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Convolutive Speech Bases and their Application to
Supervised Speech Separation

Paris Smaragdis,Member, IEEE

Abstract— In this paper we present a convolutive basis
decomposition method and its application on simultaneous
speakers separation from monophonic recordings. The
model we propose is a convolutive version of the non-
negative matrix factorization algorithm. Due to the non-
negativity constraint this type of coding is very well
suited for intuitively and efficiently representing magnitude
spectra. We present results that reveal the nature of these
basis functions and we introduce their utility in separating
monophonic mixtures of known speakers.

Index Terms— non-negative matrix factorization, source
separation, convolutive bases

I. INTRODUCTION

BASIS decompositions have long been an impor-
tant tool in signal processing. The use of basis

decompositions spans a wide variety of applications,
equally rich as the variety of approaches to obtain bases.
Most basis decomposition methods are deeply rooted in
statistics and transform data so as to have desirable prop-
erties. Well known examples of these are the Principal
Component Analysis (PCA) [4] or the Independent Com-
ponent Analysis (ICA) algorithms [3]. Other types of
basis decompositions are more algebraic in nature such
as the Singular Value Decomposition (SVD), various
higher order generalizations of it [5], or the Non-negative
Matrix Factorization [8]. Many of these decompositions
have been used in many ways for source separation
tasks. A particular use of these decompositions is on
the magnitude spectra of monophonic recordings. Re-
sults relating this approach to source separation have
been reported in multiple publications [2][12][1][15]
and have been a promising field of research for some
time. The use of basis functions in the just referenced
work has been in the context of unsupervised learning.
Basis decomposition and dimensionality reduction were
used to obtain a small set of components that usually
resembles the various sounds contained in the original
input. The basis functions describe the spectral charac-
ters of the components, whereas their weights provide
their temporal evolution. Although this approach can
be successful in specific contexts it suffers from two
problems, a rigid spectral form and the fact that we

often expect results from very little data. In this paper
we propose two extensions to this approach that address
these problems. We extend the expressive power of
basis decompositions by specifying a convolutive model
and we propose a supervised learning approach which
can benefit from knowledge extracted outside the input
samples. The supervised approach to separation has been
used in the past in the context of various types of
statistical models ([10][11][9]). Our convolutive model is
based on a recently introduced decomposition [13] based
on Non-negative Matrix Factorization (NMF). We have
previously shown how this decomposition can be used
to extract meaningful components out of spectrograms in
an unsupervised manner. In this paper we introduce the
use of this basis decomposition on speech and show how
it discovers meaningful features which are very useful in
the context of supervised source separation.

The remainder of this paper is organized as follows,
section II introduces the convolutive basis decomposition
approach we will use, section III presents a methodol-
ogy of extracting these bases from speech signals and
highlights their nature and some interesting properties.
In section IV we introduce a methodology to perform
speaker separation and we thoroughly evaluate it in
section V. Finally in section VI we briefly consider
some post-processing enhancements to further boost the
quality of separation.

II. CONVOLUTIVE NMF

In this section we describe the basis model we will
employ and the appropriate adaptation procedures. We
will start by reviewing the Non-Negative Matrix Fac-
torization algorithm and then extend it to a convolutive
form which we will employ for our simulations.

A. Non-negative matrix factorization

Non-Negative Matrix Factorization is a linear basis
decomposition approach that assumes non-negativity on
both the basis and the data to be approximated. We
present it briefly in this section.

NMF was first introduced by Lee and Seung [8]. Sim-
ply stated having a non-negative matrixV ∈ R

≥0,M×N
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the goal is to approximate it as a product of two non-
negative matricesW ∈ R

≥0,M×R and H ∈ R
≥0,R×N

whereR ≤ M . The objective is to minimize the error
of reconstruction ofV by W ·H and to that extent Lee
and Seung [6] provided two cost functions by which
we can measure it. One of these cost functions is the
Frobenius norm of the difference between the input
and the reconstruction, and the other, which we will be
employing in this paper, is an adaptation of the Kullback-
Leibler divergence which was defined as:

D =

∥

∥

∥

∥

V ⊙ ln

(

V

W ·H

)

− V + W · H

∥

∥

∥

∥

F

(1)

where ‖ · ‖F is the Frobenius norm and⊙ is the
Hadamard product (element-wise multiplication). The
division between the matrices is also an element-wise
division operation, and the logarithm is applied on all
the matrix elements separately. Optimizing this function
can be pursued by conventional means using constrained
gradient descent, however Lee and Seung [6] provide
multiplicative update rules for the two factorsW and
H which elegantly bypass the need for a non-negativity
constraint (assuming non-negative initial values), and
provide rapid convergence. These updates for the ma-
tricesW andH were defined as:

H = H ⊙
W
⊤ · V

W·H

W⊤ · 1
(2a)

W = W ⊙
V

W·H
·H⊤

1 ·H⊤
(2b)

where1 is a M × N matrix with all its elements set
to 1, and the matrix divisions are as before performed
in an element-wise manner. Both of these updates are
applied iteratively in an alternating manner until the two
factors converge. The variableR, which is the number
of columns ofW and the rows ofH, determines the
rank of the approximation. IfR = M we can achieve a
perfect reconstruction of the input, asR is reduced we
start obtaining low-rank approximations. In the low rank
case if we have some structure in the inputV we notice
that the elements ofW and H start to reveal it. The
R columns ofW tend to reveal the vertical structure of
the input, and their corresponding rows inH reveal their
horizontal structure. In terms of a basis decomposition
we can viewW as a set ofR basis functions andH as
their corresponding weights required to approximateV.

