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Abstract

We introduce two novel joint radio-frequency (RF)-baseband designs for receivers in a MIMO
system with Nt transmit antennas, Nr receive antennas, but only L less-than Nr RF chains at
the receiver. The joint design introduces an RF pre-processing matrix that processes the signals
from the different antennas, and is followed by selection (if necessary), down-conversion, and
further processing in the baseband. The schemes are similar to conventional antenna selection
in that they use fewer RF chains than antenna elements, but achieve superior performance by
exploiting the spatial correlation of the received signals. The first of our proposed designs uses
an L x Nr RF pre-processing matrix that outputs only L streams followed by baseband signal
processing, and, thus, eliminates the need for a selection switch. The second one uses an Nr x
Nr RF pre-processing matrix that outputs Nr streams and is followed by a switch that selects L
streams for baseband signal processing. Both spatial diversity and spatial multiplexing systems
are considered and the optimum pre-processing matrices are derived for all cases. To accommo-
date practical RF design constraints, which prefer a variable phase-shifter-based implementation,
a sub-optimal phase approximation is also introduced. Performance better than conventional an-
tenna selection and close to the full complexity receiver is observed in both single cluster and
multi-cluster wireless channels. A beam-pattern-based geometric intuition is also developed to
illustrate the effectiveness of the optimal solution.
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Abstract— We introduce two novel joint radio-frequency (RF)-
baseband designs for receivers in a MIMO system with Nt

transmit antennas, Nr receive antennas, but only L < Nr RF
chains at the receiver. The joint design introduces an RF pre-
processing matrix that processes the signals from the different
antennas, and is followed by selection (if necessary), down-
conversion, and further processing in the baseband. The schemes
are similar to conventional antenna selection in that they use
fewer RF chains than antenna elements, but achieve superior
performance by exploiting the spatial correlation of the received
signals. The first of our proposed designs uses an L × Nr RF
pre-processing matrix that outputs only L streams followed by
baseband signal processing, and, thus, eliminates the need for
a selection switch. The second one uses an Nr × Nr RF pre-
processing matrix that outputs Nr streams and is followed by a
switch that selects L streams for baseband signal processing. Both
spatial diversity and spatial multiplexing systems are considered
and the optimum pre-processing matrices are derived for all
cases. To accommodate practical RF design constraints, which
prefer a variable phase-shifter-based implementation, a sub-
optimal phase approximation is also introduced. Performance
better than conventional antenna selection and close to the
full complexity receiver is observed in both single cluster and
multi-cluster wireless channels. A beam-pattern-based geometric
intuition is also developed to illustrate the effectiveness of the
optimal solutions.

Index Terms— MIMO systems, Diversity methods, Spatial mul-
tiplexing, Antenna arrays, Antenna selection, Channel statistics,
Signal to noise ratio, Information rates, Phase shifters.

I. INTRODUCTION

MULTIPLE input multiple output (MIMO) antenna sys-
tems deliver substantially higher bit rates and reliability

using either spatial multiplexing [1], [2], where different data
streams are transmitted on each antenna, or link diversity [3]–
[7], where the same data stream is transmitted on all the
antennas. Despite the significant gains, an important factor
limiting the widespread adoption of MIMO systems is their
increased hardware and signal processing complexity. The sig-
nal received (transmitted) at each antenna element requires a
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separate RF chain that comprises a low noise amplifier (power
amplifier), demodulator (modulator), and an A/D converter
(D/A converter), which are expensive.

Antenna selection, which chooses a subset of available an-
tennas for further processing and requires fewer RF chains, has
received considerable attention in the research community [8]–
[17]. While antenna selection achieves the full diversity
gain [14], [18], it does lead to a reduced beamforming gain.1

This paper shows that the loss can be reduced considerably
in the presence of spatial correlation. While MIMO system
performance with spatial correlation [20]–[23] and antenna
selection have separately received considerable attention, ex-
ploiting spatial correlation in antenna selection has not, barring
a few exceptions [24]–[26].

In this paper, we introduce two novel RF pre-processing
designs at the receiver that exploit spatial correlation to recover
most of the beamforming gain. The design consists of a linear
pre-processing matrix in the RF domain, which depends only
on the channel’s large-scale parameters such as mean angle
of arrival (AoA), angle spread, etc., followed by selection,
down-conversion, and further processing in the baseband. It
is important to understand that pre-processing succeeds only
because antenna selection leads to loss in performance. In the
absence of this lossy step, pre-processing cannot improve the
performance of an optimal baseband receiver.

Preliminary results in [27], which used a fixed (unopti-
mized) channel-independent Butler FFT matrix, already show
a large improvement. While this scheme yields gains, it is
certainly not optimal and its performance depends on the AoA
and the geometry of the antenna array. The solution in [28]
requires adjusting the parameters in the RF domain based on
the instantaneous channel state; this can lead to tighter design
constraints and require instantaneous channel state feedback
when implemented at the transmitter. In this paper, we use pre-
processing based on channel statistics. Using channel statistics
is appealing because it varies on a much longer time scale than
short-term fading [45].

The contributions of the paper are the following. First, two
novel RF pre-processing designs are introduced with the pre-
processing matrix depending only on the large-scale statistics
of the channel. The designs are similar to antenna selection in
that they use fewer RF chains, but turn out to be superior as
they exploit spatial correlation. The first design outputs only

1Depending upon the number of antenna elements and the subset size, a
loss in spatial multiplexing gain is possible. A loss in diversity gain occurs
in the presence of imperfect selection [17] or fast fading [19].
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L streams and thus does not require a subsequent selection
switch. The second one outputs Nr streams and is followed
by a switch that then selects L streams. Both designs are
optimized for either spatial diversity or spatial multiplexing.
These require different analysis techniques and lead to vastly
different solutions. Finally, an algorithm to implement the
scheme in the RF domain using only variable phase-shifters
is presented, and incurs a negligible performance loss.

