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this type of coding is very well suited for intuitively and efficiently representing magnitude spec-
tra. We present results that reveal the nature of these basis functions and we introduce their utility
in separating monophonic mixtures of known speakers.

IEEE Transactions on Audio, Speech and Language Processing

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright (©) Mitsubishi Electric Research Laboratories, Inc., 2007
201 Broadway, Cambridge, Massachusetts 02139






IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSEN 1

Convolutive Speech Bases and their Application to
Supervised Speech Separation

Paris Smaragdisylember, IEEE

Abstract— In this paper we present a convolutive basis often expect results from very little data. In this paper
decomposition method and its application on simultaneous we propose two extensions to this approach that address
speakers separation from monophonic recordings. The these problems. We extend the expressive power of
model we propose is a convolutive version of the non- pa¢is decompositions by specifying a convolutive model
negative matrix factorization algorithm. Due to the non- and we propose a supervised learning approach which

negativity constraint this type of coding is very well . . .
suited for intuitively and efficiently representing magnitude can benefit from knowledge extracted outside the input

spectra. We present results that reveal the nature of these SamPples. The supervised approach to separation has been

basis functions and we introduce their utility in separating Used in the past in the context of various types of
monophonic mixtures of known speakers. statistical models ([10][11][9]). Our convolutive model i

based on a recently introduced decomposition [13] based
on Non-negative Matrix Factorization (NMF). We have
previously shown how this decomposition can be used
to extract meaningful components out of spectrograms in
. INTRODUCTION an unsupervised manner. In this paper we introduce the
ASIS decompositions have long been an impouse of this basis decomposition on speech and show how
tant tool in signal processing. The use of basisdiscovers meaningful features which are very useful in
decompositions spans a wide variety of applicatione context of supervised source separation.
equally rich as the variety of approaches to obtain basesThe remainder of this paper is organized as follows,
Most basis decomposition methods are deeply rootedsection Il introduces the convolutive basis decomposition
statistics and transform data so as to have desirable prapproach we will use, section lll presents a methodol-
erties. Well known examples of these are the Principadly of extracting these bases from speech signals and
Component Analysis (PCA) [4] or the Independent Confrighlights their nature and some interesting properties.
ponent Analysis (ICA) algorithms [3]. Other types ofn section IV we introduce a methodology to perform
basis decompositions are more algebraic in nature swegeaker separation and we thoroughly evaluate it in
as the Singular Value Decomposition (SVD), variousection V. Finally in section VI we briefly consider
higher order generalizations of it [5], or the Non-negativ&me post-processing enhancements to further boost the
Matrix Factorization [8]. Many of these decompositiongquality of separation.
have been used in many ways for source separation
tasks. A particular use of these decompositions is on II. CONVOLUTIVE NMF

the magnitude spectra of monophonic recordings. Re'In this section we describe the basis model we will

sults relating this approach to source separation haé’r?\ploy and the appropriate adaptation procedures. We

been reported in multiple publications [2][12][1][15]will start by reviewing the Non-Negative Matrix Fac-

a_lnd have been a promising _f|e|d _Of resgarch for so ization algorithm and then extend it to a convolutive
time. The use of basis functions in the just referencq; m which we will employ for our simulations

work has been in the context of unsupervised learning.
Basis decomposition and dimensionality reduction were _ _ o
used to obtain a small set of components that usuafly Non-negative matrix factorization

resembles the various sounds contained in the originaNon-Negative Matrix Factorization is a linear basis
input. The basis functions describe the spectral charaecomposition approach that assumes non-negativity on
ters of the components, whereas their weights provitieth the basis and the data to be approximated. We
their temporal evolution. Although this approach capresent it briefly in this section.

be successful in specific contexts it suffers from two NMF was first introduced by Lee and Seung [8]. Sim-
problems, a rigid spectral form and the fact that wely stated having a non-negative matik ¢ R=0-M*N

Index Terms— non-negative matrix factorization, source
separation, convolutive bases
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the goal is to approximate it as a product of two norwhereas their weight®¥ correspond to their temporal
negative matriceSV ¢ RZOM*E and H ¢ R2%EXN  profiles.

where R < M. The objective is to minimize the error

of reconstruction oV by W - H and to that extent Lee B. Convolutive extensions to NME

and Seung [6] provided two cost functions by which _ _ o
we can measure it. One of these cost functions is the \MF provides a useful tool for analyzing data, it is

Frobenius norm of the difference between the inp&pwever ignoring potential dependencies a_cross succes-
and the reconstruction, and the other, which we will bave columns of its inpuV'. A regularly repeating pattern

employing in this paper, is an adaptation of the Kullback@t spans muitiple columns o¥" would have to be
Leibler divergence which was defined as: represented by NMF using multiple bases that describe

the entire sequence. The fact that there is a sequence
would not be apparent by examination of the bases, but

D= HV ®ln <7> - V+W-H (1) Would be only discovered by tedious analysis of the basis
W-H F weights. Since this is a regularly repeating pattern it
where || - || is the Frobenius norm and is the would be more satisfying if it was represented by a single

