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Abstract
In this survey, we present a brief analysis of single camera object detection and tracking
methods. We also give a comparison of their computational complexities. These methods
are designed to accurately perform under difficult conditions such as erratic motion, drastic
illumination change, and noise contamination.
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Achieving Real-Time Object Detection and
Tracking Under Extreme Conditions

Fatih Porikli

Abstract— In this survey, we present a brief analysis of some of
the recent single camera object detection and tracking methods
that are developed to function robustly under extreme conditions
such as erratic object and camera motion, drastic illumination
changes, and severe noise contamination while achieving a real-
time performance.

I. I NTRODUCTION

OBJECT tracking is one the most important tasks in
computer vision. In video surveillance, it is used to

understand movement patterns of people to uncover suspicious
events. It is a key component in real-time traffic management
to estimate vehicle motion statistics and congestion status.
Advanced vehicle control systems depend on the tracking
information to keep the vehicle in lane and prevent from colli-
sions. In medical field, tracking helps improving the quality of
life for physical therapy patients and disabled people. In retail
space instrumentation, it is used to advance architecture design
by analyzing the shopping behavior of customers. In addition,
it provides comprehensible visual information to attain envi-
ronmental awareness in robotics. In video summarization, it is
applied to generate object-based representations and automatic
annotations of the content. Tracking is also a fundamental
technology to extract regions of interest and video object
layers defined in JPEG-2000 and MPEG-4 standards.

As essential as it is in many applications, robust object
tracking under uncontrolled conditions still poses a challenge.
Practical systems have to track objects when the lighting
condition changes suddenly, the relative camera-object motion
becomes large, the color contrast becomes low, and the image
noise arises to an intolerable level. To make everything worse,
the computational complexity is required to be kept at a
minimum level to achieve real-time performance.

In the rest of this paper, we briefly describe just a few of
the state-of-art methods designed to address these difficulties.

II. OBJECTDETECTION

Background subtraction is a common approach for discrim-
inating moving regions in fixed camera setups. Basically, a
pixel-wise reference model for the stationary part of the scene
is estimated. Then, the observed image is compared with this
reference to obtain the foreground.

Simply, a reference frame can be computed by aggregating
the previous frames in a moving temporal window byα-
blending. Although this approach has a minimum computa-
tional cost, it induces ghost effects and rarely works in real-
life circumstances where the background is often nonstationary
due to the illumination changes, shadows, swaying trees, etc.

Alternatively, predictive techniques such as Kalman [1] and
Wiener [2] filters are applied to learn the underlying pixel
intensity distribution. These techniques strongly depend on
the preset state transition parameters and fail in case the
distribution does not fit into a single model or varies randomly.

To handle such multimodal backgrounds, mixture of models
that are flexible enough to handle variations in lighting, mov-
ing scene clutter, multiple moving objects and other arbitrary
changes to the observed scene, are proposed. In addition to
color, there are variants that accommodate gradient and optical
flow information [3]. Often, these models are assigned as
Gaussian functions. Online approximations such as expec-
tation maximization (EM) algorithm are used to update the
models [4]. However, online EM update tends to intermingle
weak modes into stronger modes, thus, distorts the model
means in the long term as shown in Fig. 5. To adapt the models
accurately, we developed a Bayesian update mechanism [5]
that can also estimate the number of required layers. Another
approach that models the background distribution is the non-
parametric kernel density estimation [6]. This method keeps
the color values of the multiple frames and estimates the
density function using all the available data instead of online
approximation. Proportional to the number of frames, both
memory and computational costs become prohibitive to adapt
this method for real-time applications. Although the mixture
of models approach can converge to any arbitrary distribution
provided enough number of components, its computational
complexity boosts exponentially as the number of models
increases.

A major shortcoming of the above methods is that they all
neglect the temporal correlation among the color values. This
prevents them from detecting a structured or periodic change,
which is often the case, since real-world physics often induces
near-periodic phenomenon in the environment: the motion of
plants driven by wind, the action of waves on a beach, and the
appearance of rotating objects. To distinguish such periodic
motion from the object’s motion, we proposed a frequency
decomposition based representation of the background,wave-
back [7]. This algorithm detects new objects based solely on
the dynamics of the pixels in a scene rather than their ap-
pearance. This is accomplished by directly estimating models
of cyclostationary processes to explain the observed dynamics
of the scene and then comparing new observations against
those models. For a given frame, we compute the frequency
coefficients and compare them to the background coefficients
to obtain a distance map as in Fig. 4.