Applications of NMF on audio data are presented in
[7]. In these cases a magnitude spectrogram is presented
as the inputV and the resulting basesW end up repre-
senting dominant spectral patterns contained in the input

whereas their weightsH correspond to their temporal
profiles.

B. Convolutive extensions to NMF

NMF provides a useful tool for analyzing data, it is
however ignoring potential dependencies across succes-
sive columns of its inputV. A regularly repeating pattern
that spans multiple columns ofV would have to be
represented by NMF using multiple bases that describe
the entire sequence. The fact that there is a sequence
would not be apparent by examination of the bases, but
would be only discovered by tedious analysis of the basis
weights. Since this is a regularly repeating pattern it
would be more satisfying if it was represented by a single
basis function that could span the pattern length. Such
dependencies across columns are very frequently seen
in time-frequency representations when analyzing audio
signals and the expressive ability to capture these tem-
poral dependencies within bases is a desirable feature. In
this section we introduce a convolutive extension to NMF
which can allow us to extract cross-column patterns as
single bases.

As just described NMF attempts to reconstruct a
matrix V using a matrix product byV ≈ W · H. In
the convolutive Non-Negative Matrix Factorization we
extend this expression to:

V ≈

T−1
∑

t=0

W(t) ·
t→

H (3)

where V ∈ R
≥0,M×N is the input we wish to

decompose,W(t) ∈ R
≥0,M×R is a set of bases, and

H ∈ R
≥0,R×N contains their weights. The

i→

(·) operator
is a shift operator that moves the columns of its argument

by i spots to the right, and consequently
←i

(·) shifts to the
left, such that:

A =

[

1 2 3 4
5 6 7 8

]

0→

A =

[

1 2 3 4
5 6 7 8

]

1→

A =

[

0 1 2 3
0 5 6 7

]

2→

A =

[

0 0 1 2
0 0 5 6

]

←0

A =

[

1 2 3 4
5 6 7 8

]

←1

A =

[

2 3 4 0
6 7 8 0

]

←2

A =

[

3 4 0 0
7 8 0 0

]

←3

A =

[

4 0 0 0
8 0 0 0

]

, etc...

The columns that are shifted in from outside the matrix
are set to zero.

Equation 3 is essentially a summation of convolution
operations between corresponding elements from a set
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of two-dimensional basesW and a set of weightsH.
Effectively what happens is that the set ofith columns
of W(t) defines a two-dimensional structure (one which
we will refer to as a basis). This basis will be shifted
and scaled by convolution across the axis oft with the
ith row of H. The resulting reconstruction will be a
summation of all the basis convolution results for each
of the R bases.

In order to estimate the appropriate set of matrices
W(t) andH to approximateV we can use the already
existing framework of NMF. In accordance to the NMF
cost function, we define the convolutive NMF cost
function as:

D =

∥

∥

∥

∥

V ⊙ ln

(

V

V̂

)

− V + V̂

∥

∥

∥

∥

F

(4)

WhereV̂ is the approximation ofV defined as:

V̂ =

T−1
∑

t=0

W(t) ·
t→

H (5)

Due to the linearity we can decompose the above
cost function to a collection of simultaneous NMF
approximations, one for each value oft. Noting this
fact we can now optimize the above cost function by
optimizing this set ofT NMF approximations. For each
NMF approximation we have to update the equivalent
W(t) and the appropriately shiftedH. This results into
the convolutive NMF update equations which are:

H = H ⊙
W(t)⊤ ·

←t
[

V

V̂

]

W(t)⊤ · 1
(6a)

W(t) = W(t) ⊙

V

V̂
·

t→

H

⊤

1 ·
t→

H

⊤
(6b)

In every updating iteration, for eacht we updateH
andW(t). Note that for eacht the corresponding NMF
problem has its ownW(t), but H is shared (albeit
shifted) across allt’s. It is possible to updateW(t)
and H for eacht, however this will result in a biased
estimate ofH with the update fort = T − 1 dominating
over others. Therefore it is best to update allW(t)
first and then assign toH the average of all the NMF
subproblems:

H =

〈

H ⊙
W(t)⊤ ·

←t
[

V

V̂

]

W(t)⊤ · 1

〉

,∀t (7)

In terms of computational complexity this technique
depends mostly onT . If T = 1 then it reduces to
standard NMF, otherwise it is burdened with extra matrix
updates equivalent to one NMF per unit ofT .