Hadamard product (element-wise multiplication). ThRasis functi_on that could span the pattern length. Such
division between the matrices is also an element-widgPendencies across columns are very frequently seen

division operation, and the logarithm is applied on alf! ime-frequency representations when analyzing audio

the matrix elements separately. Optimizing this functiot/9n@!S and the expressive ability to capture these tem-

can be pursued by conventional means using constraiﬂ?é?(ﬁal dependen_mes within bases |s_a deswabl_e feature. In
s section we introduce a convolutive extension to NMF

gradient descent, however Lee and Seung [6] provide>
multiplicative update rules for the two facto and which can allow us to extract cross-column patterns as
H which elegantly bypass the need for a non-negativigjndle bases.

constraint (assuming non-negative initial values), and”S just described NMF attempts to reconstruct a

provide rapid convergence. These updates for the nfg@liix V using a matrix product b% ~ W - H. In
trices W and H were defined as: the convolutive Non-Negative Matrix Factorization we

extend this expression to:

W' wn «— Y
H=HO <=1 (2a) Va~> W) H 3)
W=Wo (@D)  Wwhere V. e R20MxN js the input we wish to

>0,MxR |
where1 is a M x N matrix with all its elements set 46COMPoseW (1) € R= is a set of bases, and

to 1, and the matrix divisions are as before perform@d ¢ R=%ExN contains their weights. Thl(e) operator

in an element-wise manner. Both of these updates e shift operator that moves the columns of its argument
applied iteratively in an alternating manner until the twi '
factors converge. The variable, which is the number
of columns of W and the rows ofH, determines the
rank of the approximation. IR = M we can achieve a

Byz’ spots to the right, and consequently shifts to the
left, such that:

perfect reconstruction of the input, @is reduced we _ (L2340 00 1234
start obtaining low-rank approximations. In the low rank 5 6 7 8] 5 6 7 8]
case if we have some structure in the indutve notice = [0 1 2 3] 2= [0 0 1 2]
that the elements oW and H start to reveal it. The o5 6 7 A= 0 0 5 6
R columns ofW tend to reveal the vertical structure of o 1 9 3 41 <1 [2 3 4 0
the input, and their corresponding rowskhreveal their ~ A = |5 - ¢ A=l 2 2 0
horizontal structure. In terms of a basis decomposition _, 4001 <3 [0 0 o

we can viewW as a set ofR basis functions an@l as A = A = ,ete...
. . . . . 7 8 00 8 0 0 0
their corresponding weights required to approximste L - L .
Applications of NMF on audio data are presented in The columns that are shifted in from outside the matrix
[7]. In these cases a magnitude spectrogram is preserdes set to zero.
as the inputV and the resulting bas@¥ end up repre- Equation 3 is essentially a summation of convolution

senting dominant spectral patterns contained in the inputerations between corresponding elements from a set
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of two-dimensional base8V and a set of weightd]. In terms of computational complexity this technique
Effectively what happens is that the setithh columns depends mostly or¥". If T = 1 then it reduces to
of W (t) defines a two-dimensional structure (one whicstandard NMF, otherwise it is burdened with extra matrix
we will refer to as a basis). This basis will be shiftedpdates equivalent to one NMF per unitBf
and scaled by convolution across the axis afith the Some examples of convolutive NMF analysis are pre-
ith row of H. The resulting reconstruction will be asented in [13] and [15]. In these papers the appropriate-
summation of all the basis convolution results for eagatess of a convolutive model for the analysis of sounds is
of the R bases. demonstrated using a variety of audio signals. It is shown
In order to estimate the appropriate set of matricélsat this type of analysis is good at finding the salient
W (t) andH to approximateV we can use the alreadyspectral sequences contained in auditory scenes and can
existing framework of NMF. In accordance to the NMmbe further employed to extract them. In the following
cost function, we define the convolutive NMF cossection we will examine the results of convolutive NMF
function as: analysis as applied on speech signals. Unlike previous
attempts we will not attempt to extract large sequences

V R . .
D= HV ©1n <§> ViV ) like words or entire sounds as reported before, but rather

r smaller segments which can represent the building blocks
.\ o . of a speech.
WhereV is the approximation oV defined as:
T—1 t_) [1l. CoNvOoLUTIVE NMF ON SPEECH SPECTRA

In this section we will be presenting some results on
speech signals which reveal the nature of the convolutive

Due to the linearity we can decompose the abowéMF components. We will show that the extracted bases
cost function to a collection of simultaneous NMFare akin to speech phones with various pitch inflections.
approximations, one for each value af Noting this We will discover that qualitatively similar bases are
fact we can now optimize the above cost function byxtracted whether the input is a single speaker, or a
optimizing this set off” NMF approximations. For eachmixture of multiple speakers (an important observation
NMF approximation we have to update the equivalemthich we will take advantage of later on), and that the
W (t) and the appropriately shifteH. This results into bases encode a lot of information about the speakers and
the convolutive NMF update equations which are:  naturally reflect the speakers’ particular speech patterns
Due to its non-negative nature this type of basis