Detection of the time-varying phenomenon is also attempted
using corner-based background models [8]. First, they detect
feature points using a corner detector and represent them
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TABLE I

PERFORMANCE OFBACKGROUND BASED OBJECTDETECTION

speed∗ LA† PB† MM † NH†

α-Blend 5 - - - -
Kalman [2] 8 + - - +
GMM-EM‡ [4] 45 + - ++ ++
GMM-Bayesian‡ [5] 35 + - ? ++
Wave-back [7] 55 ++ ? - -
Corner [8] 150 + ++ - ++
Intrinsic [9] 30 ? ++ - ?

(*) msec,320× 240 color image on P4 3Ghz. (‡) 3 independent
models. (†) LA: lighting adaptation, PB: periodic backgrounds,

MM: multi-modal backgrounds, NH: noise handling.

Fig. 1. Detectionresults by corner based background modeling [8].

as SIFT-like descriptors. Second, they dynamically learn a
background model and classify each extracted feature as either
a background or a foreground feature. Last, a “Lucas-Kanade”
feature tracker is integrated to differentiate motion consistent
foreground objects from background objects with random or
repetitive motion. The key insight is that a collection of SIFT-
like features can represent the environment and account for
variations caused by natural effects with dynamic movements
as shown in Fig. 1. Unlike the previous pixel-based techniques,
this approach evaluates the background only on the corner
points, as a result, it fails to detect changes if no corner point
exists.

Instead of adapting models to the background, and trying
to solve the issues arises due to the model fitting, it is also
possible to represent the scene in terms of the multiplication of
a static part and and a dynamic part. For this purpose, we de-
compose a scene into time-varying multiplicative backgrounds
and foregrounds using the intrinsic images idea [9]. We form
a set of previous images by adaptive temporal sampling and
compute the spatial gradients of these images. By taking
advantage of the sparseness of the filter responses, we estimate
the background using the median filtered gradients as in Fig. 3.
This method is very robust to sudden and severe illumination
changes that a scene may undergo as shown in Fig. 2. It is also
computationally feasible to implement into a real-time system.

We summarized the properties of several detection methods
in table I. The following techniques are often employed to
improve the speed and robustness:

• Partial update of the background models
• Assuming color channels are independent
• Limiting the temporal size of detectable variations
• Color space transformations to decrease sensitivity
• Using a single color channel

Fig. 2. Comparisonof GMM [4] and intrinsic [9] background
modeling.Top: Sudden illumination change happens.Middle: GMM
method confuses and its recovery takes time.Bottom: Intrinsic
background is not disturbed. Both methods use the RGB color space.

Fig. 3. Detectedforeground regions by intrinsic backgrounds.

Fig. 4. Objectdetection in thermal IR that depicts a sea shore. The
wave-back [7] method can distinguish periodic motion of the sea
waves from the motion of the boat.(Courtesy of PETS 2005)

Fig. 5. EM update [4] vs. Bayesian update [5].Left: Sample frames.
Middle: First (top) and second (bottom) background layers of EM
update.Right: Bayesian update result. EM update inaccurately blends
distinct modes into identical layers. Bayesian update can identify
separate layers, i.e. road and shadow modes. (Red means no layer)
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I II. I NTER-FRAME TRACKING

Tracking, that is finding a region corresponding to a given
object in the image, also faces similar challenges. Objects fre-
quently change their appearance and pose. They occlude each
other, become temporarily hidden, merge and split. Depending
on the application, they exhibit erratic motion patterns and
often make sudden turns.

Tracking can be considered as estimation of the state given
all the measurements up to that moment, or equivalently
constructing the probability density function of object location.
A common approach is to employ predictive filtering and use
the statistics of object’s color and location in the distance
computation while updating the object model by constant
weights [10]. When the measurement noise are assumed to
be Gaussian, the optimal solution is provided by the Kalman
filter [11]. When the state space is discrete and consists of a
finite number of states, Markovian filters can be applied for
tracking. The most general class of filters is represented by
particle filters, which are based on Monte Carlo integration
methods. The current density of the state (which can be loca-
tion, size, speed, boundary [12], etc.) is represented by a set of
random samples with associated weights and the new density
is computed based on these samples and weights. Particle
filtering is a popular tracking method [13],[14]. However, it is
based on random sampling that becomes a problematic issue
due to sample degeneracy and impoverishment, especially for
higher dimensional representations.