The optimum solutions, derived here, turn out to be intu-
itively pleasing and are shown to be equivalent to a principal
component analysis (PCA) [29]. However, our results are still
novel as the lossy selection step fundamentally changes the
behavior and, consequently, the analysis of the system. And,
the covariance matrix of the vector that PCA operates upon
need not be the familiar spatial covariance matrix. We also
present extensive results to test the solutions for both single
multipath cluster scenarios and multi-cluster scenarios. While
the latter scenario often occurs in typical deployments due to
high-rise buildings and mountains and can lead to significantly
different performance, it has received little attention in the
antenna selection literature [30].

The implementation using only variable phase-shifters is a
critical issue that ultimately determines the practical viability
of the proposed design [31]–[34]. While equal gain combining
(EGC) at the receiver and equal gain transmission both use
only phase-shifters [35]–[37], their use is limited to spatial
diversity systems. They are also sub-optimal compared to
maximum ratio combining (MRC) or maximum ratio trans-
mission (MRT). For the same number of RF chains, the
designs we propose outperform both EGC and MRC, as these
are essentially baseband processing techniques that always
succeed the selection switch.

The paper is organized as follows. Section II sets up the the
system model for spatial diversity and spatial multiplexing.
Sections III and IV derive the optimal solutions for the spatial
diversity and spatial multiplexing systems, respectively, with
the phase-only approximation being considered in Sec. V. In
Sec. VI, the performance of the proposed solutions and others
in the literature is compared for both single-cluster and multi-
cluster channel models. The conclusions follow in Sec. VII.

II. SYSTEM MODEL FOR SPATIAL DIVERSITY AND
SPATIAL MULTIPLEXING

The following matrix notation is used: (.)T stands for trans-
pose, (.)† for the Hermitian transpose, |.| for the determinant,
Tr {.} for the trace, and EX [.] for the expectation with respect
to the random variable (RV) X . The norm of a vector is
denoted by ‖.‖. The matrix In denotes the n × n identity
matrix and 0 the zero matrix.

The equivalent complex baseband notation is used to de-
velop the analysis. However, it must be kept in mind that many
of the transformations occur in the RF domain. The matrix H
of size Nr×Nt denotes the channel, the vector n denotes the
zero-mean additive white Gaussian noise, and ρ is the total
transmitted power. The elements of H and n are normalized
to have unit variance; therefore, ρ also denotes the SNR at
the input of a receive antenna. We adopt the widely used
Kronecker model for spatial correlation [14], [25], [38], [39].
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Fig. 1. Block Diagram for Diversity Transmission with RF Pre-processing.

The channel matrix is given by H = R
1
2 HwT

1
2 , where the

elements of Hw are zero-mean unit-variance i. i. d. complex
Gaussian RVs and the matrices R and T are the receive and
transmit antenna covariances, respectively.

A. Spatial Diversity

The first system we consider is a closed-loop spatial diver-
sity system in which replicas of one data stream are transmit-
ted by all the antennas, as shown in Fig. 1. The transmit an-
tenna weights are denoted by the vector v = [v1, v2, . . . , vNt ],
where the ith element, vi, denotes the weight at antenna i.
Perfect channel state information (CSI) is assumed at the
transmitter and the receiver. The received vector y is given
by

y =
√

ρ

Nt
Hvx + n, (1)

where the scalar x is the transmitted symbol. We analyze the
uncoded case in this paper. As in maximal ratio transmission
(MRT), the transmitter is assumed to set v = v1, where
v1 is the right singular vector associated with the largest
singular value of H. While this choice is optimum in terms
of maximizing the SNR when the receiver uses MRC, it is
not when it uses antenna selection. However, our results show
that even v = v1 achieves nearly optimal performance. This
also avoids the intractable analysis required for finding the
jointly optimal v and RF pre-processing, and decouples the
transmitter and receiver designs.

B. Spatial Multiplexing

The second system we consider is a spatial multiplexing
system in which multiple data streams, as opposed to a
single one in the diversity case, are transmitted simultaneously,
as shown in Fig. 2. The transmitter has no CSI and the
receiver has perfect CSI. When a vector, x, of size Nt× 1, is
transmitted, the received vector, y, of size Nr×1, is given by

y =
√

ρ

Nt
Hx + n. (2)

III. SPATIAL DIVERSITY: OPTIMAL TIME-INVARIANT (TI)
PRE-PROCESSING

We now investigate RF-baseband design based on channel
statistics. Given that we only use channel statistics to design
the pre-processing matrices, they shall be referred to as time-
invariant (TI) solutions. We first consider the case in which the
RF pre-processing matrix (of size L×Nr) takes Nr streams as
input and outputs only L streams and, thus, eliminates the need
for a subsequent selection switch. We then consider a receiver
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Fig. 2. Block Diagram for Spatial Multiplexing with RF Pre-processing.

design in which the pre-processing matrix (of size Nr ×Nr)
outputs Nr streams and is followed by an instantaneous CSI-
based selection switch. In both cases, we maximize the average
output SNR after pre-processing (and selection, if necessary)
as we consider an uncoded system. For both, we first show
that semi-unitary or unitary matrices are optimal and then we
find them. As we shall see, in the latter case, the presence of
the selection switch makes the optimization intractable. For
this case, we resort to a tractable lower bound on the SNR.
We also derive the diversity order of the designs.

