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Abstract

We present a novel, integral image based algorithm to compute feature covariance matrices
within all arbitrary size rectangular regions in an image. This technique significantly improves
the computational load of covariance matrix extraction process by taking advantage of the spatial
arrangement of points. Covariance is an essential measure of how much the deviation of two or
more variables or processes match. In our case, these variables correspond to point features such
as coordinate, color, gradient, orientation, and filter responses. Integral images are intermediate
image representations used for calculation of region sums. Each point of the integral image is a
summation of all the points inside the rectangle bounded by the upper left corner of the image
and the point of interest. Using this representation, any rectangular region sum can be computed
in constant time. We follow a similar idea for fast calculation of region covariance. We construct
integral images for all separate features as well as integral images of the multiplication of any
two feature combinations. Using these set of integral images and region corner point coordinates,
we directly extract the covariance matrix coefficients. We show that the proposed integral image
based method decreases the computational load to quadratic time.
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ABSTRACT

We present a novel, integral image based algorithm to
compute feature covariance matrices within all arbitrary size
rectangular regions in an image. This technique significantly
improves the computational load of covariance matrix extrac-
tion process by taking advantage of the spatial arrangement of
points. Covariance is an essential measure of how much the
deviation of two or more variables or processes match. In our
case, these variables correspond to point features such as co-
ordinate, color, gradient, orientation, and filter responses. In-
tegral images are intermediate image representations used for
calculation of region sums. Each point of the integral image
is a summation of all the points inside the rectangle bounded
by the upper left corner of the image and the point of interest.
Using this representation, any rectangular region sum can be
computed in constant time. We follow a similar idea for fast
calculation of region covariance. We construct integral im-
ages for all separate features as well as integral images of the
multiplication of any two feature combinations. Using these
set of integral images and region corner point coordinates, we
directly extract the covariance matrix coefficients. We show
that the proposed integral image based method decreases the
computational load to quadratic time.

1. INTRODUCTION

Covariance is a statistical measure of the extent to which two
random features vary together. Covariance can be a negative,
positive or zero number, depending on what is the relation be-
tween two feature [?]. If the features increase together, the co-
variance is positive, one feature increases and other decreases,
the covariance is negative, and if the two features are indepen-
dent, the covariance is zero. This is illustrated in Fig.??.

There are several advantages of using the covariance ma-
trices as region descriptors. A single covariance matrix ex-
tracted from a region is usually enough to match the region in
different views and poses. It is possible to discriminate a dis-
tribution from other distributions when they do not vary only
with their mean.

The covariance matrix provides a natural way of fusing
multiple features which might be correlated. Its diagonal en-

Fig. 1. Distribution of multivariate normal densities.Left:
Covariance matrix for two featuresf(i) andf(j) is diagonal,
which implies that features do not covary and the off-diagonal
elements of the matrix are zero, but featuref(j) varies more
than featuref(i). Right: Covariance matrix is not diago-
nal. Instead,f(i) andf(i) have the same variance;f(i) and
f(j) tend to increase together. As a result, covariance ma-
trix have identical diagonal elements, and the off-diagonal el-
ement would be positive.

tries represent the variance of each feature and the nondiag-
onal entries represent the scaled correlations. The noise cor-
rupting individual samples are largely filtered out due to the
statistical averaging during covariance computation, thus, the
covariance matrix values are less sensitive against such uni-
formly distributed noise.

In spite of its distinct advantages, computation of the co-
variance matrices for all possible rectangular regions within a
given image is computationally prohibitive using the conven-
tional approaches where the covariance matrix coefficients
are extracted using the brute force computation of the mean
values and covariances of the features separately for each re-
gion as given in the Alg.??. Several applications such as de-
tection and segmentation require computation and compari-
son of covariance matrices of regions. However, conventional
approach disregards the fact that there exists a high number
of overlaps between those regions and the statistical moments
extracted for such overlapping areas can be used to improve
the computational load.

Here, we propose a computationally superior method of
extracting the covariance matrices of all possible rectangular
image regions. This method is based on integral image for-
mulation.



In the next sections, we introduce the region covariance
and discuss the integral image based covariance matrix ex-
traction formulation in detail. Then, we give a computational
complexity analysis by considering different scenarios.