Some examples of convolutive NMF analysis are pre-
sented in [13] and [15]. In these papers the appropriate-
ness of a convolutive model for the analysis of sounds is
demonstrated using a variety of audio signals. It is shown
that this type of analysis is good at finding the salient
spectral sequences contained in auditory scenes and can
be further employed to extract them. In the following
section we will examine the results of convolutive NMF
analysis as applied on speech signals. Unlike previous
attempts we will not attempt to extract large sequences
like words or entire sounds as reported before, but rather
smaller segments which can represent the building blocks
of a speech.

III. C ONVOLUTIVE NMF ON SPEECH SPECTRA

In this section we will be presenting some results on
speech signals which reveal the nature of the convolutive
NMF components. We will show that the extracted bases
are akin to speech phones with various pitch inflections.
We will discover that qualitatively similar bases are
extracted whether the input is a single speaker, or a
mixture of multiple speakers (an important observation
which we will take advantage of later on), and that the
bases encode a lot of information about the speakers and
naturally reflect the speakers’ particular speech patterns.

Due to its non-negative nature this type of basis
approximation is best suited for representing magnitude
spectra. Therefore to apply this analysis on speech sig-
nals we will be operating in the magnitude frequency
domain. Starting with a finite length monophonic speech
signals(t) we denote its short-time magnitude spectrum
asF (ω, t), containing at each element(ω, t) the energy
of frequencyω at time t. Viewing each instance of
F (ω, t) as an element of a matrixF we now have a non-
negative set of data on which we can apply convolutive
NMF.

To illustrate the nature of the convolutive NMF bases
we performed this process on a 28 second speech signal
from the TIMIT database (speakermwbt0) sampled at
16kHz. We used anL = 1024 point spectrum which
resulted into 513 distinct frequency magnitudes,t was
advanced by 256 samples at a time and before the DFT
we applied a hanning window on the time-domain signal
to reduce the presence of sidelobes. We extractedR = 40
components with a time spanT = 8, which roughly
amounts to a 0.17 second time span for the bases. The
results after 200 iterations are shown in figure 1.
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Fig. 1. Basis functions derived from the magnitude spectra of a single speaker. Each basis function resembles phone-like components of
the analyzed magnitude spectrogram.
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Fig. 2. Basis functions derived from the magnitude spectra of a single speaker. Unlike the bases in figure 1, these were produced from a
female speaker. Note how the higher fundamental of the female voice is reflected in the bases when compared to the male speaker in figure 1.

Note how the bases are roughly corresponding to
speech phone instances. Most bases are representing har-
monic series with various pitch inflections, and a smaller
subset contains wideband elements that correspond to
consonant sounds. Audible reconstructions can be done
by modulating the phase of the original input by the
magnitude of a selected a selected basis. Doing so and
listening at the results verifies that most bases sound like
short speech phones. There are some bases left with the
burden of representing signal portions that the rest of
the bases do not reflect, these few usually have some
compound nature combining various speech elements
occasionally with some noise to approximate background
or spurious portions of the signal.

As should be expected these basis functions are re-
flecting the acoustical characteristics of the speaker that

was analyzed. To illustrate this consider figure 1’s equiv-
alent basis set from another TIMIT speaker (speaker
faks0). All other training parameters are the same as in
the previous example. This basis set is shown in figure 2.
Qualitatively the bases are similar, however after close
inspection it is quite evident that they reflect key differ-
ences between the two analyzed speakers. Most notably
we can see the harmonics in figure 1 being spaced closer
indicating a lower pitched voice, as compared to the
bases in figure 2 where the harmonics are farther apart
from each other indicating a higher pitched voice. A
keen observer can also pick up some formant differences
between the two speakers. Noting that the two speakers
that were used were a male and a female speaker, we
see that the extracted bases are indeed coding speaker
dependent characteristics.
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Due to the linearity of the algorithm and the fact
that the magnitude spectra are roughly added in the
case of monophonic mixtures, we should expect to get
qualitatively the same results when the input is a mixture
of multiple speakers instead of a single speaker. Unless
there are spurious correlations between the speakers in
a mixture it is natural to theorize that the set of bases
extracted from the mixture will contain bases describing
each isolated speaker.

We repeat the experiment with a mixture input made
by summing the previously used speakers. The results are
as we predicted and are shown in figure 3. We can see
some of the mixture basis functions resembling the bases
of the male speaker (figure 1), whereas other resemble
the bases of the female speaker (figure 2). Naturally our
assumption that magnitude spectra mix linearly is not
precisely correct, but at a more general and qualitative
level this assumption is approximately true for most
sound mixtures. As reported in [10] a binary mask is
often sufficient to maintain source information in sound
mixtures, and our assumption is a generalization of that
which allows some degree of approximate additivity
between the mixed spectra.

The model that this approach imposes on the data
is that of a convolutive basis function. In usual basis
function expansions, like NMF, we have a set of bases
(corresponding to spectra in our case) being scaled by a
set of weights. In the convolutive case we have a set of
bases that correspond to patches of a spectrogram which
are convolved along the time axis according to their
weights in order to reconstruct the input. The underlying
assumption is that the inputs can be adequately described
by a set of these patches. This is the case in speech where
repeating patterns are often reused, but it is also the case
for other types of sounds that exhibit a regular temporal
structure in their spectrograms.

