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Abstract

We present a novel, integral image based algorithm to compute feature covariance matrices
within all arbitrary size rectangular regions in an image. This technique significantly improves
the computational load of covariance matrix extraction process by taking advantage of the spatial
arrangement of points. Covariance is an essential measure of how much the deviation of two or
more variables or processes match. In our case, these variables correspond to point features such
as coordinate, color, gradient, orientation, and filter responses. Integral images are intermediate
image representations used for calculation of region sums. Each point of the integral image is a
summation of all the points inside the rectangle bounded by the upper left corner of the image
and the point of interest. Using this representation, any rectangular region sum can be computed
in constant time. We follow a similar idea for fast calculation of region covariance. We construct
integral images for all separate features as well as integral images of the multiplication of any
two feature combinations. Using these set of integral images and region corner point coordinates,
we directly extract the covariance matrix coefficients. We show that the proposed integral image
based method decreases the computational load to quadratic time.
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ABSTRACT G) G)

We present a novel, integral image based algorithm to
compute feature covariance matrices within all arbitrary size
rectangular regions in an image. This technique significantly
improves the computational load of covariance matrix extrac-
tion process by taking advantage of the spatial arrangement of .
points. Covariance is an essential measure of how much the
deviation of two or more variables or processes match. In our.

case, these variables correspond to point features such as Ed,g- 1‘. D|str|but|9n of multivariate n ormal ersn!est.eft:
Covariance matrix for two featurgii) and f(5) is diagonal,

ordinate, color, gradient, orientation, and filter responses. In="". himplies that feat q . dthe off-di |
tegral images are intermediate image representations used Ich impfhies that leatures do not covary and the ofi-diagona
ements of the matrix are zero, but featyifg) varies more

calculation of region sums. Each point of the integral imagee ) o . - .
is a summation of all the points inside the rectangle boundeﬂr‘an featuref (). Right: Covariance matrix is not diago-

by the upper left corner of the image and the point of intereslr.]al' Instead (i) and f(i) have the same variancg(i) and

Using this representation, any rectangular region sum can t;[f J )htentho |tr_10r?3_se togelzthler. Ast: a rest:rl]t, c?fvg_r 'ance Im?-
computed in constant time. We follow a similar idea for fast™ « "ave ldentical diagonal elements, and the ofi-dlagonal el-

calculation of region covariance. We construct integral im.ement would be positive.

ages for all separate features as well as integral images of the

multiplication of any two feature combinations. Using theseyiag represent the variance of each feature and the nondiag-
set of integral images and region corner point coordinates, Wg 5| entries represent the scaled correlations. The noise cor-
directly extract the covariance matrix coefficients. We Sho"‘fupting individual samples are largely filtered out due to the

that the proposed integral image based method decreases Wgistical averaging during covariance computation, thus, the

computational load to quadratic time. covariance matrix values are less sensitive against such uni-
formly distributed noise.
1. INTRODUCTION In spite of its distinct advantages, computation of the co-
variance matrices for all possible rectangular regions within a
Covariance is a statistical measure of the extent to which twgiven image is computationally prohibitive using the conven-
random features vary together. Covariance can be a negatit@mnal approaches where the covariance matrix coefficients
positive or zero number, depending on what is the relation beare extracted using the brute force computation of the mean
tween two feature]. If the features increase together, the co-values and covariances of the features separately for each re-
variance is positive, one feature increases and other decreasgi®n as given in the Alg??. Several applications such as de-
the covariance is negative, and if the two features are indepetection and segmentation require computation and compari-
dent, the covariance is zero. This is illustrated in Fg. son of covariance matrices of regions. However, conventional
There are several advantages of using the covariance mapproach disregards the fact that there exists a high number
trices as region descriptors. A single covariance matrix exef overlaps between those regions and the statistical moments
tracted from a region is usually enough to match the region iextracted for such overlapping areas can be used to improve
different views and poses. It is possible to discriminate a disthe computational load.
tribution from other distributions when they do not vary only ~ Here, we propose a computationally superior method of
with their mean. extracting the covariance matrices of all possible rectangular
The covariance matrix provides a natural way of fusingimage regions. This method is based on integral image for-
multiple features which might be correlated. Its diagonal enmulation.

f@) f@®



In the next sections, we introduce the region covariance
and discuss the integral image based covariance matrix ex-
traction formulation in detail. Then, we give a computational
complexity analysis by considering different scenarios.