Algorithm 1.1: CONVENTIONAL(Features)

for each possible image point

do



for each feature i

do

for each window point
do

{
Accumulate mean

Normalize mean
for each feature i

do
{

for each window point
do

{
Compute mean distance

for each feature i = 1 to d

do


for each feature j = i to d

do


for each window point

do
{

Multiply mean distances
Accumulate covariance

Normalize covariance

2. COVARIANCE AS A REGION DESCRIPTOR

Let F be theW ×H × d dimensional feature array extracted
from anW ×H imageI

F (x, y) |= φ(I, x, y) (1)

where the functionφ assigns array indicesx, y tod-dimensional
feature vectors that are constructed by any combination of
point-wise modalities such as intensity, color, infra-red, multi-
spectral values as well as features such as gradients, filter re-
sponses, texture scores, etc. For a given rectangular region
R ⊂ F , let{fk}k=1..n be thed-dimensional feature points in-
sideR, andn is the number of points within that region. We
represent the regionR with thed×d covariance matrix of the
feature points

CR =
1

n− 1

n∑
k=1

(fk − µ)(fk − µ)T (2)

whereµ is the mean of the points. As shown, the diago-
nal elements represent the variance for different features we
measure. For example, theith diagonal element represents
the variance for theith feature we measure. The off-diagonal
elements represent the covariance between two different fea-
tures. Covariance matrices for sample images using a set of 7
features are depicted in Fig??. Covariance matrix has several
important properties:

• If featurei and featurej tend to increase together, then
CR(i, j) > 0

Fig. 2. Corresponding covariance matrices for sample im-
ages.

• If featurei tends to decrease when featurej increases,
thenCR(i, j) < 0

• If featurei and featurej are independent,CR(i, j) = 0

• |CR(i, j)| ≤ σ(i)σ(j), whereσ is the standard devia-
tion

The covariance matrices are low-dimensional compared
to other region descriptors. Due to symmetry it has only
(d2+d)/2 different values. Whereas if we represent the same
region with raw values we needn × d dimensions, and if we
use joint feature histograms we needbd dimensions, whereb
is the number of histogram bins used for each feature.

Given a regionR, its covarianceCR does not have any
information regarding the ordering and the number of points.
This implies a certain scale and rotation invariance over the
regions in different images. Nevertheless, if information re-
garding the orientation of the points are represented, such as
the norm of gradient with respect tox andy, the covariance
descriptor is no longer rotationally invariant. The same ar-
gument is also correct for scale and illumination. Rotation
and illumination dependent statistics are important for recog-
nition/classification purposes.

3. INTEGRAL IMAGES FOR FAST COVARIANCE
CALCULATION

It is possible to calculate the sum of the values within rect-
angular windows in linear time without repeating the summa-
tion operator for each possible window as shown by Crow [?],
Veksler [?], and Porikli [?]. A constant number of operation
for each rectangular sum is needed to compute such sums over
distinct rectangles many times. A cumulative image function
is defined such that each element of this function holds the
sum of all values to the left and above of the pixel includ-
ing the value of the pixel itself. The cumulative image can
be computed for all pixels with four arithmetic operations per
pixel. We start in the top left corner, keep going first to the
right and then down, and use the formula that the value of



Fig. 3. Integral Image. The rectangleR(x′, y′;x′′, y′′) is de-
fined by its upper left(x′, y′) and lower right(x′′, y′′) corners
in the image and each point is ad dimensional vector forq .

the cumulative image at the current pixel equal to the addi-
tion of the left and the up pixel and subtraction of the upper
left pixel’s cumulative values. After the cumulative image
is computed, the sum of image function in a rectangle can be
computed with another four arithmetic operations with appro-
priate modifications at the border. Thus with a linear amount
of computation, the sum of image function over any rectangle
can be computed in linear time.

Integral images are intermediate image representations.
Later, this idea was extended to fast calculation of region his-
tograms Porikli [?]. Here we follow a similar idea for fast
calculation of region covariances. Still, the idea presented
here is more general than the image sums, which were al-
ready published before, and with a series of integral images
the covariances are obtained by a few arithmetic operations.

We can rewrite the(i, j)-th element of the covariance ma-
trix defined in (??) as

CR(i, j) =
1

n− 1

n∑
k=1

(fk(i)− µ(i))(fk(j)− µ(j)). (3)

Expanding the mean and rearranging the terms we can write

CR(i, j) =
1

n− 1

[
n∑

k=1

fk(i)fk(j)− 1
n

n∑
k=1

fk(i)
n∑

k=1

fk(j)

]
.