The number of basesR that we request is not par-
ticularly important in this context. IfR is too small
then the basis functions will be forced to approximate
simultaneous clumps of speech phones resulting in worse
reconstruction performance and a more blurry distinction
between the bases. For a large value ofR we can
see certain bases adapting to individual harmonics as
opposed to entire phonemic structures. In general a value
between 100 to 500 bases is usually a good estimate for
a rich in phonetic content speech input.

IV. SEPARATION OF KNOWN SPEAKERS

In this section we will introduce a way to take
advantage of the basis functions we just introduced to
perform separation from monophonic mixtures of known

speakers. We will show that once the basis functions of
a speaker are known they can be used to reconstruct
only that speaker’s signal from a monophonic mixture.
We will first describe the methodology and then present
results from our experiments.

A. Extracting speaker dependent bases from a mixture

As we showed in the previous section the basis
functions we extract from speech are dependent on the
timbral characteristics of the speaker who provided the
training data. We would expect the learned bases to
characterize that speaker best. Furthermore when we
analyze a magnitude spectrogram which is generated
from a mixture of speakers the basis functions are still
resembling individual phones from all included speakers.
Groups of these bases can be attributed to only one
speaker respectively. If we could reconstruct the mix-
ture magnitude spectrogram using only the bases that
correspond to one speaker in the mixture we could be
effectively performing separation. Performing this in an
unsupervised manner is a rather complicated process,
however if we have a sufficient set of learned basis
functions from a specific speaker we can use these bases
to extract that speaker’s voice from sound mixtures.

Consider a mixture of the male and female speaker we
used in the preceding section. Based on the observations
from the previous section we can assume that learning
a set of basesWm(t) from the male speaker and a set
of basesWf (t) from the female speaker will roughly
resemble the set of bases learned from a mixture of
their voices. This means thatWm(t) and Wf (t) can
be used to reconstruct the mixture. If this is the case
then we can assume that the part of the mixture that
is reconstructed byWm(t) will predominantly rebuild
the male voice andWf (t) the female voice, thereby
providing the spectrograms from each speaker that we
can easily invert back to time signals.

So to formalize and generalize forN speakers we take
the following steps:

1) Obtain training dataxi(t) for each speaker and
separately derive convolutive NMF basesWi(t)
from their magnitude spectrogramsXi using the
methodology in section III.

2) Construct a union of all the bases by combining
them: W(t) = W1(t)

⋃

W2(t)
⋃

...
⋃

WN (t).
This will result in a basis setN times bigger than
the individual speaker sets.

3) Take a mixturey(t) containing the learned speak-
ers uttering an unknown phraseyi(t). Obtain its
magnitude spectrogramY and perform convolu-
tive NMF training on it. During training keep the
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Fig. 3. Basis functions derived from the magnitude spectra of a two-speaker mixture. Note how some of the bases seem to fit best the
female speaker whereas others fit the male.

bases fixed toW(t) and learn only their weights
H.

4) Break upH into N partsHi each corresponding
to the weights that belong to a single speaker’s
bases. This will result intoN sets of weights.

5) Reconstruct the magnitude spectrogramY of the
analyzed mixture using only an individual speaker

bases and weights:Zi =
∑T−1

t=0
Wi(t) ·

t→

Hi(t).
EachZi will be a magnitude spectrogram contain-
ing parts of the mixture that were best explained
by bases from speakeri.

6) Use the phase data from the original mixture and
modulate it byZi to obtain N spectrograms for
each speaker.

7) Using the inverse short-time Fourier transform
transform the speaker spectrograms to the time
domain and obtain the extracted speech signals
zi(t).

The signalszi(t) will be approximations ofyi(t)
since they are constructed from bases belonging only
to these speakers. This of course presupposes that the
speakers have discernible voices and somewhat different
timbral character and pitch inflections, which seemed to
be usually the case in our experience.

B. Mixing and evaluating methodology

In this section we will describe the steps we took while
conducting our experiments on speech separation. We
describe the construction of the mixing cases and their
evaluation.

To test this approach monophonic mixtures were
synthetically generated by summing two different but
roughly equal length sentences from different speakers

from the TIMIT database. These sentences were normal-
ized to unit variance so that when added would produce a
0dB mixture. The remaining sentences of the two used
speakers in the TIMIT database were used as training
data from which we derived a basis set for each speaker.
The training data were in the order of 30 seconds of
continuous speech per speaker, whereas the evaluation
sentences were 2 to 3 seconds long. As in the above
examples the sample rate was16kHz.

Evaluation of the quality of speech separation algo-
rithms is always a very hard task and the non-linear
unmixing procedure we propose is especially hard to
evaluate reliably. In order to provide a comparable mea-
sure with existing literature we will be using standard
correlation-based measurements. For each separation
example we will provide three types of performance
indexes, the signal to noise ratio for each extracted
speaker, the log correlation of the extracted source with
the original, and the amount of unaccounted energy in
the original and extracted signals.