In contrast, the mean-shift tracker is a non-parametric
density gradient estimator that is iteratively executed within
the local search kernels [15]. It models the object probability
density in terms of color histogram, and moves the object
region towards the largest gradient direction. Thus, it is
computationally simple. Still, if the object relocation between
successive frames is larger than the kernel size, it simply
fails. Since the histograms are used to determine likelihood,
the gradient estimation becomes inaccurate in case object and
background color distribution are similar. To solve this issue,
we assign multiple mean-shift kernels to the motion regions
that are obtained by background subtraction [16]. In order to
improve the convergence in case the object resembles to the
background, we associate an additional weight that pushes the
kernel away from the regions similar to the background. In
conjunction, a second weight derived from object template
pulls the kernel towards the similar regions.

Tracking can also be considered as a classification problem
and a classifier can be trained to distinguish the object from the
background [17]. This is done by constructing a feature vector
for every pixel in the reference image and training a classifier
to separate pixels that belong to the object from pixels that
belong to the background. Integrating classifiers over time
improves the stability of the tracker in cases illumination
changes. As in the mean-shift, an object can be tracked only if
its motion is small. One obvious drawback of the local search
methods is that they tend to stuck into local optimum.

Object representation, that is how to convert color, motion,
shape, and other properties into a compact and identifiable
form is a major concern. Most trackers either depend only on

TABLE II

PERFORMANCE OFINTER-FRAME TRACKING

speed∗ AC† EM† FM† SO†

Predictive [10] 10 + - - -
Mean-shift [15] 12 + + - -
Multi-kernel [16] 20‡ + ++ ++ -
Particle [13] 25 ++ + - -
Ensemble [17] 20 ? + - -
Covariance [19] 150 ++ ++ ? +

(*) msec,20× 40 singleobject in320× 240 color image.
(†) AC: appearance changes, EM: erratic motion, FM: fast motion,
SO: small objects. (‡) Exponentially increases with object number.

the color distributions such as histograms that disregard the
structural arrangement of colors, or appearance models that
ignore the statistical properties. Populating higher dimensional
histograms by a small number of pixels within the window
poses a major problem. Besides, histograms are easily con-
taminated by image noise. Appearance models, on the other
hand, are sensitive to the scale changes and they tend to decay
rapidly if the object localization is not accurate.

Covariance matrix representation [18] embodies both spatial
and statistical properties of objects, and provides an elegant
solution to fusion of multiple features. Covariance is an
essential measure of how much the deviation of two or more
variables or processes match. In our case, these variables cor-
respond to point features such as coordinate, color, gradient,
orientation, and filter responses. This representation has much
lower dimensionality than histograms. It is robust against
noise and severe lighting changes as well. To track objects,
we apply an eigenvector based distance metric to compare
the covariance matrices of object and candidate regions and
incorporate a Lie algebra based update mechanism to adapt
to temporal variations [19]. Covariance tracker does not make
any assumption on the motion. It is not limited to a maximum
speed. This means that it can keep track of objects even if
their motion is erratic and fast. It can compare any regions
without being restricted to a constant window size.

In spite of this advantages, computation of the covariance
matrices for all possible rectangular regions within a given
image is computationally prohibitive using the conventional
methods. Thus, we adapted an integral image based algorithm
that requires constant time [20]. This technique significantly
improves the computational load of the covariance matrix ex-
traction process by taking advantage of the spatial arrangement
of the points.

IV. FUTURE DIRECTIONS

To achieve real-time performance under uncontrolled con-
ditions, there remains need for algorithmic improvement:

• Time spent in the computation of the likelihood between
the object and candidate regions is a bottleneck. Tracking
methods that use histograms become more demanding as
the histogram bin size increases. Some histogram distance
metrics (Bhattacharya, KL) are inherently expensive. For
the covariance tracker, computing eigenvectors is also
costly. Fast computation of the distance norms will di-
rectly improve the tracking speed.
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Fig. 6. Covariance tracker [20] results for temporary occlusion.

Fig. 7. Covariance tracker [20] results for severe illumination change
that is manually generated by changing the intensity. Intensity is not
discarded, in contrast, the RGB color space is used.

Fig. 8. Noise performance for the frames 1 (left), 40 (middle),
and 200 (right).Top: Mean-shift tracker [16] using color histogram.
Bottom: Covariance tracker [20] using 7 features. Almost 95% of
pixels are distorted by noise.
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Fig. 9. Left: Extraction of histograms is accelerated thousands
time using the integral histogram method [20].Right: Covariance
extraction speed also improves by using the integral images.

• Complexity is proportional to the number of the candi-
date regions to be tested. It may be possible to apply
hierarchical search methods as widely accepted in motion
estimation to accelerate the search process.

• Localized search methods such as mean-shift and ensem-
ble tracking becomes slow by the increasing object size.
Adaptive switching down to a lower resolution in which
the object properties are still distinguishable may provide
expedite convergence of those methods.
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