A. Optimal Time-Invariant (TI) Pre-Processing Without Selec-
tion Switch

Let ML denote an arbitrary L×Nr pre-processing matrix.
The vector ỹ at the output of ML is

ỹ =
√

ρ

Nt
MLHvx + MLn,

where v is the transmit antenna weight vector. After pre-
processing and down-conversion, the signals are combined in
the baseband by the vector w†. The average SNR, γTI, after
pre-processing and combining is given by

γTI =
ρ

Nt
EH

[
w†WMLHv

]2
, s. t. ‖w‖ = 1, (3)

where the matrix W is the baseband noise-whitening filter
such that WMLM†

LW† = IL.
We now show that the optimal pre-processing matrix for

maximizing the average SNR can be written in terms of a
semi-unitary matrix. We then derive its form.

Theorem 1: For a general Nr × Nt channel, H, with
singular value decomposition (SVD) UΛV†, let u1 denote
the first column of U that corresponds to the largest singular
value, λ1. To maximize the average output SNR, the optimal
pre-processing matrix, MTI, of size L×Nr, takes the form

MTI = BLZopt. (4)

Here, BL is any L×L full rank matrix and Zopt is an L×Nr

semi-unitary matrix given by

Zopt = [µ1, µ2, . . . , µL]† ,

where µl is the singular vector corresponding to the lth

largest singular value of the covariance matrix Eu1u1 =
EH

[
λ2

1u1u
†
1

]
.

Proof: The proof is given in Appendix A-1.
The following corollary that characterizes the optimal com-

bining vector, wTI, trivially follows:

Corollary 1: The optimal combining vector in the receiver
for maximizing the average SNR is given by

wTI =
Zoptu1

‖Zoptu1‖ .

We see from Theorem 1 that MTI is obtained by performing
a PCA on λ1u1. It is interesting to note that the covariance
Eu1u1 , defined above, is not the traditional receive correlation
matrix, R, but instead quantifies the statistics of the largest
eigenvector. Moreover, Eu1u1 depends not only on the vector
u1 but also on the eigenvalue λ1. A statistical interpretation of
the optimal matrix is that it consists of the first L eigenvectors
of Eu1u1 , which contribute the most to the variance of λ1u1.
The result can also be viewed as a rigorous generalization of
a result in [40], which dealt with single input single output
channels.

The structure and behavior of the optimal pre-processing
matrix can be intuitively understood by its beam-pattern,
which is shown in Fig. 3 for Nr = 4 and a wavelength-
relative antenna element spacing of 1/2. The beam-patterns of
MTI for two different mean AoAs (45◦ and 60◦) are plotted.
Clearly, the beam-pattern of MTI adapts to the mean AoA. It
also adapts to the angle spread (figures not shown here). This
is unlike FFT pre-processing, which has a fixed beam-pattern,
and gives promising gains only for mean AoAs of 0◦, 60◦,
90◦, 270◦, and 300◦.

We now show that the diversity order of any rank L RF
pre-processing matrix solution, including the optimal MTI, is
LNt.

Lemma 1: The diversity order of the TI design in a cor-
related channel described by the Kronecker model, in which
the transmit and receive correlation matrices are full-ranked,
is LNt.

Proof: The proof is given in Appendix A-2.
It must be noted that the above result on diversity order

measures the slope of the BER curve (uncoded) as the SNR
tends to ∞. For finite SNRs, the beamforming gain is also
important, as we shall see later.

B. Time-Invariant Pre-Processing With Selection (TI-S)

We now consider the case in which the pre-processing
matrix is of size Nr × Nr and outputs the same number of
streams as it receives. A subsequent switch selects L out of
the Nr outputs for down-conversion. The modified received
vector, y̆, after pre-processing and selection is

y̆ =
√

ρ

Nt
SMNrHvx + SMNrn,

where S is an L × Nr selection matrix that selects L out of
Nr signals. The selection matrix S adapts to the instantaneous
channel state. y̆ is down-converted, whitened, and combined
by the vector w† in the baseband. The average output SNR
after noise-whitening by the filter W and combining by the
receive weights w† is given by

γTI-S = EH
[

ρ

Nt

(
w†WSMNrHv

)2
]

, s. t. ‖w‖ = 1, (5)

where W, being the noise-whitening filter, satisfies the con-
straint WSMNr (WSMNr )

† = IL. The maximum SNR is
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(a) Fixed FFT beam-pattern
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(b) MTI-S (mean AoA = 45◦).
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(c) MTI-S (mean AoA = 60◦).

Fig. 3. Beam-pattern as a function of azimuth angle for time-invariant pre-processing and FFT pre-processing.

then

γmax
TI-S = max

MNr

EH
[

max
S,w,W

ρ

Nt

(
w†WSMNrHv

)2
]

,

s. t. ‖w‖ = 1. (6)

We now show that it is sufficient to restrict the search to
the set of all unitary matrices.

Lemma 2: The combination WSMNr of RF pre-
processing, MNr followed by selection, S, and noise-
whitening, W, can be written as

WSMNr = S
′
UNr , (7)

where S
′

is a selection matrix that selects L out of Nr rows
and UNr is a unitary matrix.

Proof: Given that W is a noise-whitening filter, it sat-
isfies the WSMNr (WSMNr )

† = IL. Therefore, WSMNr

is a semi-unitary matrix. Every L × Nr semi-unitary matrix
is a sub-matrix of another Nr × Nr unitary matrix, say
UNr . Therefore, there exists a selection matrix, S

′
, such that

WSMNr
= S

′
UNr

.
We can now restrict our search space to unitary matrices.

It is difficult to analytically find the MNr that maximizes the
SNR because of the presence of S, which depends on the
instantaneous channel realization H. We therefore derive an
analytically tractable lower bound and show that the solution
proposed below achieves it. A successive refinement-based
justification is also presented. The simulation results show that
this approach works well. The lower bound is obtained by
interchanging the order of EH and max as follows:

γmax
TI-S ≥ max

S
max
MNr

EH
[
max
w,W

ρ

Nt

(
w†WSMNrHv

)2
]

. (8)

The following theorem derives conditions that partially
determine the optimal unitary matrix that achieves this lower
bound.

