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Abstract

We describe the semantics of the plan representation in Colla-
gen and how it supports the generation, recognition and com-
munication of intentions in human-computer collaboration.
This integrated architecture is made possible in large part be-
cause of the foundations of the representation in collaborative
discourse theory.

Introduction
Collagen is a system for building collaborative interface
agents based on the collaborative discourse theory of Grosz,
Sidner, et al. (Grosz & Sidner 1986; 1990; Grosz & Kraus
1996; Lochbaum 1998). Collaborative interface agents are
computer programs that cooperate with humans through the
use of action and communication (in natural or artificial lan-
guage) to achieve shared goals. Collagen has been used both
by the authors and by others outside our laboratory to de-
velop more than a dozen such prototype agents (both purely
software and physically embodied (Sidneret al. 2005)) for
a wide variety of applications (Rich, Sidner, & Lesh 2001;
Rich & Sidner 2007).

Collaborative discourse theory is comprised of three in-
terrelated components: intentional, attentional, and linguis-
tic. All three of these are implemented in Collagen. Very
roughly speaking, the intentional component is implemented
by plan trees, the attentional component is implemented by
a focus stack, and the lingustic component is implemented
by an artificial negotiation language.

In this paper, we focus on Collagen’s intentional com-
ponent, specifically how plan trees support the generation,
recognition and communication of intentions. The main
advantage of this architecture is that it facilitates the fine-
grained interleaving of these three processes required for
collaboration. Having a single representation with a clear
semantics has, we believe, led us to a simpler and more con-
sistent implementation than would otherwise be possible.

To our knowledge, this integrated architecture is unique
to Collagen among generic tools for building intelligent
agents.1 Many intelligent tutoring systems (tutoring is a kind
of collaboration) use a single plan-like representation both
for generating agent (tutor) intentions and recognizing user
(student) intentions. However, the communication process

1Though part of the goal of this workshop is to find out for sure!

(tutorial dialogue) in these systems has not generally been
based on a semantic foundation in terms of intentions. Our
joint work with Rickel (2002) was directed toward bringing
this sort of dialogue semantics into intelligent tutoring.

Several recent collaborative agent building systems, such
as STAPLE (Kumar & Cohen 2004), Artimis (Sadek,
Bretier, & Panaget 1997), and Rochester’s collaborative di-
alogue agent (Ferguson & Allen 2007), use the semantics
of the agent’s intentional represention for interpretation of
user utterances, thereby integrating communication and plan
generation. However, none of these includes a powerful plan
recognition component such as Collagen’s, i.e., one that can
do interpolation (see discussion of plan recognition below).

Plans
Before describing how Collagen’s intentional representation
is used, we first need to describe its semantics in terms of
collaborative discourse theory.

As Pollack (1990) has pointed out, the term “plan” has
historically been used confusingly to refer to two different
concepts: knowledgeabout how to achieve certain goals
(e.g., by decomposing them into subgoals), and structures
of intentionsto achieve certain goals and subgoals. In Col-
lagen, we follow Pollack’s suggested terminology and use
the term “recipes” for the former concept (see next section),
reserving the term “plan” for the latter concept.

Collagen’s plan trees (technically, directed acyclic graphs,
since we allow a node to have multiple parents) are a sim-
plified implementation of the SharedPlan representation of
collaborative discourse theory. An agent’s intentional state
(part of its overall cognitive state) may contain multiple plan
trees, corresponding to multiple toplevel goals.

Each node in a plan tree (see example in Figure 1) is an
instance of an act type, which means that it may provide
values for some or all of the parameters defined by the act
type, and for the act’s participants. We treat utterances as
actions in Collagen. Thus nodes in the plan tree correspond
to both utterances and “physical” actions (manipulations) in
the world.

The semantics of a plan tree node is either an individ-
ual (agent private) plan or a Partial SharedPlan (between the
user and the agent) with respect to that act, as further de-
scribed below. SharedPlans include a rich framework for
modeling groups of participants in acts. In Collagen, how-
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Figure 1: An example plan tree.

ever, the only possible values for the participants in an act
are{agent}, {user}, and{agent,user}.2 If the participants
value for a node (act) is{agent}, then it represents an in-
tention to perform the act; otherwise the node represents an
“intention that” (Grosz & Kraus 1993) the act be achieved.3

In the usual logical notation, where act type A is formal-
ized as a predicate whose first argument is the participants,
the following are the intentions represented by an instance
of A in the plan tree, depending on the participants value:

Intend(agent, A({agent}))
IntendThat(agent, A({agent,user}))
IntendThat(agent, A({user}))
IntendThat(agent, A(?))