—t approximation is best suited for representing magnitude
W) - [%} spectra. Therefore to apply this analysis on speech sig-
H=HO ——+—— (6a) nals we will be operating in the magnitude frequency
W' -1 domain. Starting with a finite length monophonic speech
A4 'tﬁ’T signals(t) we denote its short-time magnitude spectrum
W(t) = W(t) A% — (6b) asF(w,t), containing at each elemefw, ¢) the energy
1_tﬁ of frequencyw at time ¢. Viewing each instance of

o _ F(w,t) as an element of a matriR we now have a non-
In every updating iteration, for eachwe updateH neqaiive set of data on which we can apply convolutive
and W (t). Note that for each the corresponding NMF \ME.
problem has its ownW(¢), but H is shared (albeit 4 jjystrate the nature of the convolutive NMF bases
shifted) across all’s. It is possible to updatéV(¢) \ye performed this process on a 28 second speech signal
and H for eacht, however this will result in a biased¢om the TIMIT database (speakembt 0) sampled at
estimate ofH with the upda_te fot =T —1 dominating 1677, We used anl, = 1024 point spectrum which
over others. Therefore it is best to update W(!) regyited into 513 distinct frequency magnitudesyas
first and then assign tbl the average of all the NMF 5\ anced by 256 samples at a time and before the DFT
subproblems: we applied a hanning window on the time-domain signal
to reduce the presence of sidelobes. We extraRted40
W) - [X] components with a time sp_a(ﬁ = 8, which roughly
H = <H o > Vit ) amounts to a 0.17 second time span for the bases. The
results after 200 iterations are shown in figure 1.
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Fig. 1. Basis functions derived from the magnitude spectra of alsisgeaker. Each basis function resembles phone-like coemp® of
the analyzed magnitude spectrogram.
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Fig. 2. Basis functions derived from the magnitude spectra of alsisgeaker. Unlike the bases in figure 1, these were produoed &
female speaker. Note how the higher fundamental of the &wréte is reflected in the bases when compared to the mal&espedigure 1.

Note how the bases are roughly corresponding weas analyzed. To illustrate this consider figure 1's equiv-
speech phone instances. Most bases are representingdiant basis set from another TIMIT speaker (speaker
monic series with various pitch inflections, and a smalléraks0). All other training parameters are the same as in
subset contains wideband elements that correspondthe previous example. This basis set is shown in figure 2.
consonant sounds. Audible reconstructions can be ddpealitatively the bases are similar, however after close
by modulating the phase of the original input by th@spection it is quite evident that they reflect key differ-
magnitude of a selected a selected basis. Doing so @&mtes between the two analyzed speakers. Most notably
listening at the results verifies that most bases sound like can see the harmonics in figure 1 being spaced closer
short speech phones. There are some bases left withititticating a lower pitched voice, as compared to the
burden of representing signal portions that the rest béses in figure 2 where the harmonics are farther apart
the bases do not reflect, these few usually have sofmem each other indicating a higher pitched voice. A
compound nature combining various speech elemehkten observer can also pick up some formant differences
occasionally with some noise to approximate backgroubdtween the two speakers. Noting that the two speakers
or spurious portions of the signal. that were used were a male and a female speaker, we

As should be expected these basis functions are sge that the extracted bases are indeed coding speaker

flecting the acoustical characteristics of the speaker tﬁiﬁpendent characteristics.
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Due to the linearity of the algorithm and the facspeakers. We will show that once the basis functions of
that the magnitude spectra are roughly added in thespeaker are known they can be used to reconstruct
case of monophonic mixtures, we should expect to gatly that speaker’s signal from a monophonic mixture.
gualitatively the same results when the input is a mixtuk&e will first describe the methodology and then present
of multiple speakers instead of a single speaker. Unlagsults from our experiments.
there are spurious correlations between the speakers in
a mixture it is natural to theorize that the set of bas%s
extracted from the mixture will contain bases describing
each isolated speaker. As we showed in the previous section the basis

We repeat the experiment with a mixture input madgnctions we extract from speech are dependent on the
by summing the previously used speakers. The results H@bral characteristics of the speaker who provided the
as we predicted and are shown in figure 3. We can d6dining data. We would expect the learned bases to
some of the mixture basis functions resembling the bagg@racterize that speaker best. Furthermore when we
of the male speaker (figure 1), whereas other resemBfé@lyze a magnitude spectrogram which is generated
the bases of the female speaker (figure 2). Naturally digm a mixture of speakers the basis functions are still
assumption that magnitude spectra mix linearly is nEgsembling individual phones from all _included speakers.
precisely correct, but at a more general and qualitati@oups of these bases can be attributed to only one
level this assumption is approximately true for mosSpeaker re_spectively. If we coul_d reconstruct the mix-
sound mixtures. As reported in [10] a binary mask {&!'¢ magnitude spectrogram using only the bases that
often sufficient to maintain source information in soungrrespond to one speaker in the mixture we could be
mixtures, and our assumption is a generalization of tHffectively performing separation. Performing this in an
which allows some degree of approximate additivit nsupervised manner is a rather complicated process,
between the mixed spectra. owever if we have a sufficient set of learned basis