Theorem 2: Let UL = span{µ1, . . . , µL}, denote the span
of µ1, . . . , µL, and let N (UL) denote its null space. Then, the
Nr ×Nr matrix that achieves the lower bound in (8) must be
of the form

MTI-S = P [µ1, . . . , µL, z1, . . . zNr−L]† , (9)

where P is any Nr ×Nr permutation matrix and z1, . . . , zL

are orthonormal vectors in N (UL).
Proof: From Lemma 2, we can restrict MTI-S to be

unitary. Then, for a given selection matrix S0, the problem
in (8) is similar to that in Section III-A (with BL = IL).
To maximize (8), the rows of MNr that are selected by S0

need to be the eigenvectors corresponding to the L largest
eigenvalues of Eu1u1 . For example, if S0 = [IL 0], then
MTI-S = [µ1, . . . , µL, z1, . . . , zNr−L]†. Given that MTI-S is
unitary, z1, . . . , zNr−L are orthonormal vectors in N (UL).
Any other selection matrix is a permutation of S0, therefore,
so is MTI-S.

To characterize the matrix MTI-S that maximizes average
SNR, we now need to identify z1, . . . , zNr−L. For this we
propose the following algorithm that successively improves
the SNR. We conjecture that the solution that we obtain is
optimal.

1) Successive Improvement Approach to Determine MTI-S:
The outline of the algorithm is as follows: We divide the
space of all selection matrices into Nr − L non-intersecting
subspaces. We then find zk, such that for all selection matrices
belonging to the kth subset, the average output SNR, γTI-S, is
improved over the SNR for the previously considered k − 1
subspaces. This is successively done over all the Nr − L
subsets to obtain z1, . . . , zNr−L.

Let S be the set of all possible L×Nr selection matrices
that select L out of the Nr rows of MTI-SH. Then, S contains(
Nr

L

)
elements. For p = 0, . . . , Nr−L, define Sp as the set of

all permutation matrices that select the (L+ p)th row and any
(L−1) from the first (L+p−1) rows of MNrH. Clearly, Sp

is a subset of S . Furthermore, S0, . . . ,SNr−L cover S , i.e.,
S = S0

⋃ · · ·⋃SNr−L, where
⋃

denotes the union of sets.
S0 contains only one element S0 = [IL 0], which selects

the first L rows of MNrH. From Theorem 2, we get that if
S = S0, then M(0)

Nr
(the optimal pre-processing matrix when

S is restricted to S0) is

M(0)
Nr

= [µ1, . . . , µL, z1, . . . , zNr−L]†. (10)

Irrespective of the choice of zk’s, setting the first L rows of
MTI-S to be [µ1, . . . , µL]† ensures optimal performance if the
selection matrix is in S0. Now, if the selection matrix is S1 ∈
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S1, then Theorem 1 and the constraint zk ∈ N (UL) imply that
the average SNR is maximized when z1 = µL+1. Therefore,
M(1)

Nr
= [µ1, . . . , µL+1, z2, . . . , zNr−L]†. Fixing the first L

elements to be µi’s ensures that subsequent selections for
zi’s do not affect the performance of S0. Following a similar
procedure, we get z2 = µL+2, . . . , zNr−L = µNr

. Therefore,

MTI-S =
[
µ1, . . . , µNr

]†
. (11)

In effect, the successive refinement approach ensures that
the above solution achieves the following lower bound, which
is tighter than that in (8):

γmax
TI-S ≥

max

[
max

S∈S0,MNr

[γTI-S] , max
S∈S1, MNr given M

(0)
Nr

[γTI-S] , . . .

]
.

It can also be seen that the diversity order of TI-S is
NtNr. This can be reasoned as follows. The signal input
to the selection switch passes through an equivalent channel
MTI-SH, of size Nr × Nt. Moreover, MTI-S, T and R have
the highest possible ranks Nr, Nt, and Nr, respectively. Using
results for instantaneous channel-based selection [14], [18] or
by an approach similar to Lemma 1, it can be seen that MTI-S
achieves full diversity.2

IV. SPATIAL MULTIPLEXING: OPTIMAL TIME-INVARIANT
PRE-PROCESSING

For a spatial multiplexing system, in which multiple streams
are transmitted simultaneously, it is the information rate that is
the performance metric. As in the diversity case, we consider
the cases in which the pre-processor either outputs only L
streams or outputs Nr streams and is followed by a selection
switch that reduces the number of streams from Nr to L.
Given the very different nature of the spatial diversity and
spatial multiplexing systems, the analysis turns out to be very
different. However, we can again show that it is sufficient to
restrict the search space to semi-unitary or unitary matrices,
and then we derive their optimal forms.

A. Optimal Time-Invariant (TI) Pre-Processing Without Selec-
tion Switch

Let ML be an L × Nr pre-processing matrix as shown
in Fig. 2. The modified received vector, ỹ, after RF pre-
processing, becomes

ỹ =
√

ρ

Nt
MLHx + MLn.

The transmitter has no CSI and allocates the same power to
all the transmit antennas. It uses i. i. d. Gaussian signaling.3

2Note that the result can change if space-time coding is also used. With
space-time trellis codes, the diversity order depends on the underlying fading
channel model while the behavior of orthogonal space-time block codes is
different [41], [42].

3We do not use the Gaussian signaling derived in [43] for antenna selection
as the power allocation parameter α defined in it needs to be determined
numerically.

The receiver has perfect CSI. The information rate, CTI, for
such a system is given by

CTI = EH
[
log2

∣∣∣∣INt
+

ρ

Nt
H†M†

L(MLM†
L)−1MLH

∣∣∣∣
]

.

