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Abstract— We describe a method to encode fingerprint bio-
metrics securely for use, e.g., in encryption or access control.
The system is secure because the stored data suffices to validate
a probe fingerprint but not to recreate the original fingerprint
biometric. Therefore, a breach in database security does not lead
to the loss of biometric data. We present a model for a secure
biometric system for which we can make strong encryption-like
security guarantees. We derive a fundamental trade off between
system security and the robustness of authentication. The trade
off is quantified for simple statistical models. We outline an
implementation and report the effectiveness of our method as
tested on a data base consisting of 579 datasets, each containing
roughly 15 measurements of a single finger.

I. INTRODUCTION

Securing access to physical locations and to data is of pri-
mary concern in many personal, commercial, and governmen-
tal contexts. Classic solutions include carrying an identifying
document or remembering a password. Problems with the
former include forgeries and with the latter include poorly-
chosen or forgotten passwords.

Computer-verifiable biometrics provide a third approach.
In these systems a sensor measures a biological feature of
a person, for example, a fingerprint or an iris scan. It then
compares this new sample, termed the probe, with a previously
stored sample, termed the enrollment. If the samples match
then, depending on the application, the person could be granted
access or given a cryptographic key. Advantages of biometrics
include the fact that they cannot be forgotten, they can be hard
to guess, and they can be difficult to forge.

Biometrics have certain characteristics that pose novel chal-
lenges and can create new security holes. A central character-
istic that differs biometrics from passwords is that each time
a biometric is measured the observation differs. In the case
of fingerprints the reading might change because of elastic
deformations in the skin when placed on the sensor, dust or
oil between finger and sensor, or a cut to the finger. Biometric
authentication systems must be robust to such variations.

Most biometric systems deal with such variability by relying
on pattern matching. To perform matching the enrollment
biometric is stored on the device. This results in a serious
security problem. If a malicious attacker gains access to the
device, the attacker also gains access to the biometric. In
contrast, password-based systems only store hashes. When a
user types in a password, the computer compares the hash of

the probe password to the stored hash. Access is granted if
they match. Since the hash function is effectively impossible
to invert, security is not compromised even if an attacker learns
the stored hash. Several researchers have attempted to develop
“secure” biometric systems with similar characteristics.

Davida, Frankel, and Matt [1] consider the use of error
correction coding as a solution to this problem. Juels and
Sudan [2] introduce the idea of a fuzzy vault to formalize the
use of error correcting codes for such applications. Several re-
searchers have explored cryptographic aspects of the problem
in more depth [3], [4], [5]. Some constructions for fingerprints
exist, e.g., [6], [7], [8], but yield high false reject rates. A main
stumbling block is how to model and exploit the statistical
relationship between enrollment biometric and probe. From an
information theoretic perspective the secure biometric problem
is a problem of “common randomness” [9]. Different parties
observe correlated random variables (the enrollment and the
probe) and then attempt to agree on a shared secret key (the
enrollment biometric). The basic tool used to extract the secret
is a distributed source code [10].

Our formulation and proposed solution build on both sets of
works. In our implementation we develop a statistical model of
the “fingerprint channel” relating the enrollment to the probe
and use a graphical code to compress and scramble the enroll-
ment biometric. Iterative decoding using belief-propagation is
performed across both graphs. This successfully captures both
the structure of the code and that of the measurement channel.
Our initial work in this area considered iris biometrics [11].

The outline of the remainder of the paper is as follows.
In Section II we develop our model of a secured biometric
systems and describe the operation of the system. In Section III
we quantify a fundamental security-robustness trade off. In
Section IV we describe our model of the fingerprint channel,
and in Section V evaluate performance on a database of
roughly 8100 test fingerprints. More details on implementation
and testing can be found in [12].

II. SECURE BIOMETRIC MODEL

The objective of a (classic, unsecured) biometric system is
to provide reliable access control to registered users and to
deny access to unregistered users. This is done by comparing a
probe biometric with the stored enrollment biometrics. Perfor-
mance is measured in terms of the false-rejection rate (FRR)



and the false-acceptance rate (FAR). Typically the question
of access boils down to a hypothesis test controlled by a
threshold.

Secured biometric systems operate under the additional
constraint that an enrollment biometric should not be easy
to reconstruct from stored data. The more difficult it is to
determine any enrollment biometric from the stored data the
more secure the system is. At the same time, the stored
data must be informative enough that the original enrollment
biometric can be recovered (with high probability) when
presented with a second measurement of the biometric.