This node and its children (see below) represent (at least) an
individual plan on the part of the agent to achieve A.

In addition to the intentions above, a Partial SharedPlan
(i.e., non-private plan) for A requires roughly the following
mutual beliefs (MB) between the agent and user, depending
again on the participants in A:4

MB(Intend(agent, A({agent})))
MB(IntendThat(agent, A({user})))
MB(IntendThat(user, A({agent,user})))
MB(IntendThat(agent, A({agent,user})))

These mutual beliefs arise either from the process of plan
recognition or communication, both of which add belief an-
notations to nodes in the plan tree, as described below.

Because Collagen has mostly been used thus far to de-
velop “compliant” agents, i.e., agents which always accept
user goals as their own, it does not currently provide a plan
node belief annotation for the case of user intentions which
are not also agent intentions. For example, we cannot cur-
rently represent just the agent belief

Believe(agent, IntendThat(user, A({agent})))

without the corresponding agent intention

Intend(agent, A({agent})).

2We have recently experimented with extending this to three-
party collaborations.

3SharedPlan theory does not allow direct intentions with respect
to an act that involves other participants; instead it defines a concept
of “intend that” for such intentions.

4These mutual beliefs and the intentions above should all be
wrapped in “Believe(agent, ...),” since they are part of agent’s cog-
nitive state; we have omitted this for ease of reading.
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recipe R achieves A {
step B b;
step C c:
constraints {

precedes(b, c);
achieves.param1 == b.param1;
b.param2 == c.param1;
c.param2 == achieves.param2;

}
}

Figure 2: An example recipe.

However, it is a small extension to support this belief (ba-
sically, a matter of adding a boolean property to plan nodes).
Furthermore, this extension will be required when we imple-
ment the rest of Sidner’s artificial negotiation language (see
Communication section below) to support agents that can
negotiate actions.

The arcs in a plan tree represent the SharedPlan relation-
shipdirectly contributes, in which the act represented by the
child (subplan) node directly contributes to the act repre-
sented by the parent. Examples of this relationship include:

• the subplan results in a choice of recipe for the parent

• the subplan is an instance of a step in the recipe for the
parent (see recipe application description in next section)

• the subplan results in assigning a value to a parameter of
the parent

• the subplan results in assigning the parent’s participants

As in SharedPlans, Collagen’s plan representation also
specifies a partial order between the subplans of each node
(illustrated by the horizontal arrow in Figure 1). Subplans
may thus be totally ordered, unordered, or any consistent
partial ordering in between.

Finally, plan trees in Collagen are annotated with propo-
sitional constraints between the parameters of the act in-
stances represented by the nodes. The most important of
these constraint types is equality, which propagates values
both “up” and “down” the tree (down from generation and
up from recognition—see more below). Reasoning with
these constraints is implemented by a boolean truth main-
tenance system (a TMS with integrated unit propositional
resolution—a fast but incomplete decision procedure for
boolean logic) integrated with a complete decision proce-
dure for equality.

Recipes
Following Pollack and SharedPlans, recipes in Collagen are
essentially goal decomposition rules. Recipes are used both
in the generation and recognition of collaborative behavior,
as described in the next two sections. In both processes, the



key operation is toapply a recipe to a node in a plan tree.
(In addition, as with any kind of knowledge, recipes can be
explained, learned, etc.)

One way to think of a recipe is as a plan tree “template.”
When a recipe is applied to a plan node of the required type,
it adds children to that node with a specified ordering (if
any) between the children and propositional constraints be-
tween the children and typically including the parent. Figure
2 shows an example of a recipe, both in diagrammatic form
and in the Java-based source code notation used by Colla-
gen. This recipe decomposes an instance of act type A into
two totally ordered steps of type B and C, with the result pa-
rameter of the first step becoming an input parameter to the
second step.

The procedural knowledge of a collaborative agent imple-
mented using Collagen consists predominantly of a library
of such recipes, including possibly more than one recipe for
each act type.

Both plans and recipes are drawn as trees. However, it
is very important to remember Pollack’s distinction and not
confuse the two. If the recipe in Figure 2 were applied to the
A node in Figure 1 the resulting plan tree would, in diagram-
matic form, appear (see Figure 3) as if the subtree below A
in Figure 2 were appended to the fringe of tree in Figure 1.
From a semantic point of view, however, this amounts to
adding new intentions and/or beliefs to the agent’s cognitive
state corresponding to the new instances of B and C.

