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Abstract
In this survey, we present a brief analysis of single camera object detection and tracking
methods. We also give a comparison of their computational complexities. These methods
are designed to accurately perform under difficult conditions such as erratic motion, drastic
illumination change, and noise contamination.
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Achieving Real-Time Object Detection and
Tracking Under Extreme Conditions

Fatih Porikli

Abstract—In this survey, we present a brief analysis of some of Alternatively, predictive techniques such as Kalman [1] and
the recent single camera object detection and tracking methods Wiener [2] filters are applied to learn the underlying pixel
that are developed to function robustly under extreme conditions yiensity distribution. These techniques strongly depend on
such as erratic object and camera motion, drastic illumination . .
changes, and severe noise contamination while achieving a real-tr_'e _pre_set state trans_|t|on pz_;\rameters and fa_'l in case the
time performance. distribution does not fit into a single model or varies randomly.

To handle such multimodal backgrounds, mixture of models
that are flexible enough to handle variations in lighting, mov-
I. INTRODUCTION ing scene clutter, multiple moving objects and other arbitrary
BJECT tracking is one the most important tasks ighanges to the ob_served scene, are proposed_. In additior_1 to
computer vision. In video surveillance, it is used t&olor,_there are variants that accommodate gradient gnd optical
understand movement patterns of people to uncover suspicif@¥ information [3]. Often, these models are assigned as
events. It is a key component in real-time traffic managemef@ussian functions. Online approximations such as expec-
to estimate vehicle motion statistics and congestion stat{@fion maximization (EM) algorithm are used to update the
Advanced vehicle control systems depend on the trackifffPdels [4]. However, online EM update tends to intermingle
information to keep the vehicle in lane and prevent from coll¥é@k modes into stronger modes, thus, distorts the model
sions. In medical field, tracking helps improving the quality gn€ans in the long term as shown in Fig. 5. To adapt the models
life for physical therapy patients and disabled people. In ret&fcurately, we developed a Bayesian update mechanism [5]
space instrumentation, it is used to advance architecture dedfifif €an also estimate the number of required layers. Another
by analyzing the shopping behavior of customers. In additiogRPProach that models the background distribution is the non-
it provides comprehensible visual information to attain envparametric kernel density estimation [6]. This method keeps
ronmental awareness in robotics. In video summarization, it§ color values of the multiple frames and estimates the
applied to generate object-based representations and autonfiSity function using all the available data instead of online
annotations of the content. Tracking is also a fundamengProximation. Proportional to the number of frames, both
technology to extract regions of interest and video objeBte€mory and computational costs become prohibitive to adapt
layers defined in JPEG-2000 and MPEG-4 standards. this method for real-time applications. Although the mixture

As essential as it is in many applications, robust objeE{ mpdels approach can converge to any arl?itrary distribl_Jtion
tracking under uncontrolled conditions still poses a challeng&Ovided enough number of components, its computational
Practical systems have to track objects when the lightif@mPplexity boosts exponentially as the number of models
condition changes suddenly, the relative camera-object motiffy'€aSes. _ _
becomes large, the color contrast becomes low, and the imagé Major shortcoming of the above methods is that they all
noise arises to an intolerable level. To make everything wor&gdlect the temporal correlation among the color values. This
the computational complexity is required to be kept at geyen_ts them from detegtmg a structured or.perlod|c phange,
minimum level to achieve real-time performance. which is pft(_en the case, since real-wor_ld physics often m_duces

In the rest of this paper, we briefly describe just a few dear-periodic phenomenon in the environment: the motion of

the state-of-art methods designed to address these difficultfd@nts driven by wind, the action of waves on a beach, and the
appearance of rotating objects. To distinguish such periodic

motion from the object’s motion, we proposed a frequency
decomposition based representation of the backgrowade-
Background subtraction is a common approach for discrirback[7]. This algorithm detects new objects based solely on
inating moving regions in fixed camera setups. Basically,the dynamics of the pixels in a scene rather than their ap-
pixel-wise reference model for the stationary part of the scepearance. This is accomplished by directly estimating models
is estimated. Then, the observed image is compared with tbiscyclostationary processes to explain the observed dynamics
reference to obtain the foreground. of the scene and then comparing new observations against
Simply, a reference frame can be computed by aggregatitpse models. For a given frame, we compute the frequency
the previous frames in a moving temporal window hy coefficients and compare them to the background coefficients
blending. Although this approach has a minimum comput& obtain a distance map as in Fig. 4.
tional cost, it induces ghost effects and rarely works in real- Detection of the time-varying phenomenon is also attempted
life circumstances where the background is often nonstationarsing corner-based background models [8]. First, they detect
due to the illumination changes, shadows, swaying trees, d&ature points using a corner detector and represent them