Using the notation introduced in the preceding section,
once we have the separated speaker soundszi(t) we
compare them with the original mixed sourcesyi(t) to
see how good the separation is. We derive three measures
to measure performance, the speaker ratio indB, the
similarity of the output with the target, and the residual
noise. The speaker ratio is computed by comparing the
correlations of the original sources with the extracted
sounds:

ci,j = cor (zi(t), yi(t)) (8)

Where cor(·) denotes correlation. We define the
speaker ratio for each output as a log ratio of its correla-
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tion with the desired sentence divided by the correlation
with the other sentences, i.e.:

SRi = 10 log10

ci,i
∑

∀j 6=i

ci,j

(9)

This measure will tell us how much the signals of the
undesired speakers have been suppressed. Higher values
will reveal better extraction of the desired speaker.

The similarity index measures how much the output
resembles the desired output. We measure it by taking
the correlation of the extracted source with the desired
output:

SIi = 10 log10 cor (zi(t), yi(t)) (10)

We will have SIi <= 0, with SIi = 0 being the
most desired case. Lower values indicate that the result
is not too similar to the desired sentence. Note that this
measure also is influenced by the quality of separation
since traits of the undesired speakers would lower its
value.

Finally the residual energy is the variance of the
difference between the input signal and the sum of the
extracted signals:

RE = var

(

∑

i

yi(t) −
∑

i

zi(t)

)

(11)

RE will reveal how much of the output signal is not
accountable by any of the original sounds, and how much
is an artifact of the separation procedure. Values closer
to zero are best, indicating good accountability of the
input signal and little or no residual noise.

One thing to note is that the SNR measurements,
although sufficient, are not directly indicative of the
performance of this algorithm. The separation process is
very complex and non-linear and the SNR measurement
will only provide a standardized way of evaluating
it. More appropriate performance measures would be
in terms of the cost function being optimized by the
convolutive NMF procedure. However interpreting these
metrics would be obscure at best and would not provide
values amenable to comparisons with other approaches.

V. SEPARATION RESULTS

In this section we present some results from speech
mixtures and shed some light on the importance of
various parameters involved in this process. We averaged
the results from a set of twelve runs from each of eight
randomly selected male/female pairs of speakers from
the TIMIT database and attempted separation using the

aforementioned process. The parameters that were used
can be divided in two groups. One group included the
parameters relating to the short time Fourier transform:
the FFT size, the transform hop size, the zero padding
for the FFT and the analysis window. The other group
of parameters were the ones relating to the convolutive
NMF training: the number of basesR, their extent in
time T , and the training iterations. Although there are
plenty of parameters to compare, the most important
ones were the size of the FFT used, the number of basis
functionsR and their temporal extentT . At first we will
examine these three and then present some additional
results exhibiting the effect of the rest of the parameters.

A. Most Important Parameters

For this set of results we will assume that the STFT
hop size was set to one fourth of the FFT size, that zero
padding was not used, before the FFT the data was scaled
according to a Hanning window, and that we estimated
the bases and their weights for two hundred iterations.
For the remaining parameters we used the following
values, FFT size = [128 256 512 1024 2048 4096],
Number of Bases = [20 40 80 120 200], Length of Bases
= [1 2 4 6 8 10]. The sampling rate of the inputs was
16kHz. We performed separation using all combinations
of these parameter on our data set which amounted to
180 experiments for each of the eight speaker pairs (1440
runs over all speakers, repeated 12 times for a total
of 17280 experiments). We averaged the performance
measures for all these experiments and analyzed the
effect of various parameters. We present our findings in
this section.

Of major importance is the size of the FFT we use
to analyze our inputs. If we average the results over
all other parameters and speakers for each FFT size
we can then observe its effect on the speaker energy
ratio (figure 4 left). This value fluctuates from about
2.5dB for an FFT size of 128 points (8ms) at worse, to
about4.8dB for 1024 points (64ms). FFT sizes outside
1024 points tend to produce progressively worse results
indicating that this is a good value for this parameter. The
similarity index behaves in a similar way, the optimal
average comes out for an FFT size of 512 points (32
ms) with an approximate value of−0.7. The similarity
index progressively deteriorates for diverging FFT sizes
with the recorded worst being 4096 points with a value
of about −1.2. Deterioration seems to be more rapid
for larger FFT frame values. Residual energy is roughly
increasing with the FFT size. This is to be expected,
short time windows provide small building blocks which
can fit the data well without extending their errors to
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Fig. 4. Effects of some parameters to the performance indexes. Each point is the average of all other cases when fixing a single parameter
value. Note that for readability reasons the value of the residual noise energy has been scaled by10

4. The left plot displays the effect of
the FFT size, the middle plot the effect of the number of basesR and the right one the effect of the length of the basesT .

too wide a time window, wider analysis windows are
extending over larger time periods having to fit much
more information. Using bigger analysis windows results
into a coarser approximation. Values ranged from an
average of about1.8×10−4 for 128 point FFTs to about
3.4 × 10−4 for 4096 point FFTs.