The model that this approach imposes on the ddupctions from a specific spgakerwe can use_these bases
is that of a convolutive basis function. In usual basf® €xtract that speaker's voice from sound mixtures.
function expansions, like NMF, we have a set of basesConsider a mixture of the male and female speaker we
(corresponding to spectra in our case) being scaled b sgd in the prfecedlng §ect|on. Based on the observatl_ons
set of weights. In the convolutive case we have a set §M the previous section we can assume that leamning
bases that correspond to patches of a spectrogram wiichet of basedV,,(¢) from the male speaker and a set
are convolved along the time axis according to theff PasesW(t) from the female speaker will roughly
weights in order to reconstruct the input. The underlyif§gSemble the set of bases learned from a mixture of
assumption is that the inputs can be adequately descrilfé@ir voices. This means thaV,,(¢) and W(¢) can
by a set of these patches. This is the case in speech wi§dused to reconstruct the mixture. If this is the case
repeating patterns are often reused, but it is also the cHi@n we can assume that the part of the mixture that

for other types of sounds that exhibit a regular tempori§l réconstructed by, (¢) will predominantly rebuild
structure in their spectrograms. the male voice andw,(t) the female voice, thereby

The number of base® that we request is not Ioar_providing the spectrograms from each speaker that we

ticularly important in this context. IfR is too small €an easily invert back to time signals.

then the basis functions will be forced to approximate S° to formalize and generalize fof speakers we take

simultaneous clumps of speech phones resulting in wof8é following steps:

reconstruction performance and a more blurry distinction1) Obtain training datar;(t) for each speaker and

between the bases. For a large value Bfwe can separately derive convolutive NMF bas®¥;(t)

see certain bases adapting to individual harmonics as from their magnitude spectrogran¥; using the

opposed to entire phonemic structures. In general a value methodology in section lIl.

between 100 to 500 bases is usually a good estimate fo2) Construct a union of all the bases by combining

a rich in phonetic content speech input. them: W(t) = Wi(t) UWa2(t)U...UWn(2).
This will result in a basis selV times bigger than
the individual speaker sets.

3) Take a mixturey(t) containing the learned speak-
In this section we will introduce a way to take ers uttering an unknown phragg(t). Obtain its

advantage of the basis functions we just introduced to  magnitude spectrogray and perform convolu-

perform separation from monophonic mixtures of known  tive NMF training on it. During training keep the

Extracting speaker dependent bases from a mixture

IV. SEPARATION OF KNOWN SPEAKERS



6 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSIN

IS @
& 3
3 3
T T
| |

IS

IS}

S
T

g8 &
I

g il
L

DFT bin index
N
a
o
T
|

T
¥
!
|

K

= =
8 8
T T
il
T
it
| |

- L

a
3
T

|
\

i
|

\‘\i‘

- - = i

- cx = el LI S

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
Basis function index

Fig. 3. Basis functions derived from the magnitude spectra of adpasker mixture. Note how some of the bases seem to fit best the
female speaker whereas others fit the male.

bases fixed toW (¢) and learn only their weights from the TIMIT database. These sentences were normal-
H. ized to unit variance so that when added would produce a
4) Break upH into N partsH; each corresponding0dB mixture. The remaining sentences of the two used
to the weights that belong to a single speakergpeakers in the TIMIT database were used as training
bases. This will result intdV sets of weights. data from which we derived a basis set for each speaker.
5) Reconstruct the magnitude spectrograimof the The training data were in the order of 30 seconds of
analyzed mixture using only an individual speakearontinuous speech per speaker, whereas the evaluation
bases and weightsZ; = Y7~ W;(t) - Hi-_()t). sentences were 2 to 3 seconds long. As in the above

EachZ; will be a magnitude spectrogram Comaingxamples.the sample rat_e WHSEH 2. _
ing parts of the mixture that were best explained Evaluation of the quality of speech separation algo-
by bases from speaker rithms is always a very hard task and the non-linear

6) Use the phase data from the original mixture aﬁaﬁmixing procedure we propose is especially hard to
modulate it byZ; to obtain N spectrograms for evaluate reliably. In order to provide a comparable mea-
each speaker ! sure with existing literature we will be using standard

7) Using the inverse short-time Fourier transforrﬁorrelation-based measurements. For each separation

transform the speaker spectrograms to the tin%(ample we will provide three types of performance

domain and obtain the extracted speech signél exes, the signal to noise ratio for each extracted
(1) speaker, the log correlation of the extracted source with
i(t).

. , . . the original, and the amount of unaccounted energy in
The signalsz;(t) will be approximations ofy;(¢) tli1e original and extracted signals. 9y

since they are constructed from bases belonging on ) o . . :
y ging yUsmg the notation introduced in the preceding section,

to these speakers. This of course presupposes that the

speakers have discernible voices and somewhat differant . Ve have the separated speaker sounds we

timbral character and pitch inflections, which seemed %Jmpare them with the O.”g”.]al mlxed_sourqg(@t) to
. . see how good the separation is. We derive three measures
be usually the case in our experience. .
to measure performance, the speaker ratialB the
similarity of the output with the target, and the residual
noise. The speaker ratio is computed by comparing the

In this section we will describe the steps we took whilggrrelations of the original sources with the extracted
conducting our experiments on speech separation. Wsnds:

describe the construction of the mixing cases and their
evaluation.
_ , _ cij = cor (z(t),y:(t 8
To test this approach monophonic mixtures were " (=i0), wi(t)) ®
synthetically generated by summing two different but Where cor(-) denotes correlation. We define the
roughly equal length sentences from different speakesgeaker ratio for each output as a log ratio of its correla-

B. Mixing and evaluating methodology
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tion with the desired sentence divided by the correlati@iorementioned process. The parameters that were used

with the other sentences, i.e.: can be divided in two groups. One group included the
o parameters relating to the short time Fourier transform:

