not been ex-
plored in the current DDWTVC. Recognizing that context-
based coding is an effective means to explore such depen-
dence, we have explored the use of context-based arithmetic
vector coding. A main difficulty in applying context models
is that the complexity grows exponentially with the number of
pixels included in the context. We have tested the efficiency
of various contexts, which differ in the chosen subbands and
spatial neighbors. The study so far however has not yielded
significant gain over direct vector coding.

Besides the standard isotropic decomposition structure, a
new anisotropic structure of the novel 3-D Dual-tree wavelet
transform is also proposed and tested on video coding. The
anisotropic structure of the 3-D DDWT decomposes not only
the lowest subband LLL, but also all other subbands except
the highest subband HHH. The number of the decomposition
stages can be different along temporal, horizontal and vertical
directions. This structure is more effective than the traditional
isotropic structure. The anisotropic structure can yield better
reconstruction quality (in terms of PSNR) for the same num-
ber of coefficients. We also propose to combine 3-D DWT
and DDWT to capture more directions and edges in video se-
quences. The combined structure however leads to only slight
gains in terms of reconstruction quality vs. number of coeffi-
cients.

In terms of future work, more properties of the 3-D dual-
tree transform need to be exploited. First of all, a codec that
can exploit both inter-bands and intra-band correlation in cod-
ing the significance bits is expected to provides significant
improvement. Secondly, how to incorporate the proposed
anisotropic DDWT in video coding is still open, because the
number of subbands and orientations increases more dramat-
ically in anisotropic structure. Based on the gain in terms of
the reconstruction quality vs. number of (unquantized) coef-
ficients, we expect that a codec using the anisotropic DDWT
can lead to additional significant gains. The codec in [22] ex-
ploits both inter- and intra-band correlation. It also compares
the performance obtainable with isotropic and anisotropic de-
composition. With isotropic DDWT, their codec has however
similar performance as DDWTVC. The anisotropic DDWT
achieved on average a gain of 1 dB over isotropic. Finally,
with noise shaping, the optimal set of coefficients to be re-
tained changes with the target bit rate. To design a scalable
video coder, we would like to have a scalable set of coeffi-
cients so that each additional coefficient offers a maximum
reduction in distortion without modifying the previous coef-
ficients. How to deduce such coefficient sets is a challenging
open research problem.
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