The objective of a secured biometric system is slightly
different from that of a classic system. Its underlying objective
is not a binary decision. Rather, its objective is to recover
the original biometric measured at enrollment. Successful
recovery can be validated by storing a cryptographic hash of
the original. Only if the hash of the estimated biometric equals
the stored hash is recovery successful. The original biometric
is a secret shared by encoder and decoder. Certain applications
not possible for a classical biometric system are enabled by
the existence of a shared secret. We give an example of an
encryption application.

The performance of a secured biometric system is quantified
using the rates of false-rejection and successful-attack. In
unsecured systems the enrollment database is assumed private
and the FAR is measured by testing a probe biometric against
other users’ enrollment biometrics and calculating how often
the probe is given access. In the secured system, we define
the successful-attack-rate (SAR) under the assumption that
an adversary has gained access to the database. Security is
measured by how many guesses the adversary must then make
to determine any particular user’s enrollment biometric. The
adversary need not constrain its attack to submitting guesses
to the system’s decoding rule. It can synthesize any input
sequence as the probe and use whatever decoding rule it
desires. We will give an example of this added flexibility in
Sec. III-B. We define the SAR to be the reciprocal of the
number of guesses an attacker needs to make to identify (with
high probability) the original biometric.

A. Enrollment and authentication

We describe our model of the operation of a secured
biometric system in terms of an access-control application.
During enrollment a user is selected and their raw biometric b

is determined by nature. The biometric is a length-n random
vector drawn according to some distribution Pb(b). A joint
feature extraction and quantization function ffeat(·) then maps
the raw biometric into the enrollment biometric x = ffeat(b).
The user’s enrollment biometric x is the secret shared between
the legitimate user and the access control system. Next, a
function fsec(·) maps the enrollment biometric x into the
secure biometric s = fsec(x). The access control point stores
s, c, and a cryptographic hash of the enrollment fhash(x). It
does not store b or x.

In the authentication phase, a user requests access and
provides a biometric probe y. We model the biometrics of dif-

ferent users as statistically independent. Therefore, if the user
is not the legitimate user Py,b(y,b) = Pb(y)Pb(b). On the
other hand, if y comes from the legitimate user Py,b(y,b) =
Pb′|b(y|b)Pb(b) where Pb′|b(·|·) is the biometric channel.

The decoder gdec(·, ·) combines the secure biometric s with
the probe y and either produces an estimate of the enrollment x̂

or a special symbol ∅ indicating decoding failure. If fhash(x̂)
matches the stored fhash(x) access is granted.1

B. Performance measures

The probability of authentication error (false-rejection) is

PFR = Pr [x 6= gdec(y, fsec(ffeat(b)))] ,

where Py,b(y,b) = Pb′|b(y|b)Pb(b).
It must be assumed that an attacker makes many attempts to

guess the desired secret. Therefore, measuring the probability
that a single attack succeeds in not particularly meaningful.
Instead, security should be assessed by measuring how many
attempts an attack algorithm must make to have a reasonable
probability of success. As a result, security failure is more
complicated to define than authentication failure.

Let L = ARsec
[·] be a list of 2nRsec guesses for x produced

by an attack algorithm that uses knowledge of Pb(·), Pb′|b(·|·),
ffeat(·), fsec(·), fhash(·), gdec(·, ·), and s. The attacking algo-
rithm does not have access to a probe generated according
to Pb′|b(·|·) because it does not have a measurement of the
original biometric. A system is said to be ε-secure to rate-Rsec

attacks if the probability of successful-attack PSA(Rsec) < ε.
This probability equals the probability that the enrollment
biometric is on the attacker’s list, PSA(Rsec) =

Pr
[

x∈ARsec

[

Pb(·),Pb′|b(·|·),ffeat(·),fsec(·),fhash(·),gdec(·,·),s
]]

.

Equivalently, we refer to a scheme with PSA(Rsec) = ε as
having n · Rsec bits of security with confidence 1 − ε. With
probability 1−ε an attacker must search a key space of n·Rsec

bits to crack the system security. In other words the attacker
must make 2nRsec guesses. The parameter Rsec is a logarithmic
measure of security, quantifying the rate of the increase in
security as a function of block length n. For instance, 128-bit
security requires nRsec = 128.

C. Goal

Our objective is to construct an encoder and decoder pair
that obtains the best combination of robustness (as measured
by PFR) and security (as measured by PSA(Rsec)) as a
function of Rsec. In general, improvements in one dimension
necessitate a decrease in another. For example, if PSA(0.5) = ε
and PFR = 2−10 at one operating point, increasing the security
to 0.75n might yield another operating point at PSA(0.75) = ε
and PFR = 2−8.