SR; = 10log;) —= (9) the FFT size, the transform hop size, the zero padding

Cij for the FFT and the analysis window. The other group

Vi of parameters were the ones relating to the convolutive

This measure will tell us how much the signals of thBIMF training: the number of baseg, their extent in
undesired speakers have been suppressed. Higher vaiiie® 7', and the training iterations. Although there are
will reveal better extraction of the desired speaker. plenty of parameters to compare, the most important

The similarity index measures how much the outp@nes were the size of the FFT used, the number of basis
resembles the desired output. We measure it by takif#pctionsz and their temporal exterft. At first we will

the correlation of the extracted source with the desir€famine these three and then present some additional
output: results exhibiting the effect of the rest of the parameters.

S1; = 10logyg cor (2i(1), 4i(t)) (10) A Most Important Parameters

We will have SI; <= 0, with SI; = 0 being the  For this set of results we will assume that the STFT
most desired case. Lower values indicate that the resydfp size was set to one fourth of the FFT size, that zero
is not too similar to the desired sentence. Note that tfjadding was not used, before the FFT the data was scaled
measure also is influenced by the quality of separati@gcording to a Hanning window, and that we estimated
since traits of the undesired speakers would lower iise bases and their weights for two hundred iterations.
value. For the remaining parameters we used the following

Finally the residual energy is the variance of thgalues, FFT size = [128 256 512 1024 2048 4096],
difference between the input signal and the sum of th@imber of Bases = [20 40 80 120 200], Length of Bases

extracted signals: =[1 2 4 6 8 10]. The sampling rate of the inputs was
16k H z. We performed separation using all combinations

RE — var (Z vilt) — Zzz'(t)> (11) of these parameter on our data set which amounted to

- - 180 experiments for each of the eight speaker pairs (1440

RE wil Ih h of th tout sianal i truns over all speakers, repeated 12 times for a total
Wil reveal how much ot In€ oulput sighat 1S Not.; 4 754 experiments). We averaged the performance
accountable by any of the original sounds, and how mu

. titact of th i q val | easures for all these experiments and analyzed the
IS an artiact ot the separalion procedure. Values Clos§t, v of various parameters. We present our findings in
to zero are best, indicating good accountability of tr}%is section

nput S|gn_al and litte orno residual noise. Of major importance is the size of the FFT we use
One thing to note is that the SNR measurements, .
. ) L 0’ analyze our inputs. If we average the results over

although sufficient, are not directly indicative of the .
all other parameters and speakers for each FFT size

performance of this algorithm. The separation Process IS . . then observe its effect on the speaker energy

very complex a_md non-linear a_nd the SNR measure_mer:g%o (figure 4 left). This value fluctuates from about
will only provide a standardized way of evaluatin

it. More appropriate performance measures would B for an FFT size of 128 points (8s) at worse, to
.' bprop bertor . e aDoutd.8dB for 1024 points (64ns). FFT sizes outside
in terms of the cost function being optimized by th . .
: : ) 024 points tend to produce progressively worse results
convolutive NMF procedure. However interpreting these . .. . )
. -Indicating that this is a good value for this parameter. The
metrics would be obscure at best and would not provide .. . ~. . o :
values amenable to comparisons with other a roachselgmamy index behaves in a similar way, the optimal
P PP average comes out for an FFT size of 512 points (32
ms) with an approximate value of0.7. The similarity
index progressively deteriorates for diverging FFT sizes
In this section we present some results from speesith the recorded worst being 4096 points with a value
mixtures and shed some light on the importance of about —1.2. Deterioration seems to be more rapid
various parameters involved in this process. We averaded larger FFT frame values. Residual energy is roughly
the results from a set of twelve runs from each of eigicreasing with the FFT size. This is to be expected,
randomly selected male/female pairs of speakers fra@hort time windows provide small building blocks which

the TIMIT database and attempted separation using ten fit the data well without extending their errors to

V. SEPARATION RESULTS
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Fig. 4. Effects of some parameters to the performance irddxa&ch point is the average of all other cases when fixinggesjparameter
value. Note that for readability reasons the value of théduas noise energy has been scaledlfy. The left plot displays the effect of
the FFT size, the middle plot the effect of the number of bad@emnd the right one the effect of the length of the bages

too wide a time window, wider analysis windows aref 1 to 3 x 10~* for a length of 10. That was expected

extending over larger time periods having to fit muchecause it will be more difficult to use longer bases
more information. Using bigger analysis windows resulend still have them precisely fit on the evaluation data.
into a coarser approximation. Values ranged from d&rhe similarity was at its best around a basis length of 4
average of about.8 x 10~* for 128 point FFTs to about with a value of -.9, and tended to fall for greater basis
3.4 x 10~* for 4096 point FFTs. lengths down to -1 for a basis length of 10. Note that

The number of bases is obviously also a major p#Nen the length of the bases is 1 then we are essentially

rameter. Regarding its effect on the speaker energy raf#§forming NMF.