Plan Generation
Plan generation is fundamentally the process of adding sub-
plans to plan trees which, as mentioned above, corresponds
to the agent adding new intentions and/or beliefs to its cog-
nitive state. Unlike plan recognition and communication,
discussed in the next sections, plan generation only extends
the agent’s current individual plan; it does not result in new
beliefs about theuser’sintentions. For example, if the agent
generates a new subplan for the user to perform A, the se-
mantics of the new node is:

IntendThat(agent, A({user}))

Note that this is only an agent intention. In the absence of
other information, not only may the user not intend at this
point to perform A, the user might not even know that A
exists! In a typical collaboration, the agent will eventually
communicate its intention to the user by an utterance with
ProposeShould semantics (see Communication section).

In Collagen, plan generation currently occurs by several
different methods, with an additional one expected in the
future.

The most important method of plan generation is via
recipe application. For example, Figure 3 shows the result
of applying the recipe in Figure 2 to the A node in the plan
in Figure 1. Notice that the choice of recipe R is noted in the
resulting plan. How to choose when to expand a given plan
node, or, when there is a choice of recipes, which recipe to
apply, is beyond the scope of this paper. It is worth noting,
however, that the choice of recipe can itself be the topic of
communication with a collaborative agent.
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Figure 3: An example of applying a recipe.

Collagen’s plan representation does not, however, require
a recipe at every plan node with subplans. Subplans can also
be added one-by-one, or in groups, by any other process.
A boolean annotation on each plan node indicates whether
or not the current subplans are complete, i.e., whether their
execution is expected to achieve the parent (this annotation
is set to true by recipe application).

The second most important method of plan generation in
Collagen is via what we call “plug-ins.” The primary pur-
pose of plug-ins is to generate an agenda of possible actions
(including utterances), which the agent might perform given
its current intentional and world state. This agenda is gener-
ated by applying every plug-in (a small piece of generic or
application-specific code) to every node in the current plan
tree (for more details, see (Richet al. 2002)). As a side ef-
fect,5 however, a plug-in may also add one or more subplans
to the node it is applied to.

Finally, as a last resort, application-specific code in the
agent may add subplans based on arbitrary criteria. This
method is not often used in Collagen, but is important as a
practical fallback.

An important plan generation method currently missing
from Collagen is first-principles planning. Unlike the other
methods described above, first-principles planning requires
a complete axiomitization of all the act types involved in
the planning process (which is why it was not emphasized
in our work to date). It is clear where this method fits into
the current architecure, i.e., as yet another process which
adds subplans. We hope to take an off-the-shelf partial-order
planner and integrate it into Collagen in the near future.

Plan Recognition
Although plan recognition is a well-known feature of human
collaboration, it has proven difficult to incorporate into prac-
tical human-computer collaboration systems due to its inher-
ent intractability in the general case. In Collagen, we exploit

5There are in fact problems, e.g., for hypothetical reasoning,
with allowing plug-ins to directly modify the plan tree. We have
an improved, but as yet unimplemented, design in which a plug-in
returnsa set of potential subplans.
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Figure 4: An example of plan recognition.

the following three properties of the collaborative setting in
order to make plan recognition practical:

• the focus of attention

• the use of partially elaborated hierarchical plans

• the possibility of asking for clarification

Plan recognition extends the plan tree at the fringe, at min-
imum by adding a single node (representing an instance of
an observed atomic act), or more generally, by interpolating
a new subtree between the existing fringe of the tree and the
observed act (based on the recipe library provided).

Figure 4 shows an example of plan recognition involving
interpolation, in which an instance of act B is observed in the
intentional state containing the plan tree XYZ, and assuming
a recipe library including R from Figure 2 and another recipe
S, which decomposes Y into W and A. In this example, three
new nodes are added to the plan tree: instances of W, A and
C.6 Each of these nodes has a belief annotation which, for
example for A, selects the following semantics:

Believe(agent, IntendThat(user, A(?)))

This belief, together with appropriate axioms for a compli-
ant collaborative agent, provide the basic semantics for a
Partial SharedPlan for A, namely:

MB(IntendThat(user, A({agent,user})))

In this example, there was exactly one possible extension
to the current plan which accounted for the observed act.
There can, in general, also be zero or more than one such
extensions. If there is more than one, Collagen delays ex-
tending the plan until subsequent events disambiguate the
possibilities. (Typically, the agent will ask a disambiguat-
ing question when the number of ambiguous acts exceeds
a system parameter.) If there are no possible extensions
which account for the observed act, then Collagen starts a
new toplevel plan representing an unknown goal. For more
details on Collagen’s plan recognition algorithm, see (Lesh,
Rich, & Sidner 1999).

6The observed instance B is also added to the plan tree for his-
torical purposes.
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"Let’s do A."