For authentication failure, the error exponent
−(1/n) logPFR is the appropriate logarithmic performance
measure. For a fixed ε > 0, we define the security-robustness

1In a data encryption application an encryption key is generated from x

and the matching decryption key from x̂.
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Fig. 1. Example security-robustness regions. The horizontal axis represents
the maximum security rate Rsec such that PSA(Rsec) < ε, while the
vertical axis represents robustness. The security-robustness region of the
system corresponding to the solid curve dominates that of the dashed curve.

region Rε as the set of pairs (r, γ) where rate-r security is
possible with an authentication failure exponent of γ:

Rε = {(R, γ)|PSA(R) ≤ ε, γ ≥ −(1/n) logPFR} .

The goal is to maximize Rε. As illustrated in Fig. 1 one secure
biometric system dominates another if the security-robustness
region of the first is strictly larger than that of the latter.

III. QUANTIFYING SECURITY

To provide a conceptual framework for our solution we
describe an analytic model of a system that is information-
theoretically secure. We quantify the trade off between PFR

and PSA(·) using information theory and random codes.

A. Information theoretically secure biometrics

The feature extraction function ffeat(·) induces a distribu-
tion on x. We assume that x, b and y are jointly ergodic and
take values in finite sets. In particular, x ∈ X n.

We use a rate-RSW random “binning” function (a Slepian-
Wolf code [10]) to encode x into the secured biometric s.
Specifically, we assign each possible sequence x ∈ X n an
integer selected uniformly from {1, 2, . . . , 2nRSW}. The secure
biometric is this index s = fsec(ffeat(b)). Each possible index
s ∈ {1, 2, . . . , 2nRSW} indexes a set or “bin” of enrollment
biometrics, {x|fsec(x) = s}. The secure biometric can be
thought of as a scalar index s or its binary expansion, a
uniformly distributed bit sequence s of length nRSW.

During authentication, a user provides a probe biometric
y and claims to be a particular user. The decoder gdec(y, s)
searches for a vector x̂ ∈ Xn such that is x̂ is jointly typical
with y under the joint distribution px,b′ and is in bin s, i.e.,
fsec(x̂) = s. If a unique x̂ is found, then the decoder outputs
this result. Otherwise, an authentication failure is declared and
the decoder returns ∅.

According to the Slepian-Wolf Theorem [10], [13], the
decoder will succeed with probability approaching 1 as n
increases provided that RSW > (1/n)H(x|b′). Thus, PFR

approaches zero for long block lengths. The theory of er-
ror exponents for Slepian-Wolf coding [14] tells us that
−(1/n) logPFR ≥ ESW(RSW) where ESW(RSW) is defined
as

max
0≤ρ≤1

ρRSW−
1

n
log

∑

b′

pb′(b′)

[

∑

x

px|b′(x|b′)
1

1+ρ

]1+ρ

. (1)

If the source is memoryless, the second term of (1) simplifies
to − log

∑

b′ pb′(b′)[
∑

x px|b′(x|b′)
1

1+ρ ]1+ρ.
Next we consider the probability of successful attack, i.e.,

how well an attacker can estimate x given the secure biometric
s. According to the asymptotic equipartition property [15],
under the fairly mild technical condition of ergodicity it can
be shown that conditioned on s = fsec(x), x is approximately
uniformly distributed over the typical set of size 2H(x|s).
Therefore, with high probability, it will take approximately
this many guesses to identify x. We compute H(x|s) as

H(x, s) − H(s) = H(x) − H(s) = H(x) − nRSW. (2)

Note that in the classic attack used to calculate the FAR, y

is chosen from pb′(·) independently of x. This attack fails
unless the y chosen is jointly typical with x. This takes
approximately 2H(b′)−H(b′|x) = 2H(x)−H(x|b′) guesses. Since
RSW > (1/n)H(x|b′) an FAR-type attack will almost always
take many more guesses than an attack that makes its guesses
conditioned on s. We use (1) and (2) to bound the security-
robustness region.

Proposition 1: For any ε > 0 as n → ∞ an inner bound
to the security-robustness region Rε is found by taking a
union over all possible feature extraction functions ffeat(·) and
secure biometric encoding rates RSW

Rε ⊃
⋃

ffeat(·),RSW

{

r, γ
∣

∣

∣
r ≤

1

n
H(x) − RSW, γ ≤ ESW(RSW)

}

where ESW(RSW) is given by (1) for the px,b′(·, ·) induced
by the chosen ffeat(·).