II. OBJECTDETECTION



TABLE |
PERFORMANCE OFBACKGROUND BASED OBJECTDETECTION

speed | LAT [ PBf | MMT | NHT
a-Blend 5 - - - -
Kalman [2] 8 + - - +
GMM-EM? [4] 45 + - ++ ++
GMM-Bayesian [5] 35 + - * ++
Wave-back [7] 55 ++ * - -
Corner [8] 150 + ++ - ++
Intrinsic [9] 30 * ++ - *

(*) msec, 320 x 240 color image on P4 3Ghz.*) 3 independent
models. {) LA: lighting adaptation, PB: periodic backgrounds,
MM: multi-modal backgrounds, NH: noise handling.

Fig. 2. Comparisonof GMM [4] and intrinsic [9] background
modeling.Top: Sudden illumination change happeMiddle: GMM
method confuses and its recovery takes tirBattom: Intrinsic
background is not disturbed. Both methods use the RGB color space.

Fig. 1. Detectionresults by corner based background modeling [8].

as SIFT-like descriptors. Second, they dynamically learn a
background model and classify each extracted feature as either
a background or a foreground feature. Last, a “Lucas-Kanade”
feature tracker is integrated to differentiate motion consistent
foreground objects from background objects with random 6ig- 3. Detectedforeground regions by intrinsic backgrounds.
repetitive motion. The key insight is that a collection of SIFT-
like features can represent the environment and account for
variations caused by natural effects with dynamic movements
as shown in Fig. 1. Unlike the previous pixel-based techniques,
this approach evaluates the background only on the corner
points, as a result, it fails to detect changes if no corner point
exists.

Instead of adapting models to the background, and trying
to solve the issues arises due to the model fitting, it is also
possible to represent the scene in terms of the multiplication of

a static part and and a dynamic part. For this purpose, we gF_. 4. Objectdetection in thermal IR that depicts a sea shore. The

compose a scene into time-varying multiplicative b5‘C|‘gr0unq;gve-back [7] method can distinguish periodic motion of the sea
and foregrounds using the intrinsic images idea [9]. We forggaves from the motion of the bogCourtesy of PETS 2005)
a set of previous images by adaptive temporal sampling and
compute the spatial gradients of these images. By taking
advantage of the sparseness of the filter responses, we estimatg
the background using the median filtered gradients as in Fig. 3.
This method is very robust to sudden and severe illumination
changes that a scene may undergo as shown in Fig. 2. It is also
computationally feasible to implement into a real-time system.
We summarized the properties of several detection methods
in table 1. The following techniques are often employed to
improve the speed and robustness:

- Partial 'update of the backgrognd models Fig. 5. EM update [4] vs. Bayesian update [Beft: Sample frames.
. A_ss_u_mlng color Channe_ls are independent o Middle: First (top) and second (bottom) background layers of EM
« Limiting the temporal size of detectable variations updateRight: Bayesian update result. EM update inaccurately blends

« Color space transformations to decrease sensitivity ~ distinct modes into identical layers. Bayesian update can identify
« Using a single color channel separate layers, i.e. road and shadow modes. (Red means no layer)



TABLE I

IIl. INTER-FRAME TRACKING
PERFORMANCE OFINTER-FRAME TRACKING

Tracking, that is finding a region corresponding to a giver speed | ACT [ EMT | FMT [ SO
object in the image, also faces similar challenges. Objects fre-Predictive [10] 10 + - - -
quently change their appearance and pose. They occlude eadilean-shift [15] 12 + + - -
other, become temporarily hidden, merge and split. DependingMulti-kernel [16] | 20F + ++ T+ -
on the application, they exhibit erratic motion patterns and Particle [13] 25 ++ + - -
often make sudden turns. Ensemble [17] 20 % + - -

Tracking can be considered as estimation of the state givenCovariance [19] 150 ++ ++ * +

all the measurements up to that moment, or equivalently ™ msec, 20 x 40 single object in320 x 240 color image.
constructing the probability density function of object location¢ty ac: appearance changes, EM: erratic motion, FM: fast motion,