(12)
The following two Lemmas shall come in handy.

Lemma 3: Let Λ1 and Λ2 be diagonal matrices with non-
negative elements such that each element of Λ1 is less than
or equal to the corresponding element of Λ2. Then for any
arbitrary complex matrix A, we have

∣∣INt
+ AΛ2A†∣∣ ≥

∣∣INt
+ AΛ1A†∣∣ .

Proof: The proof is given in Appendix A-3.
Lemma 4: Let Q be an L × Nr semi-unitary matrix and

G be a full rank matrix. For a matrix A, let ei(A) denote the
ith largest eigenvalue of AA†. Then,

eNr−L+i(G) ≤ ei(QG) ≤ ei(G). (13)

Furthermore, ei(QG) = ei(G) if Q is the conjugate transpose
of the L eigenvectors of GG† that correspond to its L largest
eigenvalues.

Proof: The proof is given in Appendix A-4.
Using the above two Lemmas, we now show that it is suffi-

cient to only search over the space of semi-unitary matrices to
find the optimal pre-processing matrix, MTI, that maximizes
the average information rate and we then find it.

Theorem 3: To maximize the average information rate,
over a channel matrix of the form H = R

1
2 HwT

1
2 , the

optimal L × Nr time-invariant pre-processing matrix, MTI,
is of the form

MTI = BLQopt, (14)

where BL is any L×L full rank matrix, and Qopt is given by

Qopt = [r1, r2, . . . , rL]† ,

and rl is the singular vector of R corresponding to its lth

largest eigenvalue. The maximum information rate is then
given by

CTI = EH
[
log2

∣∣∣∣INt +
ρ

Nt
H†Q†

optQoptH
∣∣∣∣
]

. (15)

Proof: Any L × Nr matrix with rank L can be written
as ML = BLQ, where BL is any L×L matrix and Q is an
L×Nr semi-unitary matrix.4 Since QQ† = IL, the maximum
information rate expression in (12) can be written in terms of
Q as

CTI = max
Q

EH
[
log2

∣∣∣∣INt +
ρ

Nt
H†Q†QH

∣∣∣∣
]

. (16)

Note that BL is absent in the above equation. Recall that H =
R

1
2 HwT

1
2 . Let the product term QR

1
2 be denoted by the

matrix XL, and let its SVD be denoted by XL = UXΣXV†
X .

4A matrix ML with rank less than L is not considered as it is sub-optimal.
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The above information rate expression simplifies as follows:

CTI

= max
XL

EHw

[
log2

∣∣∣∣INt
+

ρ

Nt
T

1
2 H†

wX†
LXLHwT

1
2

∣∣∣∣
]

,

= max
UX ,ΣX

EHw

[
log2

∣∣∣∣INt
+

ρ

Nt
T

1
2 H†

wUXΣ2
XU†

XHwT
1
2

∣∣∣∣
]

,

= max
ΣX

EHw

[
log2

∣∣∣∣INt +
ρ

Nt
T

1
2 H†

wΣ2
XHwT

1
2

∣∣∣∣
]

, (17)

where (17) holds because the statistical properties of Hw are
not changed by multiplication with a unitary matrix. From
Lemma 3, it follows that (17) is maximized when each ele-
ment of the non-negative diagonal matrix ΣX is maximized.
Since the elements of Σ2

X correspond to the eigenvalues of
QRQ†, Lemma 4 implies that (17) is maximized when the
eigenvalues of QRQ† reach the maximum value of ei(R).
Thus the optimal Q is then the conjugate transpose of the L
eigenvectors corresponding to the L largest eigenvalues of R.

B. Time-Invariant Pre-Processing With Selection (TI-S)

We now consider the case in which the RF pre-processing
matrix outputs Nr streams and is followed by a selection
switch. Our aim is to derive the Nr ×Nr time-invariant pre-
processing matrix that maximizes the information rate after
pre-processing and selection. The maximization problem then
becomes

CTI-S = max
MNr

(
EH

[
max

S
log2 |INt+

ρ

Nt
H†M†

Nr
S†(SMNrM

†
Nr

S†)−1SMNrH
∣∣∣∣
])

.

The above problem is difficult to solve because of the
presence of S, which depends on the instantaneous channel
realization. However, as before, we can again show that it is
sufficient to restrict the search space to unitary matrices. We
then propose a solution that, at the very least, achieves the
following lower bound, which is obtained by interchanging
the order of expectation and max as follows:

CTI-S ≥ max
S

max
MNr

(EH [log2 |INt+

ρ

Nt
H†M†

Nr
S†(SMNrM

†
Nr

S†)−1SMNrH
∣∣∣∣
])

.

Following the successive refinement argument similar to
that in Sec. III-B, we can show that MTI-S can be expressed
in terms of L eigenvectors of R corresponding to its L
largest eigenvalues, with the remaining Nr −L vectors being
orthonormal to them. We get

MTI-S = [r1, . . . , rNr ]
†
. (18)

In general, MTI-S can be written as MTI-S =
DP [r1, . . . , rNr ]

†, where D is any Nr × Nr diagonal
matrix and P is any Nr × Nr permutation matrix. We
conjecture that this is the unique characterization of the
optimal solution.

V. IMPLEMENTATION AMENABLE FOR
PHASE-SHIFTER-BASED DESIGNS

The MTI and MTI-S matrices derived so far for spatial
diversity and spatial multiplexing systems consist of complex
elements with arbitrary amplitudes. We now look for solutions
in which MTI and MTI-S consist only of phase-shift elements,
which, as discussed before, are more practical. We shall also
allow for the use of on/off switches, which control the phase-
shifter output. It is known from studies in other contexts,
such as [44], that multiple local maxima can exist, making
an analytical determination of optimal phase-shifters difficult.
This motivates the use of the sub-optimal phase approximation
scheme that we consider below.