we generally observe that fewer bases provide a betteOf more importance than the individual parameters
result (figure 4 center). The learning of more bases fir the interaction between them. Figure 5 is instru-
each speaker allows a greater expressive power whiokntal in pointing this out. We briefly describe some
can model utterances of other speakers as well. Havioigthe major interactions here. As we pointed out in
too many bases will result in some reconstruction ¢fie previous paragraph, the length of the bases was
the interfering signal which can negatively affect signadot a parameter that varied the performance measures
separation. Best results were obtained for 20 bases pigmificantly. However we can see that its effect was
speaker with about.5dB separation, and after a steadyeavily dependent on the FFT size. In general for long
decline the worst value was at5dB for 200 bases per FFTs we saw better separation for short bases regardless
speaker. However using less bases comes at a price simideow many we use, and for shorter FFTs we saw better
reconstruction results in a more coarse fit which thererformance for few bases regardless of their length.
exhibits poor values for the similarity index and residuddor small FFT sizes and long bases we obtained better
noise. We see the residual noise dropped monotonicalyparation and similarity, however the amount of residual
as we moved from 20 bases to 200 bases per speakeergy increased. As the FFT size grows, longer bases
taking values ranging fron3 x 10~* to 2.4 x 10~*. acted as a detriment to the separation quality as well as to
Inversely the similarity index rose from aboutl to the similarity index, therefore in this case shorter bases
—.9 So we see a tradeoff, at the expense of a worseniguige to be preferred. The residual energy was heavily
speaker energy ratio, adding more bases resulted indapendent on the number of bases. In general more bases
increase in the similarity index and a decrease in thi@roduced more residual noise, although that effect is
residual noise. not as pronounced for larger FFT sizes. For larger FFT

The length of the bases is another important factor. Gi¢€S though the residual energy increased significantly
average a value of 4 to 6 produced the best separatiBh longer bases. Finally as the FFT size increased we
results, although only by a minor margin with worshoted that the number of bases become more important
values at around.8dB and best at arountti3 (figure 4 10 the effect of the length of the bases with regard to
right). Residual noise energy tended to increase wiginilarity.
longer basis lengths ranging fro2r6 x 10~ for a length  The results shown in this section are suppressed due to
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Effect of STFT hop Effect of FFT zero padding

averaging with poor parameter selection. In most speaket* :

set cases boosting up /B was achieved for each \6\/
speaker, and proper post-processing (section VI), can,

boost this to double digi# B improvements.

B. Remaining Parameters ) o ) s

In this section we will examine the remaining param- ; , ;
eters, such the number of iterations for the convolutive | . . | i e —

NMF training, the STFT hop, zero padding size and

analysis window. Their interplay is not significant so WEi . 6. The effect of some FFT parameters on the performahce o

examine them_independently. For our exper_iments \_’ggparation. In these plots we examine parameters that doeste a
used an FFT size of 1024 and 40 basis functions whisignificant performance changes. On the left plot we see ffeete

extended for 4 time points. The results shown for ea@ﬁth(_e STFT hop size, in the right plot the effects of the FFToze
parameter are averages over 12 independent runs on &38A"9
of 8 pairs of speakers.

The performance mdt_exe_s for various values of theESnvergence of NMF training the most salient features of
para_meters are shown in figures 6 an_d 7. We n<_)t_e ke speaker were discovered very early whereas later on
Lheef[térr] Sg':;:;lioier_]l_sﬁ; ?sacblc(e?:(;uFSZTsL\:\gﬂdggss;?ggtria ey were refined to include more generic speech features

) T . all speakers might exhibit (such as consonants). As
of time frames helped develop more time invariance Wi;i{.'ing progressed the bases became more refined so

th_e basis set, provided a richer data set and bypasttﬁ reconstruction was more effective and that drove
alignment problems. This seemed to come at a ¢ n the amount of residual noise

though since it introduced more computational require-

- i . —_The approximation iterations are more predictable in
ments due to a larger training set and it also resulted i performance effect. The more we trained the better
poor fitting for extreme values. We can see that in t

tme separation and the less the residual noise. We also
case where the STFT window hop size wasth that P

f the FET si h ; q ote an interesting trend for the similarity index. We
of the size where periormance seems (0 degraifq 1yt it peaked at around 60 iterations (that is on a

The excessive amount of_data 0 learn and fit 'erdL.ch econds mixture, lengthier mixtures would delay this),

1 3

In the case of zero padding, we note that in generalsl paration quality. The justification for the separatioth an

't‘; a_ badt |((jjea S'tf‘ce” It mgrefz(i;j f[he dlm?nsu;fnahty fsidual noise trend is obvious, the more we iterated the
€ Input dramatically and It didnit Seem 10 olter aNyeyar the fit. The trend of the similarity index can be

particular performance advantage. explained by the fact that prolonged training would result

In flgpre _7 we show the perf_ormance effects of thﬁ’lto more cross-pollination of speaker bases which can
adaptation iterations of convolutive NMF. These can

. A ) Bfter the characteristics of each speaker.
separated into two groups, the training iterations andThe effect of the window type is rather negligible, it

the approximation iterations. Training iterations are tl?eemed best to not use a rectangular window since it
number of iterations we train on each speaker, Whereas, iaq into noisier basis functions and abodf to

approximation iterations are the number of iterations 2/B worst separation. Aside from this the selection of
perform to adapt the speaker bases to a mixture. T fdow type is not an issue in performance
effect of training iterations displayed an interestingntte '