Algorithm 1.1: CONVENTIONAL (Features) F(z,y) =l y Ipz,y) Ia(z,y) Ip(z,y) Oul(z,y) 8yl(z,y)]

|

for each possible image point
for each feature i
for each window point

do do {Accumulate mean
Normalize mean
for each feature i

Fig. 2. Corresponding covariance matrices for sample im-

: ) ages.
d {for each window point
do do {Compute mean distance
for each featurei=1tod ¢ [f featurei tends to decrease when featyrimcreases,
for each feature j =itod thenCg(i,7) <0

for each window point
do do do {Multzply mean distances

Accumulate covariance e |Cr(i,5)| < o(i)o(j), whereo is the standard devia-
Normalize covariance tion

e If featurei and featurg are independen&r(i,5) = 0

The covariance matrices are low-dimensional compared
to other region descriptors. Due to symmetry it has only
2. COVARIANCE AS A REGION DESCRIPTOR (d*+d)/2 different values. Whereas if we represent the same
region with raw values we neetx d dimensions, and if we
Let F' be thelV x H x d dimensional feature array extracted yse joint feature histograms we ndgddimensions, wheré

from anWW x H imagel is the number of histogram bins used for each feature.
Given a regionR, its covarianceCg does not have any
F(z,y) E o(l,z,y) (1) information regarding the ordering and the number of points.

. . - . : This implies a certain scale and rotation invariance over the
where the functior assigns array indices y to d-dimensional . L . e .
Jggions in different images. Nevertheless, if information re-

feature vectors that are constructed by any combination . . : :
point-wise modalities such as intensity, color, infra-red multi-gardlng the orientation of the points are represented, such as

spectral values as well as features such as gradients, filter the norm of gradient with respect toandy, the covariance

re- - . . . ’
. .gescrlptor is no longer rotationally invariant. The same ar-
sponses, texture scores, etc. For a given rectangular region

RCF,let{f,) be thed-dimensional feature points in- gument is also correct for scale and illumination. Rotation
Side R ,andnkiskaleﬂlflumber of points within that repgion We and illumination dependent statistics are important for recog-

represent the regioR with thed x d covariance matrix of the hition/classification purposes.
feature points
3. INTEGRAL IMAGES FOR FAST COVARIANCE
1 n CALCULATION
D (= p)(f— )" 2)
k=1 It is possible to calculate the sum of the values within rect-
where i is the mean of the points. As shown, the diago_angular windows in linear time without repeating the summa-
nal elements represent the variance for different features wiPn Operator for each possible window as shown by Craiw [
measure. For example, thi# diagonal element represents Veksler [, and Porikli [7]. A constant number of operation
the variance for the? feature we measure. The off-diagonal for each rectangular sum is needed to compute such sums over
elements represent the covariance between two different fediStinct rectangles many times. A cumulative image function
tures. Covariance matrices for sample images using a set of' ¥ défined such that each element of this function holds the

features are depicted in FRp. Covariance matrix has several SUm of all values to the left and above of the pixel includ-
important properties: ing the value of the pixel itself. The cumulative image can

be computed for all pixels with four arithmetic operations per
o If featurei and featurg tend to increase together, then pixel. We start in the top left corner, keep going first to the
Cr(i,j) >0 right and then down, and use the formula that the value of

C =
R n—1



(6,0) W x H x d tensor of the integral images along each feature
dimension, i.e.,

(xy) (y) Py i)=Y F(z,yi) )

r<a’ y<y’

RX!’yJ’XU’yJJ
and@ be thelV x H x d x d tensor of the second order integral
o y) o y) images, i.e.,

Q(JC/?y/?i’j) = Z F(£7y7 Z)F('r’ y’j) (5)

<z’ y<y’

(w.h)

In [?], itis shown that integral images can be computed in one
pass over the image. In our notatipp , is thed dimensional
vector andQ,, ,, is thed x d dimensional matrix

Fig. 3. Integral Image. The rectangl(«’, y’; ", y") is de-
fined by its upper leftz’, ) and lower rightz”, 4"") corners
in the image and each point islalimensional vector fog .