We first consider MTI, with the approach for MTI-S be-
ing very similar. Under the constraint of phase-only pre-
processing, we propose using the phase matrix ΦTI to replace
MTI, where ΦTI = [φ1, . . . , φNr

] such that for each i, the
column φi is closest in angle to mi, the ith column of MTI.
Thus, the received signals still add coherently to the extent
possible. Therefore, each element φji is given, in closed-form,
by

φji = ajie
j arg(mji), (19)

where the switch aji is 0 or 1 and mji denotes the (j, i)th

element of MTI. To maximize qi, which is the cosine of
the angle between φi and mi, we need to determine aji,
1 ≤ j ≤ L, for each column i. In general, this requires O(2L)
computations. The following sub-optimal algorithm requires
only O(L log(L)) computations:
• Sort the entries of mi in the descending order

of absolute values to get {m[1]i, . . . , m[L]i}, where
|m[1]i| ≥ |m[2]i| ≥ · · · ≥ |m[L]i|. Let [k] denote the index
of the kth largest entry.

• Define qil = φ†i mi

‖φi‖ , such that φi has exactly l non-
zero entries at the positions j = [1], . . . , [l]. Thus, qil =Pl

k=1 |m[k]i|√
l

, 1 ≤ l ≤ L. Select lmax(i) such that qilmax(i)

is maximum.5

• Then, aji =
{

1, if j = [1], . . . , [lmax(i)]
0, otherwise .

The proposed algorithm outperforms the one in [28].
It must be noted that in practice, using RF elements in-

troduces several non-idealities such as insertion loss, phase
quantization and errors, calibration errors, etc., which can have
a detrimental effect on the overall system performance. Their
impact on RF pre-processing was investigated in [34], which
showed that it is very robust to phase non-idealities. For high
insertion losses, low noise amplifiers may need to be placed
before the selection switch, which can increase the overall cost
of the system.

VI. SIMULATION RESULTS

A thorough performance evaluation and comparison of
the proposed receiver designs with those in the literature is
performed in this section. For the spatial diversity and spa-
tial multiplexing systems, the time-invariant solution without

5It might appear that a threshold K exists such that qi1 ≤ qi2 ≤ · · · ≤
qi(K−1) ≤ qiK ≥ qi(K+1) is a sufficient condition for qiK to be maximum.
However, counter examples exist.
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TABLE I
AVERAGE OUTPUT SNR (IN DB) COMPARISON

FC TI-S TI FFT-Sel. Ant. Sel.

θr = 45◦, σr = 6◦ 15.8 15.8 15.8 13.6 10.8

θr = 60◦, σr = 6◦ 15.8 15.8 15.8 15.8 10.8

θr = 60◦, σr = 15◦ 14.8 14.2 14.1 14.1 11.4

selection (TI) and the time-invariant solution with selection
(TI-S) are compared with conventional antenna selection (Ant-
Sel), FFT-selection (FFT-Sel), and a full complexity (FC)
receiver (which has Nr RF chains at its disposal). The
performance of the phase-only approximation solution, TI-Ph,
is also investigated. Another reference case is instantaneous
time-variant (TV) processing, in which the matrix is adjusted
perfectly to the instantaneous channel state [28].

We evaluate both the single-cluster and multi-cluster chan-
nel models. For the multi-cluster scenario, we shall assume
that the multipaths from the multiple clusters arrive at the same
time, i.e., there is no time resolvability. The time-dispersive
case is beyond the scope of this paper. We consider an equi-
powered two-cluster channel, where each cluster follows the
Kronecker channel model: H1 = R

1
2
1 Hw1T

1
2 and H2 =

R
1
2
2 Hw2T

1
2 . It can be shown that the effective channel, Heq,

also follows the Kronecker model, albeit with a different
covariance matrix. The effective channel is Heq = R

1
2
eqHwT

1
2 ,

where Req = R1 + R2. While the Kronecker model holds,
the spatial correlation is quite different.

The results are evaluated for uniform linear arrays with
isotropic transmit and receive antenna elements. Given that
transmit correlation does not affect the optimum RF pre-
processing at the receiver, we set T = INt . The receive
antenna elements are spaced half a wavelength apart. All
receivers, except FC, use L < Nr RF chains. The angular
dispersion at the receiver is Gaussian distributed with mean
θr and standard deviation (angle spread) σr. The broadside of
the antenna array corresponds to θr = 0◦.

To study the performance comprehensively, we plot the
average BER vs. SNR curves for spatial diversity and the aver-
age information rate vs. SNR curves for spatial multiplexing.
In addition, we also plot the cumulative distribution function
(CDF) of the SNR (for spatial diversity) and information rate
(for spatial multiplexing). The CDF is of interest because
it provides a complete characterization of the probability
distribution, as opposed to looking at only the average. For
example, the outage probability can be easily inferred from
the CDF [45, Chp. 5].

A. Single Cluster Scenario: Spatial Diversity

For the spatial diversity system, the average bit error rate
(BER) for BPSK as a function of the input SNR, ρ, is shown in
Fig. 4 for mean θr = 45◦ and an angular spread of σr = 15◦.
The number of antenna elements is set as Nt = Nr = 4 with
L = 1. In Fig. 4, we observe that, at a BER of 10−3 with
one RF chain, TI yields up to a 1.5 dB gain over conventional
antenna selection. Recall that TI does not require a selection
switch. TI-S is within 1 dB of FC. As expected, the slope of
the TI curve is smaller than that of TI-S and antenna selection.