The number of bases is obviously also a major pa-
rameter. Regarding its effect on the speaker energy ratio,
we generally observe that fewer bases provide a better
result (figure 4 center). The learning of more bases for
each speaker allows a greater expressive power which
can model utterances of other speakers as well. Having
too many bases will result in some reconstruction of
the interfering signal which can negatively affect signal
separation. Best results were obtained for 20 bases per
speaker with about4.5dB separation, and after a steady
decline the worst value was at3.5dB for 200 bases per
speaker. However using less bases comes at a price since
reconstruction results in a more coarse fit which then
exhibits poor values for the similarity index and residual
noise. We see the residual noise dropped monotonically
as we moved from 20 bases to 200 bases per speaker
taking values ranging from3 × 10−4 to 2.4 × 10−4.
Inversely the similarity index rose from about−1 to
−.9 So we see a tradeoff, at the expense of a worsening
speaker energy ratio, adding more bases resulted in an
increase in the similarity index and a decrease in the
residual noise.

The length of the bases is another important factor. On
average a value of 4 to 6 produced the best separation
results, although only by a minor margin with worst
values at around3.8dB and best at around4dB (figure 4
right). Residual noise energy tended to increase with
longer basis lengths ranging from2.6×10−4 for a length

of 1 to 3 × 10−4 for a length of 10. That was expected
because it will be more difficult to use longer bases
and still have them precisely fit on the evaluation data.
The similarity was at its best around a basis length of 4
with a value of -.9, and tended to fall for greater basis
lengths down to -1 for a basis length of 10. Note that
when the length of the bases is 1 then we are essentially
performing NMF.

Of more importance than the individual parameters
is the interaction between them. Figure 5 is instru-
mental in pointing this out. We briefly describe some
of the major interactions here. As we pointed out in
the previous paragraph, the length of the bases was
not a parameter that varied the performance measures
significantly. However we can see that its effect was
heavily dependent on the FFT size. In general for long
FFTs we saw better separation for short bases regardless
of how many we use, and for shorter FFTs we saw better
performance for few bases regardless of their length.
For small FFT sizes and long bases we obtained better
separation and similarity, however the amount of residual
energy increased. As the FFT size grows, longer bases
acted as a detriment to the separation quality as well as to
the similarity index, therefore in this case shorter bases
are to be preferred. The residual energy was heavily
dependent on the number of bases. In general more bases
introduced more residual noise, although that effect is
not as pronounced for larger FFT sizes. For larger FFT
sizes though the residual energy increased significantly
for longer bases. Finally as the FFT size increased we
noted that the number of bases become more important
to the effect of the length of the bases with regard to
similarity.

The results shown in this section are suppressed due to
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averaging with poor parameter selection. In most speaker
set cases boosting up to6dB was achieved for each
speaker, and proper post-processing (section VI), can
boost this to double digitdB improvements.

B. Remaining Parameters

In this section we will examine the remaining param-
eters, such the number of iterations for the convolutive
NMF training, the STFT hop, zero padding size and
analysis window. Their interplay is not significant so we
examine them independently. For our experiments we
used an FFT size of 1024 and 40 basis functions which
extended for 4 time points. The results shown for each
parameter are averages over 12 independent runs on each
of 8 pairs of speakers.

The performance indexes for various values of these
parameters are shown in figures 6 and 7. We note that
the in general denser packed FFT windows facilitated
better separation. This is because such denser sampling
of time frames helped develop more time invariance in
the basis set, provided a richer data set and bypassed
alignment problems. This seemed to come at a cost
though since it introduced more computational require-
ments due to a larger training set and it also resulted into
poor fitting for extreme values. We can see that in the
case where the STFT window hop size was1/8th that
of the FFT size where performance seems to degrade.
The excessive amount of data to learn and fit introduced
a computational complexity which presumably required
more training to reach equal results as larger hop sizes.
In the case of zero padding, we note that in general it
is a bad idea since it increased the dimensionality of
the input dramatically and it didn’t seem to offer any
particular performance advantage.

In figure 7 we show the performance effects of the
adaptation iterations of convolutive NMF. These can be
separated into two groups, the training iterations and
the approximation iterations. Training iterations are the
number of iterations we train on each speaker, whereas
approximation iterations are the number of iterations we
perform to adapt the speaker bases to a mixture. The
effect of training iterations displayed an interesting trend.
Early on we got the bestdB improvement in separation,
albeit at a cost of high residual noise. As we kept
iterating the separation index dropped as did the residual
noise whereas the similarity index was more or less sta-
bilized. We saw that around 100 iterations performance
stabilized and further training was unnecessary (that is
on training on 30 seconds of speech, larger training sets
would require more training to reach that state). These
effects can be explained by the fact that due to the rapid
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Fig. 6. The effect of some FFT parameters on the performance of
separation. In these plots we examine parameters that do notcreate a
significant performance changes. On the left plot we see the effects
of the STFT hop size, in the right plot the effects of the FFT zero
padding.

convergence of NMF training the most salient features of
each speaker were discovered very early whereas later on
they were refined to include more generic speech features
that all speakers might exhibit (such as consonants). As
training progressed the bases became more refined so
that reconstruction was more effective and that drove
down the amount of residual noise.