To find the covariance in a given rectangular regionR we have
to compute the sum of each feature dimensionf(i)i=1..n as
well as the sum of the multiplication of any two feature di-
mensionsf(i)f(j)i,j=1..n. It is possible to compute these
sums with a few arithmetic operations using a series of inte-
gral images.

We construct integral images for each feature dimension
f(i) and multiplication of any two feature dimensionsf(i)f(j).
As a result we constructd + d2 integral images. LetP be the

W × H × d tensor of the integral images along each feature
dimension, i.e.,

P (x′, y′, i) =
∑

x<x′,y<y′

F (x, y, i) (4)

andQ be theW×H×d×d tensor of the second order integral
images, i.e.,

Q(x′, y′, i, j) =
∑

x<x′,y<y′

F (x, y, i)F (x, y, j). (5)

In [?], it is shown that integral images can be computed in one
pass over the image. In our notationpx,y is thed dimensional
vector andQx,y is thed× d dimensional matrix

px,y = [P (x, y, 1) . . . P (x, y, d)]T

Qx,y =

 Q(x, y, 1, 1) . . . Q(x, y, 1, d)
...

Q(x, y, d, 1) . . . Q(x, y, d, d)

 . (6)

Note thatQx,y is a symmetric matrix andd + (d2 + d)/2
passes over the image are enough to compute bothP and
Q. The computational complexity of constructing the inte-
gral images isO(d2WH).

LetR(x′, y′;x′′, y′′) be the rectangular region, where(x′, y′)
is the upper left coordinate and(x′′, y′′) is the lower right co-
ordinate, as shown in Figure??. The covariance of the region
bounded by(1, 1) and(x′′, y′′) is

CR(1,1;x′′,y′′) =
1

n− 1

[
Qx′′,y′′ − 1

n
px′′,y′′pT

x′′,y′′

]
(7)

wheren = x′′ × y′′. Similarly, after a few manipulations, the
covariance of the regionR(x′, y′;x′′, y′′) can be computed as

CR(x′,y′;x′′,y′′) =
1

n− 1

[
Qx′′,y′′ + Qx′,y′ (8)

−Qx′′,y′ −Qx′,y′′

− 1
n

(
px′′,y′′ + px′,y′ − px′,y′′ − px′′,y′

)
·
(
px′′,y′′ + px′,y′ − px′,y′′ − px′′,y′

)T
]

wheren = (x′′−x′)×(y′′−y′). Therefore, after constructing
integral images the covariance of any rectangular region can
be computed inO(d2) time. We give the integral image based
covariance computation in Alg.??.



Algorithm 3.1: INTEGRAL(Features)

for each possible image point

do


for each feature i = 1 to d

do
{
Accumulate integral f(i)

for each feature i = 1 to d

do
{

for each feature j = i to d
do

{
Accumulate integral f(i)f(j)

for each possible image point

do

for each feature i

do
{

Get integral values at window corners
Compute covariance

4. DISCUSSION

To make an accurate analysis of the computational improve-
ment, we implemented both the conventional and the inte-
gral image based methods in Matlab. Fig.?? shows the CPU
times for the extraction of all regions covariance matrices for
different image sizes and different region sizes using a fixed
(7) number of features. As visible, the proposed method ac-
celerates the extraction process almost 50-to-500 times de-
pending on the image and region size. For instance, the pro-
posed method can extract all the covariance matrices in only
15 seconds for49 × 49 target regions. On the other hand,
the conventional approach requires around 900 seconds (15
minutes!) for the same task. The reason the proposed method
becomes slightly faster for the larger region sizes is that the
number of possible regions in the image decreases with the
increasing region size.

We also analyzed the effect of the number of features
on the computational improvement. The results are given in
Fig. ??. We observed that the proposed method quadratically
faster than the conventional method with the increasing num-
ber of features.

In summary, we presented a novel and computationally
very fast method to compute the covariance matrices of all
possible regions in an image. Our intensive simulations prove
that the integral image based method can expedite the search
process more than hundreds of times in comparison to the
existing conventional approaches. In addition, it enables con-
struction of advanced covariance features for further feature
detection and classification purposes.
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