A common approac_h is to employ PVEdiCt_ive f_iltering a_nd USE0: small objects. (1) Exponentially increases with object number.
the statistics of object’s color and location in the distance

computation while updating the object model by constatiie color distributions such as histograms that disregard the
weights [10]. When the measurement noise are assumedstiuctural arrangement of colors, or appearance models that
be Gaussian, the optimal solution is provided by the Kalmagnore the statistical properties. Populating higher dimensional
filter [11]. When the state space is discrete and consists ohiatograms by a small number of pixels within the window
finite number of states, Markovian filters can be applied f@oses a major problem. Besides, histograms are easily con-
tracking. The most general class of filters is represented taminated by image noise. Appearance models, on the other
particle filters, which are based on Monte Carlo integratidmand, are sensitive to the scale changes and they tend to decay
methods. The current density of the state (which can be locapidly if the object localization is not accurate.
tion, size, speed, boundary [12], etc.) is represented by a set oEovariance matrix representation [18] embodies both spatial
random samples with associated weights and the new densityl statistical properties of objects, and provides an elegant
is computed based on these samples and weights. Partsdéfution to fusion of multiple features. Covariance is an
filtering is a popular tracking method [13],[14]. However, it issential measure of how much the deviation of two or more
based on random sampling that becomes a problematic isgagables or processes match. In our case, these variables cor-
due to sample degeneracy and impoverishment, especially fespond to point features such as coordinate, color, gradient,
higher dimensional representations. orientation, and filter responses. This representation has much
In contrast, the mean-shift tracker is a non-parametri@wer dimensionality than histograms. It is robust against
density gradient estimator that is iteratively executed withimoise and severe lighting changes as well. To track objects,
the local search kernels [15]. It models the object probabiliye apply an eigenvector based distance metric to compare
density in terms of color histogram, and moves the objetite covariance matrices of object and candidate regions and
region towards the largest gradient direction. Thus, it igcorporate a Lie algebra based update mechanism to adapt
computationally simple. Still, if the object relocation betweetp temporal variations [19]. Covariance tracker does not make
successive frames is larger than the kernel size, it simgpy assumption on the motion. It is not limited to a maximum
fails. Since the histograms are used to determine likelihoggheed. This means that it can keep track of objects even if
the gradient estimation becomes inaccurate in case object #tir motion is erratic and fast. It can compare any regions
background color distribution are similar. To solve this issusjithout being restricted to a constant window size.
we assign multiple mean-shift kernels to the motion regionsIn spite of this advantages, computation of the covariance
that are obtained by background subtraction [16]. In order foatrices for all possible rectangular regions within a given
improve the convergence in case the object resembles to im@ge is computationally prohibitive using the conventional
background, we associate an additional weight that pushes finethods. Thus, we adapted an integral image based algorithm
kernel away from the regions similar to the background. lifat requires constant time [20]. This technique significantly
conjunction, a second weight derived from object templat@proves the computational load of the covariance matrix ex-
pulls the kernel towards the similar regions. traction process by taking advantage of the spatial arrangement
Tracking can also be considered as a classification probl&the points.
and a classifier can be trained to distinguish the object from the
background [17]. This is done by constructing a feature vector IV. FUTURE DIRECTIONS
for every pixel in the reference image and training a classifier To achieve real-time performance under uncontrolled con-
to separate pixels that belong to the object from pixels thditions, there remains need for algorithmic improvement:
belong to the background. Integrating classifiers over timee. Time spent in the computation of the likelihood between
improves the stability of the tracker in cases illumination the object and candidate regions is a bottleneck. Tracking
changes. As in the mean-shift, an object can be tracked only if methods that use histograms become more demanding as
its motion is small. One obvious drawback of the local search  the histogram bin size increases. Some histogram distance
methods is that they tend to stuck into local optimum. metrics (Bhattacharya, KL) are inherently expensive. For
Object representation, that is how to convert color, motion, the covariance tracker, computing eigenvectors is also
shape, and other properties into a compact and identifiable costly. Fast computation of the distance norms will di-
form is a major concern. Most trackers either depend only on rectly improve the tracking speed.



discarded, in contrast, the RGB color space is used.
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Fig. 8.
and 200 (right).Top: Mean-shift tracker [16] using color histogram.
Bottom: Covariance tracker [20] using 7 features. Almost 95% of
pixels are distorted by noise.
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time using the integral histogram method [2&ight: Covariance
extraction speed also improves by using the integral images.
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Complexity is proportional to the number of the candi-
date regions to be tested. It may be possible to apply
hierarchical search methods as widely accepted in motion
estimation to accelerate the search process.

Localized search methods such as mean-shift and ensem-
ble tracking becomes slow by the increasing object size.
Adaptive switching down to a lower resolution in which
the object properties are still distinguishable may provide
expedite convergence of those methods.
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