−1 0 1 2 3 4 5 6 7
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

SNR (dB)

B
E

R

Ant. Sel. ( σ
r
 = 15

0
)

Ant. Sel. ( σ
r
 = 6

0
)

TI ( σ
r
 = 15

0
)

TI ( σ
r
 = 6

0
)

TI−S ( σ
r
 = 15

0
)

TI−S ( σ
r
 = 6

0
)

Ant. Sel.

TI

TI−S

Fig. 4. Single cluster: Average BER vs. SNR for spatial diversity system
with Nt = 4, Nr = 4, L = 1, θr = 45◦, and different angle spreads, σr .

However, note that at the SNRs considered, it still outperforms
antenna selection. The performance of the sub-optimal phase-
only approximation TI-Ph, described in Section V, is within
0.01 dB of ideal TI in this case, and is not shown. Similar
observations also hold for the phase-only approximation to
TI-S. Therefore, we no longer comment on the efficacy of
the phase-only approximation. The average output SNRs of
FC, TI-S, TI, and antenna selection receivers are compared
in Table I for different AoAs and angle spreads. It can be
seen that TI and TI-S deliver the same performance as FC
for σr = 6◦. Compared to them, FFT-Sel incurs a penalty of
2.2 dB, while antenna selection incurs a penalty of 5.0 dB. For
σr = 15◦ (lower spatial correlation), TI-S is 0.6 dB below FC,
while antenna selection is 3.4 dB worse.

The CDF of the output SNR after combining is plotted in
Fig. 5 for different angle spreads for θr = 60◦. Interestingly,
as the correlation increases, the CDF for FC shifts to the right
(increases) and its slope decreases, while that for conventional
antenna selection shifts to the left (decreases). This is because
the largest eigenvalue increases as the correlation increases,
and spatial diversity tracks only this eigenvalue [46]. Figure 5
also shows that TI and TI-S can extract the additional beam-
forming gains as correlation increases. In the extreme case of
a completely uncorrelated channel, TI (but not TI-S) may be
worse than conventional antenna selection because of its lower
diversity order.

B. Single Cluster Scenario: Spatial Multiplexing

Figure 6 compares the average information rates for σr =
6◦ and θr = 45◦. Unlike diversity, any antenna selection
scheme with L < Nr RF chains results in a rate loss because
it reduces the number of available spatial dimensions. We
observe that for L = 1, TI, TI-S and TV achieve a 1 bits/s/Hz
gain over conventional antenna selection. FFT-Sel performs
0.5 bits/s/Hz worse than TI since the mean AoA falls on a
minimum of the FFT beam-pattern. With L = 2, the receivers
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Fig. 5. Single cluster: Effect of angle spread, σr , on output SNR for diversity
system with Nt = 4, Nr = 4, L = 1, θr = 60◦, and input SNR ρ = 10 dB.
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employing pre-processing achieve performance parity with
FC, while antenna selection is 1 bits/s/Hz less than FC. Note
that while FFT-Sel performs worse than TI for L = 1, it
surprisingly achieves the same performance as TI for L = 2.

The CDF of the information rate for various designs for
Nt = 2 and Nr = 4 for different angle spreads is shown in
Fig. 7. As σr increases, the performance of antenna selection
improves, while that of TI, TI-S and FFT-Sel degrades. In the
extreme case of a completely uncorrelated channel, antenna
selection, FFT-Sel and TI-S will have the same performance,
while TI will be slightly worse. This is because the efficacy of
the statistics-based solutions reduces as the channel correlated
reduces. Note that the information rate of FC decreases as σr

decreases [22]. This is in contrast to spatial diversity, where
reducing σr improves the output SNR.
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Fig. 7. Single cluster: Effect of angle spread, σr , on CDF of capacity for
spatial multiplexing system with Nt = 2, Nr = 4, L = 1, θr = 45◦, and
input SNR ρ = 10 dB.

C. Multi-Cluster Scenario

For two clusters with mean AoAs of θr1 = 45◦ and θr2 =
75◦, a common angle spread of σr = 6◦, and Nt = Nr = 4,
the main beam in the beam-pattern of TI for spatial diversity
points at 60◦, and not at either of the mean AoAs of the two
clusters. Additional investigations, results for which are not
included due to space constraints, show that the beam-pattern
also adapts to the angle spread and the ratio of powers of the
two clusters. TI and TI-S still outperform antenna selection by
1 dB and 2 dB, respectively, when L = 1. It was observed that
the accuracy of phase approximation is marginally worse in
this case because of greater amplitude variations in the optimal
RF pre-processing matrix elements.

The CDF of the average information rate for a spatial
multiplexing system with a two cluster wireless channel with
Nt = 2, Nr = 4, and L = 2 is plotted in Fig. 8. The
mean AoAs are 45◦ and 75◦, and the angle spread of each
cluster is 6◦. We see that both TI and TI-S outperform
conventional antenna selection by 1.5 bits/s/Hz and FFT-Sel
by 0.5 bits/s/Hz.

VII. CONCLUSIONS

In this paper, two novel joint RF-baseband pre-processing
designs were proposed for receivers of spatial diversity and
spatial multiplexing systems and optimized. The designs ex-
ploit spatial correlation to recover the beamforming gain that
is lost by conventional antenna selection techniques. They
have the potential to reduce the hardware complexity and
the signal processing power required by MIMO systems. The
first design (TI) reduces the number of output streams to the
number of RF chains, and thus eliminates the selection switch.
The second design (TI-S) is more sophisticated as the pre-
processing matrix outputs the same number of streams input
to it and is followed by a selection switch. At the expense of
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Fig. 8. Multi-cluster: CDF of information rate for spatial multiplexing system
with Nt = 2, Nr = 4, and input SNR ρ = 10 dB for two clusters with
θr1 = 45◦, θr2 = 75◦, and σr = 6◦.

additional computations, this design always outperforms TI.
Analogous algorithms hold for the transmitter as well. The
transmitter-side implementation consists of up-conversion of
L streams, a multiplexing switch (if necessary) that routes
the L streams to Nt outputs, followed by RF post-processing
that outputs to Nt transmit antennas. The transmitter-side
implementation differs in one important manner: depending
on the spatial correlation, the transmitter, unlike the receiver,
can improve performance by using fewer transmit antennas.