o . _ Pry = [P(z,y,1)...P(z,y,d)]"
the cumulative image at the current pixel equal to the addi-
tion of the left and the up pixel and subtraction of the upper Qz,y,1,1) ... Qz,y,1,d)
left pixel's cumulative values. After the cumulative image  Qu, = : . (6)
is computed, the sum of image function in a rectangle can be Qz,y,d, 1) ... Q(z,y,d,d)

computed with another four arithmetic operations with appro-
priate modifications at the border. Thus with a linear amount ) _ )
of computation, the sum of image function over any rectangldote thatQ, , is a symmetric matrix and + (d* + d)/2
can be computed in linear time. passes over the image are enqugh to comque Bovmq
Integral images are intermediate image representation§: 1€ con1_puta2t|onal complexity of constructing the inte-
Later, this idea was extended to fast calculation of region hisdral images i) (d*W H).
tograms Porikli f]. Here we follow a similar idea for fast LetR(z',y’;z”,y") be the rectangular region, wheté, y')
calculation of region covariances. Still, the idea presenteds the upper left coordinate arid”, ) is the lower right co-
here is more general than the image sums, which were abrdinate, as shown in FiguR®. The covariance of the region
ready published before, and with a series of integral imagelsounded by(1, 1) and(z”,y") is
the covariances are obtained by a few arithmetic operations.
We can rewrite théi, j)-th element of the covariance ma- 1 1
trix defined in ()’)) as CR(Ll;:v”,y”) = m |:Q:c”,y” — pr//7y//p£/7y// (7)
1 n
n_1 > (feli) = p(@) (fr(i) — u(9). @) wheren = 2" x y". Similarly, after a few manipulations, the
=1 covariance of the regioR(x', y'; 2", ") can be computed as

Expanding the mean and rearranging the terms we can write

CR(iv ]) =

1
. 1 = ) . 1 & e . Cr ywry) = [Qx”,y” + Qur 8)
Crli,§) = — D> @ () = = D fuli) Y fuld) n—1
n—1 n . .
k=1 k=1 k=1 Qz”,y’ Qm’,y”
1
To find the covariance in a given rectangular regibwe have n (pzw,yu + Pa/y’ — Paty — pz”,y’)
to compute the sum of each feature dimensfdf);—,. ,, as .
well as the sum of the multiplication of any two feature di- (Pa 7 + Pary — Pary — Parry')

mensionsf (i) f ()i j=1..n. It is possible to compute these

sums with a few arithmetic operations using a series of inte-

gral images. wheren = (2" —2') x (y' —y’). Therefore, after constructing
We construct integral images for each feature dimensiommtegral images the covariance of any rectangular region can

f(i) and multiplication of any two feature dimensiofig) f(;j). be computed i) (d?) time. We give the integral image based

As a result we construet+ d? integral images. LeP be the  covariance computation in Al§:?.



Algorithm 3.1: INTEGRAL(F'eatures)

for each possible image point
for each featurei=1tod

do {Accumulate integral f(i)
for each featurei=1tod

do for each feature j =itod
do {Accumulate integral f(i)f(j)
for each possible image point

for each feature i
o {Get integral values at window corners

Compute covariance

do

do

4. DISCUSSION

To make an accurate analysis of the computational improve-
ment, we implemented both the conventional and the inte-
gral image based methods in Matlab. F2@.shows the CPU
times for the extraction of all regions covariance matrices for
different image sizes and different region sizes using a fixed
(7) number of features. As visible, the proposed method ac-
celerates the extraction process almost 50-to-500 times de-
pending on the image and region size. For instance, the pro-
posed method can extract all the covariance matrices in only
15 seconds for9 x 49 target regions. On the other hand,
the conventional approach requires around 900 seconds (15
minutes!) for the same task. The reason the proposed method
becomes slightly faster for the larger region sizes is that the
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number of possible regions in the image decreases with theig. 4. Computation times of covariance extraction for fixed

increasing region size.

We also analyzed the effect of the number of features
on the computational improvement. The results are given in
Fig. ??. We observed that the proposed method quadratically
faster than the conventional method with the increasing num-
ber of features.

In summary, we presented a novel and computationally
very fast method to compute the covariance matrices of all
possible regions in an image. Our intensive simulations prove
that the integral image based method can expedite the search
process more than hundreds of times in comparison to the
existing conventional approaches. In addition, it enables con-
struction of advanced covariance features for further feature
detection and classification purposes.
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