Early on we got the bestB improvement in separation, o

albeit at a cost of high residual noise. As we keft: Denoising Examples

iterating the separation index dropped as did the residualGiven that the separation procedure we introduce is
noise whereas the similarity index was more or less staased on finding and extracting sound elements that
bilized. We saw that around 100 iterations performancempose the input sources, separation between multiple
stabilized and further training was unnecessary (thatdpeakers is obviously a harder example since the sources
on training on 30 seconds of speech, larger training sete very similar. In this section we briefly consider
would require more training to reach that state). Thesiee case of denoising where the types of sources are
effects can be explained by the fact that due to the ramjdite distinct and can be seen as composed from a non-
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Effect of training iterations Effect of approximating iterations

D. General remarks

On average the resulting separated sounds sounded
very much like linear mixtures of various mixing pro-
portions. Depending on the success of the separation
these ranged from slightly perceptible to significant
interference. There were no echo residues or spectral
coloring imposed by the algorithm, and thus the speaker
ratio proved to be an adequate indicator to measure

B W @ % Lo %o w0 B B e G W o T w0 w separation performance. Results that were obtained using
too few bases often had missing speech phones (usually
Fig. 7. The effect of training and approximating iteratiams the \yideband ones) or a muffled quality to them, this was

performance of the separation. The left panel displays ffeeteof t th h . b Thi ffect
the training iterations, whereas the right one display<effect of the no € case when using more bases. IS efiect was

mixture approximation iterations. Best separation resafe achieved measured effectively by the sound similarity indicator
early on in training, however at the expense of high resiggde. which correlated well with subjective listening evalua-
Note that the three performance measures are not drawn @athe tions. The use of too few bases in addition to a large
scale and the plots are only informative of the measuresressgn ) . . . ;
during iterating. T also contributed to some hissing or scratching noise
which is most likely a product of a poor tapering across
frames in the frequency magnitude domain which in
turn produced subtle discontinuities in the time domain
signal. These were usually reflected in the residual noise
overlapping set of bases. We briefly discuss a coupIe'BfFasure' Once again dependl_ng o the s.ettmgs used this
effect ranged from imperceptible to noticeable. These

examples in this section. ) ) _
P are all the audible artifacts that we encountered during

We generated two mixtures that were composed dgfting and driven by that we designed the appropri-
of one speakembt 0) and either ambient street noiséite performance evaluation measures. Although there
or chimes. For both cases we used an FFT size of 1084S0me correlation between some of the performance
points and 40 bases of length 4. In order to perforfi€asures, in average (and in our subjective opinion) they
the separation we learned models of both the speaki# @ fairly good job in describing the audible result
and the interfering sounds. In the first example spee@Hantitatively.
was boosted t&.2dB over the street noise. The noise From figures 4 and 5 one can note that a larger
signal was composed out of background speech, a stiepot significantly beneficial. Although that is true in
performed playing accordion and high frequency amhe sense conveyed by the performance parameters, it is
ence. The accordion and the ambience were suppreggeeortant to note that the extracted features are much
to inaudible levels, speech babble was suppressed B@re informative wheril” > 1. Consider the case of
not as much. This is due to the fact that speech babBidixed analysis window. In the case whefe= 1 we
had a lot of common spectral content with the speaki@se a lot of temporal information which is carried by
and some of it could also be explained by the speakeif®® phase of the spectra. We essentially represent the
bases. In the second example the separation was uglaa using a single magnitude spectrum. For the same
16.3dB. The much better result is attributed to the fadength window wheri” > 1 the previously lost temporal
that the chimes had a spectral character that had alm@eglution information is now conveyed by the extracted
no spectral overlap from the speaker's voice whidpases. The resulting trade-off is that we can obtain
facilitated separation. Although not a primary objectivé@ single long spectrum, or a series of shorter spectra
for both mixtures the street noise and the chimes welfat describes common patterns of spectral evolutions.
also well separated with minimal traces of the speakéythough this is not an important factor for separation,
Figure 8 displays the spectrograms of the two mixturésis valuable when we subsequently need to perform
and the separated speech. In these spectrogramsS@eech or sound recognition and the extracted features
can clearly see elements of the street noise as wellnged to be maximally informative and unique. The value
the chimes being suppressed. Audible reconstructiodfsthe extracted bases is of course context specific, but
of the extracted sounds exhibit an excellent degree ibfextreme cases we can even extract entire words per
separation and a minimal degradation of quality due &#sis using similar processing [14].
the low rank encoding of the signal. As mentioned before there needs to be some spectral
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Fig. 8. Spectrograms of the denoising examples. The twoslgdttrograms display the two mixtures, the top one with ekirand the
bottom one with the street noise. The two right spectrogrsinesv the respective speech separation. On the top speutragne can see the
chimes harmonics being virtually non-existent. On the drotseparation spectrogram one can see much of the ambieddbeanccordion

harmonics being suppressed.