The approximation iterations are more predictable in
their performance effect. The more we trained the better
the separation and the less the residual noise. We also
note an interesting trend for the similarity index. We
note that it peaked at around 60 iterations (that is on a
3 seconds mixture, lengthier mixtures would delay this),
and then asymptotically decreased. However the peak
of the similarity index didn’t coincide with the peak in
separation quality. The justification for the separation and
residual noise trend is obvious, the more we iterated the
better the fit. The trend of the similarity index can be
explained by the fact that prolonged training would result
into more cross-pollination of speaker bases which can
alter the characteristics of each speaker.

The effect of the window type is rather negligible, it
seemed best to not use a rectangular window since it
resulted into noisier basis functions and about2dB to
3dB worst separation. Aside from this the selection of
window type is not an issue in performance.

C. Denoising Examples

Given that the separation procedure we introduce is
based on finding and extracting sound elements that
compose the input sources, separation between multiple
speakers is obviously a harder example since the sources
are very similar. In this section we briefly consider
the case of denoising where the types of sources are
quite distinct and can be seen as composed from a non-
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overlapping set of bases. We briefly discuss a couple of
examples in this section.

We generated two mixtures that were composed out
of one speaker (mwbt0) and either ambient street noise
or chimes. For both cases we used an FFT size of 1024
points and 40 bases of length 4. In order to perform
the separation we learned models of both the speaker
and the interfering sounds. In the first example speech
was boosted to5.2dB over the street noise. The noise
signal was composed out of background speech, a street
performed playing accordion and high frequency ambi-
ence. The accordion and the ambience were suppressed
to inaudible levels, speech babble was suppressed but
not as much. This is due to the fact that speech babble
had a lot of common spectral content with the speaker
and some of it could also be explained by the speaker’s
bases. In the second example the separation was up to
16.3dB. The much better result is attributed to the fact
that the chimes had a spectral character that had almost
no spectral overlap from the speaker’s voice which
facilitated separation. Although not a primary objective,
for both mixtures the street noise and the chimes were
also well separated with minimal traces of the speaker.
Figure 8 displays the spectrograms of the two mixtures
and the separated speech. In these spectrograms we
can clearly see elements of the street noise as well as
the chimes being suppressed. Audible reconstructions
of the extracted sounds exhibit an excellent degree of
separation and a minimal degradation of quality due to
the low rank encoding of the signal.

D. General remarks

On average the resulting separated sounds sounded
very much like linear mixtures of various mixing pro-
portions. Depending on the success of the separation
these ranged from slightly perceptible to significant
interference. There were no echo residues or spectral
coloring imposed by the algorithm, and thus the speaker
ratio proved to be an adequate indicator to measure
separation performance. Results that were obtained using
too few bases often had missing speech phones (usually
wideband ones) or a muffled quality to them, this was
not the case when using more bases. This effect was
measured effectively by the sound similarity indicator
which correlated well with subjective listening evalua-
tions. The use of too few bases in addition to a large
T also contributed to some hissing or scratching noise
which is most likely a product of a poor tapering across
frames in the frequency magnitude domain which in
turn produced subtle discontinuities in the time domain
signal. These were usually reflected in the residual noise
measure. Once again depending to the settings used this
effect ranged from imperceptible to noticeable. These
are all the audible artifacts that we encountered during
testing and driven by that we designed the appropri-
ate performance evaluation measures. Although there
is some correlation between some of the performance
measures, in average (and in our subjective opinion) they
did a fairly good job in describing the audible result
quantitatively.

From figures 4 and 5 one can note that a largerT
is not significantly beneficial. Although that is true in
the sense conveyed by the performance parameters, it is
important to note that the extracted features are much
more informative whenT > 1. Consider the case of
a fixed analysis window. In the case whereT = 1 we
lose a lot of temporal information which is carried by
the phase of the spectra. We essentially represent the
data using a single magnitude spectrum. For the same
length window whenT > 1 the previously lost temporal
evolution information is now conveyed by the extracted
bases. The resulting trade-off is that we can obtain
a single long spectrum, or a series of shorter spectra
that describes common patterns of spectral evolutions.
Although this is not an important factor for separation,
it is valuable when we subsequently need to perform
speech or sound recognition and the extracted features
need to be maximally informative and unique. The value
of the extracted bases is of course context specific, but
in extreme cases we can even extract entire words per
basis using similar processing [14].

As mentioned before there needs to be some spectral
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Fig. 8. Spectrograms of the denoising examples. The two leftspectrograms display the two mixtures, the top one with chimes and the
bottom one with the street noise. The two right spectrogramsshow the respective speech separation. On the top spectrogram one can see the
chimes harmonics being virtually non-existent. On the bottom separation spectrogram one can see much of the ambience and the accordion
harmonics being suppressed.

difference between the sounds that need to be separated
in order to obtain good performance. In our speech
experiments we used female/male sets of speakers to
loosely ensure some spectral variation. Separation be-
tween male/male sets produces in general slightly worse
results since the spectra to be extracted have more sim-
ilarity (although that is highly dependent on the speaker
character and does not in general mean that all male/male
pairs will be harder problems than female/male). To
further stress the importance of spectral dissimilarity
note the dramatic improvement of separation quality
when using non-spectrally similar sounds as we have
done in section V-C.