A sub-optimal phase-only approximation was also proposed
to address the practical design constraints imposed by to-
day’s RF integrated circuit technology. The proposed solutions
outperformed conventional antenna selection and FFT Butler
matrix pre-processing, which cannot adapt to the variations in
the mean angle of arrival. However, the slope of the uncoded
BER curve for TI is smaller at finite SNRs as it does not use
a selection switch. For high SNR, TI-S is therefore preferable.

APPENDIX

Appendix A-1: Proof of Theorem 1

We first state a result from [47] which will come in handy
in the proof.

Lemma 5: For any L × Nr semi-unitary matrix Z
and a positive semi-definite matrix A with eigenvalues
λ1, λ2, . . . , λNr , the following inequality holds:∑N

k=L+1 λk ≤ Tr
{
ZAZ†

} ≤ ∑L
k=1 λk. Furthermore,

the upper bound is achieved if and only if the columns of Z†

are the eigenvectors associated with the L largest eigenvalues
of A.

The constraint WMLM†
LW† = IL is equivalent to saying

that Z = WML is semi-unitary. For MRT (v = v1), the SNR
at the receiver output is given by

γTI =
ρ

Nt
‖λ1w†Zu1‖2 ≤ ρ

Nt
λ2

1‖Zu1‖2. (20)

The above inequality follows from the Cauchy-Schwartz in-
equality; equality is achieved if and only if w = αZu1, for
some scalar α. Therefore,

γTI =
ρ

Nt
EH

(
λ2

1u
†
1Z

†Zu1

)
, (21)

=
ρ

Nt
Tr

{
Z

(
EH

(
λ2

1u1u
†
1

))
Z†

}
, (22)

=
ρ

Nt
Tr

{
ZEu1u1Z

†} . (23)

Eqn. (22) follows from (21) because ‖c‖2 = Tr
{
cc†

}
, for any

column vector c. From Lemma 5, it follows that the optimal
Z, denoted by Zopt, is obtained by choosing the L largest
eigenvectors of Eu1u1 , i.e., Zopt = [µ1, . . . , µL]†. Therefore,
the optimal ML takes the form ML = W−1Zopt, where W−1

is an arbitrary L× L full rank matrix.
We also get from the above proof that the optimal wTI is

given by wTI = Zoptu1

‖Zoptu1‖ .

Appendix A-2: Proof of Lemma 1

The SNR at the output of the pre-processor, ML, is
given by λ2

1(MLH), where λ2
1(MLH) is the largest singular

value of MLHH†M†
L. It satisfies the following inequality:

1
min(Nt,L)‖MLH‖2F ≤ λ2

1(MLH) ≤ ‖MLH‖2F , where ‖.‖F

denotes the Frobenius norm. Therefore, the diversity order is
the same as that of a system with SNR ‖MLH‖2F [14].

The diversity order is related to the moment generating
function (MGF), M(s), of the SNR as follows [48]: If
lims→∞M(s) = b|s|−d + O

(|s|−d
)
, then the diversity order

is d. It turns out that the MGF of ‖MLH‖2F for a correlated
channel can be calculated exactly using [49] for our case, in
which ML, T, and R have ranks L, Nt, and Nr, respectively,
and ‖MLH‖2F is the sum of LNt complex Gaussian RVs.
From [49], it can be shown that as s →∞ we have M(s) =
b|s|−NtL, where b is a constant. Hence, the result.

Appendix A-3: Proof of Lemma 3

Let Λ1 = diag(λ11, . . . , λ1Nr ) and Λα = diag(λ11 +
α, λ12, . . . , λ1Nr ), where α is a positive constant. We first
show that |INt + AΛαA†| increases monotonically with α.
Define Σ1 = diag(1, 0, . . . , 0), and D1(α) = INt + AΛαA†.
Using the formula for derivative of the determinant, we can
show that

d|D1(α)|
dα

= |D1(α)|Tr
{
D−1

1 (α)
dD1(α)

dα

}
,

= |D1(α)|Tr
{
D−1

1 (α)a1a
†
1

}
,

= |D1(α)|
(
a†1D

−1
1 (α)a1

)
, (24)

where a1 is the first column of A. Since D1(α) is positive-
definite, d|D1(α)|

dα > 0. Thus, |D1(α)| increases with α.
Similarly, we can show that

∣∣INt + AΛA†∣∣ increases as each
element of the diagonal matrix Λ increases.

Appendix A-4: Proof of Lemma 4

The proof for the right-hand inequality is given in [50,
Lemma 3.3.1]. It can be verified by direct substitution that
if Q is the conjugate transpose of the L eigenvectors of G
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corresponding to its L largest eigenvalues, then equality is
achieved.

To prove the lower bound on ei(QG), let the SVD of
QG be QG = UQGΣQGV†

QG and the SVD of G be
G = UGΣGV†

G. Then QQ† = IL leads to

ΣQGV†
QGVGΣ−2

G V†
GVQGΣ†

QG = IL,

⇒ (V†
GVQG)(L)Σ(L)−2

QG (V†
GVQG)(L)† = Σ(L)

G

−2
, (25)

where (.)(L) denotes the first L rows of a matrix. Notice that
the matrix V

′
= (V†

GVQG)(L) is unitary. Applying the right

side of the inequality in (13) on V
′
Σ(L)

QG

−2
V
′†

, we get the
lower bound on ei(QG).
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