Figure 1 plots an example of the security-robustness region
for a memoryless insertion and deletion channel somewhat
akin to the fingerprint channel. The biometric b is an inde-
pendent identically distributed (i.i.d.) Bernoulli sequence with
pb(1) = 0.05. The true biometric is observed through the
asymmetric binary channel with deletion probability pb′|b(0|1)
and insertion probability pb′|b(1|0). We examine the case
where ffeat(·) is the identity function, i.e., x = b, and plot
the resulting security-robustness regions for two choices of
pb′|b(·|·) and pb′|b(·|·). The choice x = b allows for the
maximum security region as it gives the largest H(x).

It is important to emphasize that an attack that identifies
a biometric x̃ such that fsec(x̃) = s is not necessarily a
successful attack. In fact, it can be quite easy to find a x̃

that satisfies fsec(x̃) = s. However, if x̃ 6= x. then fhash(x̃) 6=
fhash(x) and access will not be granted. Indeed, in the bounds
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on security provided by Prop. 1 the attacker is assumed to
limit itself to guessing sequence x̃ that do satisfy fsec(x̃) = s.

B. Syndrome decoding and the zero-probe attack

When nRSW > H(x) the system is not information-
theoretically secure. However, recovering x from s can still be
very difficult. The recovery of x from s is a syndrome decoding
problem with x playing the role of the error sequence. In this
context syndrome decoding requires storage of a look-up table
of size 2nRSW . In the fingerprint problem n = 7000 and x

is modeled as a Bernoulli-0.0046 i.i.d. source. This means
that the table size 2nRSW > 2294, so syndrome decoding is
intractable. However, as nRSW gets much larger than H(x)
other approaches can tractably recover x.

We introduce the “zero-probe” attack to test this security.
The attacker know s, it knows the code structure, and it can use
any attack it likes. In the zero-probe attack it guesses the all-0
probe y = 0 and uses BP to try to solve the syndrome decoding
problem. If RSW is large enough this BP-based attack will
recover x. However, when nRSW is close to H(x) this attack
fails. We report the efficacy of this attack, as well as that of
the standard biometric attack of using some other fingerprint
in conjunction with s to decode. The success rate of the latter
attack is given by the false-acceptance rate (FAR).

IV. FINGERPRINT FEATURE SET AND STATISTICAL
MODELING

A popular method for working with fingerprint data is to
extract a set of “minutiae points” and to perform all subsequent
operations on them. Figure 2 gives an example of a fingerprint,
the minutiae points, and the extracted feature vector that we
work with. Each minutiae is a discontinuity in the ridge map
of a fingerprint, indicated by the circles in the left-hand plot.
The quantized coordinates of a particular minutia location is
indicated by a ‘1’ in the right-hand plot.

We create a statistical model for the fingerprint chan-
nel which captures three effects: (1) movement of enroll-
ment minutiae when subsequently observed in the probe, (2)
deletions–minutiae observed at enrollment, but not in the
probe, and (3) insertions–“spurious” minutiae observed in the
probe but not during enrollment.

Figure 3 depicts the factor graph [16] model we develop.
The presence of a minutiae point at position t in the enrollment
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grid is represented by the binary random variable xt that takes
on the value xt = 1 only if a minutiae is present during
enrollment. For simplicity, the figure shows a one-dimensional
movement model. The results reported in this paper all use a
two-dimensional movement model. We model the enrollment
biometric x as a Bernoulli-pp i.i.d. random vector. These prior
probabilities are denoted by the white-square factor nodes (�).

For each position in the enrollment grid there is a corre-
sponding position in the probe grid. The presence of a minutiae
point at grid position t in the probe is represented by the binary
random variable yt taking on value yt = 1.

Some minutiae observed during enrollment are not observed
in the probe. The binary random variable ht represents one
such erasure. It takes on value ht = 1 if xt is erased. The
black-square factor nodes (�) represent the prior probability
on ht. We model h as an i.i.d. Bernoulli-pe sequence.

Our model captures the local elastic deformations in the
skin that occur when a finger is placed on a sensor.2 For each
enrollment position t the model specifies a neighborhood N (t)
of positions to which the enrollment minutiae can move. The
zt variables in Fig. 3 capture the relative change in position of
enrollment minutiae, and zN (t) = {zi|i ∈ N (t)} are the set of
these variables in the neighborhood of enrollment position t.
The upside-down triangle factor nodes (5) represent the prior
probability distribution both on minutiae movement and the
event that a spurious minutiae is generated at this position. If
a minutia moves beyond its neighborhood, the model treats it
as a deletion and an insertion.