The issue of spectral similarity between sources is an
important one which needs to be studied in more depth.
The side effect of dealing with spectrally similar sounds
is that their resulting bases are most likely linearly
dependent and thereby inhibit good separation. Various
ad-hoc steps can be taken to reduce that effect, such as
discarding very similar bases across the different sounds,
or reassignment of bases to remove dependencies, which
can result in better sounding results but are not satisfying

solutions. The fact that the bases need to be non-negative
complicates any straightforward processing that can to be
done to ensure maximal linear independence and points
to a non-trivial solution. Employing longer bases so that
T > 1 provides a minor relief in this respect since the
issue becomes one of a ‘spectral sequence similarity’
which is a less likely possibility between two sounds.

Finally a note about reverberation. Because of this
type of analysis, factors such as echoes can be safely
ignored since their effect will be undone by the implicit
deconvolution in training (long echoes will result in
repeating sections of the magnitude spectrogram which
is what this algorithm is designed to discover). Shorter
echoes will not be as present in the magnitude spectrum,
but more so in the phase spectrum which we discard,
and thus does not pose an issue. If these echoes are
strong enough to color the magnitude spectrum then
they will be learned as part of the characteristics of
the input sound, but will not interfere with the learning.
In extreme cases we can have an unnatural amount of
spectral smearing due to reverberation which can make
separation impossible. Such cases are rarely encountered
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though and even then the most acute listeners or systems
can have a hard time telling different sounds apart.

VI. POST-PROCESSING

Although the process described so far can obtain
reasonable results in separating sounds, it does not need
to be the end of the separating process. We can use
various post-processing techniques on the outputs to
boost the quality of the results even more. In this section
we briefly describe a couple of possible approaches.

A trivial step that we can employ to improve the
quality of the results is to modify the reconstruction step
to account for all the energy in our testing signals. Recall
that we used the phase of the mixture and modulated it
with the magnitudes dictated by the basis approximation.
Energy from the mixture that was not approximated well
will be missing from the reconstructions resulting in a
choppy sounding output. This can be remedied by longer
training in the approximation step, but we have observed
that this can sometimes be a detriment in separation
quality and also a computationally intensive process.
Instead we can compute the spectrogram of each speaker
as:

Fi = (∠H) ·
Zi

∑

j Zj

(12)

where ∠H is the phase of the mixture spectrogram
and Zi is the approximated magnitude spectrogram of
each speaker. This is essentially a spectral filter that
ensures that the unaccounted energy in the input mixture
is redistributed to the resulting speakers’ spectrograms
in proportion. This results in definitely better sounding
reconstructions in terms of quality, something we can
note in the performance indexes. The separation quality
remained the same, however the similarity was improved
a lot and residual energy was not only reduced but also
stabilized to a fixed low value for all other parameters.

A notable point of this approach is that it starts with
a monophonic mixture and results into a multi-channel
output. Had the separation been perfect there would be
no need for post-processing, however the separation is
not always satisfactory and in that case we can view the
outputs as a multi-channel mixture. This transition from
monophonic to multi-channel opens the possibility of
employing multi-channel separation techniques to further
separate the sources. Although this is not a linear mixture
anymore, an application of straightforward unmixing
algorithms like Independent Component Analysis can be
applied to it and can provide on average a boost of about
5dB to 7dB (we employed the JADE algorithm [16] in
our simulations). Given the non-linear relationship of the

two resulting sources this is not necessarily as notable
an improvement as the numbers indicate, it is however
noticeable, and could be improved with a specialized
unmixing approach based on this type of mixture. It
should be pointed that this is quite an ad-hoc step and
there is no guarantee that an application of ICA will work
at all, since the resulting mixtures will be non-linearly
mixed.

Either of the above approaches are fairly straight-
forward and generic and are not meant as ultimate
solutions. They show however that there can be a con-
siderable improvement of results after the convolutive
NMF approximation and opens up an interesting avenue
of research.

VII. C ONCLUSIONS

In this paper we have presented a supervised method
for separating known types of sounds from monophonic
mixtures. We introduced the concept of a convolutive
non-negative basis set, demonstrated how it maps to
meaningful features in the case of audio spectra and
demonstrated how we can use it in the context of
supervised source separation. We also provided simu-
lation material which can provide some intuition about
the importance of various parameters and suggested a
couple of ways this process can be enhanced using post-
processing. Depending on the nature of the inputs and
the post-processing employed we obtained interference
suppression ranging from5dB in the worst cases to up to
20dB. As described there are numerous options to trade
separation performance for better audio quality results,
and this is a choice which to our experience has been
application dependent. There seem to be many ways this
approach can be enhanced and this article only attempted
to present a basic implementation and its operational
characteristics, it is our hope that future work will
address additional performance enhancing extensions.
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