difference between the sounds that need to be separaeldtions. The fact that the bases need to be non-negative
in order to obtain good performance. In our speedomplicates any straightforward processing that can to be
experiments we used female/male sets of speakersdtme to ensure maximal linear independence and points
loosely ensure some spectral variation. Separation be-a non-trivial solution. Employing longer bases so that
tween male/male sets produces in general slightly worfe> 1 provides a minor relief in this respect since the
results since the spectra to be extracted have more sigsue becomes one of a ‘spectral sequence similarity’
ilarity (although that is highly dependent on the speakeihich is a less likely possibility between two sounds.
character and does not in general mean that all male/male

pairs will be harder problems than female/male). To Finally a note about reverberation. Because of this
further stress the importance of spectral dissimilarifiyPe of analysis, factors such as echoes can be safely
note the dramatic improvement of Separation qualiignored since their effect will be undone by the ImpIICIt

when using non-spectrally similar sounds as we ha@gconvolution in training (long echoes will result in
done in section V-C. repeating sections of the magnitude spectrogram which

is what this algorithm is designed to discover). Shorter
The issue of spectral similarity between sources is achoes will not be as present in the magnitude spectrum,
important one which needs to be studied in more deptiut more so in the phase spectrum which we discard,
The side effect of dealing with spectrally similar soundsnd thus does not pose an issue. If these echoes are
is that their resulting bases are most likely linearlgtrong enough to color the magnitude spectrum then
dependent and thereby inhibit good separation. Variotey will be learned as part of the characteristics of
ad-hoc steps can be taken to reduce that effect, suchthasinput sound, but will not interfere with the learning.
discarding very similar bases across the different sountts,extreme cases we can have an unnatural amount of
or reassignment of bases to remove dependencies, whipkctral smearing due to reverberation which can make
can result in better sounding results but are not satisfyingparation impossible. Such cases are rarely encountered
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though and even then the most acute listeners or systams resulting sources this is not necessarily as notable
can have a hard time telling different sounds apart. an improvement as the numbers indicate, it is however
noticeable, and could be improved with a specialized

VI. POST-PROCESSING unmixing approach based on this type of mixture. It

should be pointed that this is quite an ad-hoc step and

AIthout?Ih the Ipr‘?cess des_crlbed sdo f_ard can Obtaﬂﬁ'e e is no guarantee that an application of ICA will work
reasonable results in separatln.g sounds, it does not nge I, since the resulting mixtures will be non-linearly
to be the end of the separating process. We can

various post-processing techniques on the outputs to__ _ _

boost the quality of the results even more. In this sectign=ither of the ab(_)ve approaches are fairly stra_ught-

we briefly describe a couple of possible approaches, forward and generic and are not meant as ultimate
A trivial step that we can employ to improve thesolutions. They show however that there can be a con-

quality of the results is to modify the reconstruction steﬁderable |m_prov.ementdof results afte_r the c_onvolutlve
to account for all the energy in our testing signals. Rec {MF approximation and opens up an interesting avenue

that we used the phase of the mixture and modulateootreseamh'

with the magnitudes dictated by the basis approximation.

Energy from the mixture that was not approximated well

will be missing from the reconstructions resulting in a

choppy sounding output. This can be remedied by longer VIl. CONCLUSIONS
training in the approximation step, but we have observed

that this can sometimes be a detriment in separationln this paper we have presented a supervised method

quality and also a computationally intensive process, separating known types of sounds from monophonic

Instead we can compute the spectrogram of each SPeqKtures. We introduced the concept of a convolutive

as. non-negative basis set, demonstrated how it maps to
Z; meaningful features in the case of audio spectra and
F; = (4H)'—, (12) demonstrated how we can use it in the context of
> Z;
J

supervised source separation. We also provided simu-

where Z/H is the phase of the mixture spectrogramation material which can provide some intuition about
and Z; is the approximated magnitude spectrogram @fe importance of various parameters and suggested a
each speaker. This is essentially a spectral filter th&uple of ways this process can be enhanced using post-
ensures that the unaccounted energy in the input miXtLﬂﬂQ)cessing_ Depending on the nature of the inputs and
is redistributed to the resulting speakers’ spectrograi@ post-processing employed we obtained interference
in proportion. This results in definitely better SOUﬂdinguppression ranging fromiB in the worst cases to up to
reconstructions in terms of quality, something we camdB. As described there are numerous options to trade
note in the performance indexes. The separation quali¥paration performance for better audio quality results,
remained the same, however the similarity was improve@d this is a choice which to our experience has been
a lot and residual energy was not only reduced but algpplication dependent. There seem to be many ways this
stabilized to a fixed low value for all other parametersapproach can be enhanced and this article only attempted

A notable point of this approach is that it starts wito present a basic implementation and its operational
a monophonic mixture and results into a multi-channgharacteristics, it is our hope that future work will
output. Had the separation been perfect there would &€dress additional performance enhancing extensions.
no need for post-processing, however the separation is

not always satisfactory and in that case we can view the

outputs as a multi-channel mixture. This transition from

monophonic to multi-channel opens the possibility of ACKNOWLEDGMENT

employing multi-channel separation techniques to further

separate the sources. Although this is not a linear mixture

anymore, an application of straightforward unmixing The author would like to thank Bhiksha Raj of
algorithms like Independent Component Analysis can Iitsubishi Electric Research Laboratories for fruitful
applied to it and can provide on average a boost of abaliscussions while preparing this paper, as well as the
5dB to 7dB (we employed the JADE algorithm [16] inassigned reviewers for pointing out areas that needed
our simulations). Given the non-linear relationship of theéevelopment.
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