The variables zt take values in the set zt ∈ {s, ∗, ∆N (t)}.
If zt = s a spurious minutiae unrelated to the enrollment
was generated at position t in the probe. If zs = ∗ there is no
minutiae at position t in the probe (i.e., yt = 0). The diamond
factor nodes (♦) connecting each yt to its corresponding zt

capture the notion that each probe minutiae yt can only be
non-zero if there is a corresponding zt 6= ∗. Finally, ∆N (t) is
the set of relative shifts that define the possible movements and

2We assume that global translations and rotations of a fingerprint are
corrected through a combination of pre-processing and a search over small
(rigid) shifts.



hence the neighborhood N (t). For example, in the simple one-
dimensional movement model of Fig. 3, ∆N (t) = {−1, 0, 1}.

Both the support of minutiae movement (the choice of the
∆N (t)) and the prior on the movement (the distribution on
zt) are design choices. While a larger neighborhood helps to
capture the tails of minutiae movement, it also incurs greater
computational complexity and adds loops to the graphical
model. These extra loops can ultimately pose problems for
the graph-based inference algorithm we used to decode; we
use belief propagation (BP).

Each enrollment minutia xt is constrained to move only
within its neighborhood N (t). Furthermore, it can move
to only one point, and therefore can explain only a single
minutiae point observed in the probe. The triangular factor
nodes (4) in Fig. 3 capture these movement constraints.

The complete model of the biometric source and channel is
px,y(x,y) = px(x)py,x(y,x) =

∑

{hi}

∑

{zi}

∏

t

�(xt)�(ht)∇(zt)4(xt, ht, zN (t))♦(zt, yt).

To the biometric model we add the code constraints.
The local code constraints �(sj ,x) are indicator functions
equaling one if the value of each sj is compatible with x

and zero otherwise. The complete model is px,y,s(x,y, s) =
px,y(x,y)

∏

j �(sj ,x). In this paper the sj are the mod-2
sum of the enrollment minutiae to which sj is connected
by the code graph. The connections defining the code graph
are generated according to a low-density parity-check (LDPC)
code. The graphical nature of LDPCs makes it easy to merge
their description into that of the biometric channel, as is shown
in Fig. 3.

Given the graphical model for px,y,s, the raw message
passing rules for use in belief propagation can be derived using
standard techniques [16]. In order to make the computations
tractable we introduce a number of computational optimiza-
tions. These optimizations exploit the particular structure of
the messages, the graph, and the quantities being computed.
Due to space constraints, we do not further discuss these
optimizations here

V. EXPERIMENTAL RESULTS

We evaluate our approach on a Mitsubishi Electric
(MELCO) fingerprint database. The database consists of 579
data sets, each containing roughly 15 measurements of a
single finger. The measurement field is 70 × 100 pixels, and
the average number of minutiae is about 32. We select one
measurements from each data set as the enrollment and attempt
to decode using the remaining measurements as probes. All
syndrome calculations use a rate 0.94 LDPC code.3 In the
movement model we allow minutiae to move up to 3 pixels in
the vertical or horizontal directions, resulting in a neighbor-
hood size of 49. The zero-probe attack fails to decode any of
the enrollment prints. Test parameters and FRRs and FARs are

3Note that the relationship between the rate of the channel code RLDPC

and the Slepian-Wolf coding rate RSW is RLDPC = 1 − RSW.

# enrollment Num. SAR FRR FAR
minutiae (ent) files 0-probe rate probes rate probes
31 (0.0410) 195 0 11.6e-2 2736 0.98e-2 11e4
32 (0.0421) 139 0 13.3e-2 1944 0.33e-2 7.8e4
33 (0.0432) 107 0 14.9e-2 1506 0.24e-2 6.0e4
34 (0.0443) 79 0 20,2e-2 1101 0.11e-2 4.4e4
35 (0.0454) 59 0 32.3e-2 824 0.03e-2 3.3e4

TABLE I
TEST PARAMETERS, ZERO-PROBE SAR, FRR, AND FAR RESULTS.

given in Table. I. While the failure of the zero-probe attack
is one indication that we have some computational security,
examination of the test parameter reveals that our codes are
not yet strong enough to get into the information theoretically
secure region. This is the focus of current work. A fuller
description of the experiments can be found in [12].

VI. CONCLUSIONS

We present a secure biometrics systems for fingerprints. The
design is based on a statistical model of minutia movement and
graphical codes. Our current focus is on the refined design
of LDPC codes, better matched to the asymmetric (and not
memoryless) nature of the fingerprint channel.
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