ProposeShould(user, A({agent,user}))

Figure 5: An example of proposing an action.

Communication
The third and final piece of this story is about how agent-user
communication in Collagen extends the intentional state of
the agent. The key to this is Sidner’s artificial negotiation
language (Sidner 1994), which specifies utterance seman-
tics in terms of updates to the beliefs of the speaker and the
hearer. Describing Sidner’s complete language is beyond the
scope of this paper (and beyond Collagen’s current imple-
mentation). We focus here on a single utterance type, which
we call ProposeShould.

Intuitively, ProposeShould is a way of communicating
one’s intention to perform some act. For example, the de-
fault English surface forms generated by Collagen for the
three possible ProposeShould utterances by the agent with
respect to act A are shown in the table below:

ProposeShould(agent, A({agent,user})) “Let’s do A.”
ProposeShould(agent, A({agent})) “I’m going to do A.”
ProposeShould(agent, A({user})) “Please do A.”

Utterances such as these are how the agent converts its in-
dividual plan for A into a Partial SharedPlan plan for A. Sid-
ner’s semantics for ProposeShould (which derive from her
semantics for proposals in general) allows the agent to add
the following belief to its cognitive state (assuming certain
conditions about the communication channel being open,
etc.) after, for example, the first utterance above:

Believe(agent,
Believe(user, IntendThat(agent, A({agent,user}))))

This is not yet enough, however, for mutual belief, which
is attained only once the the useracceptsthe agent’s pro-
posal, either implicitly or explictly (e.g., by “Ok”). Apply-
ing Sidner’s general semantics for acceptance of proposals,
the agent may then add the following beliefs to its state:

MB(IntendThat(user, A({agent,user})))
MB(IntendThat(agent, A({agent,user})))

In this case, i.e., an agent ProposeShould, there was al-
ready a node for A in the plan tree. The result of the com-
munication was to achieve the mutual beliefs required for a
Partial SharedPlan.



Now consider the corresponding ProposeShould by the
user, i.e., the user says “Let’s do A.” The interpretation of
this utterance by the agent depends not only on the agent’s
intentional state, but also crucially on its attentional state
(focus stack). The details of Collagen’s discourse interpreta-
tion algorithm are beyond the scope of this paper (see (Lesh,
Rich, & Sidner 2001)), but the basic idea is to again ap-
ply Sidner’s belief semantics, just reversing the speaker and
hearer. Thus, after hearing the user’s utterance, the agent
adds the following belief:

Believe(agent, IntendThat(user, A({agent,user})))

If the agent’s plan tree already contains a non-executed node
for A, i.e., the agent already intended A, (and that part of
the tree is on the focus stack) then the interpretation of the
user’s ProposeShould does not lead to any new intentions
(plan nodes).

The more interesting case, however, is when A does not
match an existing agent intention, but can contribute directly
to the current discourse segment purpose (see (Grosz & Sid-
ner 1986)). In this case, the result of the user’s Propose-
Should utterance is to add a subplan for A to the plan node
for the current discourse segment purpose, as shown in Fig-
ure 5, where Y is assumed to be the current discourse seg-
ment purpose.7 Currently (due to the agent compliancy dis-
cussed above), the belief annotation on this new node imme-
diately gives it the full mutual belief semantics for A written
above, which is not quite correct. More correctly, the agent
may assume mutual belief only after it accepts the user’s
proposal.

To summarize, what we have seen here are two different
communication routes to reach a Partial SharedPlan: either
the agent communicates its intention to the user (and the user
accepts), or the user communicates its intention to the agent
(and the agent accepts).

Furthermore, in Collagen, plan recognition is applied to
action proposals just like actions. What this means is that
if the recipe library for the interpretation of the utterance in
Figure 5 includes S and R, and these are the only recipes
for Y and A respectively,8 then the agent’s plan tree after
interpretation of the utterance will be exactly as shown in
Figure 4 (except that B will not be marked as already exe-
cuted).

Conclusion
In conclusion, although there is much further work to be
done, we believe Collagen demonstrates that a single plan
representation can support the fine-grained interleaving of
plan generation, plan recognition and communication re-
quired for human-computer collaboration. Furthermore, we
fervently believe that we would not have been able to get

7If A cannot contribute to the current discourse segment pur-
pose, then a new interruption segment will be created with A as the
purpose. The full details of discourse interpretation are beyond the
scope of this paper.

8If there is more than one recipe for Y, then the plan recognition
is ambiguous and is deferred. If there is more than one recipe for
A, then this choice is also deferred.

this far without the foundations provided by collaborative
discourse theory.
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