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Abstract

We consider a set of S independent encoders that must transmit a set of correlated sources through
a network of noisy, independent, broadcast channels to T receivers. For the general problem
of sending correlated sources through broadcast networks, it is known that the source-channel
separation theorem breaks down the achievable rate region as well as the proper method of coding
are unknown. For our scenario, however, we not only establish the optimal rate region, but we
show that a type of source-channel separation is possible at the transmitter, provided joint source-
channel decoding is used at the receiver. Furthermore, we show that while joint source-channel
encoding is unnecessary, not using joint source-channel decoding is suboptimal. Finally, when
the optimal input distribution from transmitter i to receiver j is independent of j, our result has a
max-flow/min-cut interpretation. Specifically, in this case our result implies that if it is possible
to send sources to each receiver separately while ignoring the others, then it is possible to send
to all receivers simultaneously.
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Joint Source–Channel Decoding for Transmitting
Correlated Sources over Broadcast Networks

Todd Coleman, Emin Martinian, Erik Ordentlich

Abstract— We consider a set of S independent encoders that
must transmit a set of correlated sources through a network of
noisy, independent, broadcast channels to T receivers. For the
general problem of sending correlated sources through broadcast
networks, it is known that the source–channel separation theorem
breaks down and the achievable rate region as well as the proper
method of coding are unknown.

For our scenario, however, we not only establish the optimal
rate region, but we show that a type of source–channel separation
is possible at the transmitter, provided joint source–channel
decoding is used at the receiver. Furthermore, we show that
while joint source–channel encoding is unnecessary, not using
joint source–channel decoding is suboptimal. Finally, when the
optimal input distribution from transmitter i to receiver j is in-
dependent of j, our result has a max-flow/min-cut interpretation.
Specifically, in this case our result implies that if it is possible to
send the sources to each receiver separately while ignoring the
others, then it is possible to send to all receivers simultaneously.

I. INTRODUCTION

While many point-to-point communication problems are
relatively well understood, the more general problem of how
to transmit correlated sources to multiple receivers is much
harder to analyze. Two of the key features that complicate net-
work information theory problems include the lack of source–
channel separation and the conflicting goals that arise when
multiple destinations receive the same transmission (broadcast)
or when multiple transmitters send to the same destination
(multiple access).

In order to understand how these issues effect communi-
cation system design, we consider the problem of sending S
correlated sources through a noisy broadcast network with T
receivers as illustrated in Figure 1. Specifically, we imagine
that transmitter i observes a source Ui which consists of
a set of n independent and identically distributed samples,
Ui[1], Ui[2], . . ., Ui[n]. The sources are correlated (across the
transmitters) in the sense that the joint distribution (across i)
is

P (U1, U2, . . . , US) =

n
∏

m=1

P (U1[m], U2[m], . . . , US [m]).

(1)
The channels are independent broadcast channels in the sense
that if each transmitter chooses a block of channel inputs
Xi[1], Xi[2], . . ., Xi[n] then receiver j observes the i channels
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without interference to receive the outputs Yi,j [m] according
to the channel law

P (Y1,1 . . . YS,T |X1 . . . XS) =
n

∏

m=1

S
∏

i=1

T
∏

j=1

Pi,j(Yi,j [m]|Xi[m])

(2)
Tuncel considered the related problem of using joint source–
channel coding for broadcasting correlated sources [1] while
Cover, El Gamal, and Salehi [2] considered a similar problem
for multiple access networks. Specifically, in the latter model,
there is only a single receiver (i.e., T = 1), but the channel is
a multiple access channel and does not factor as in (2). As a
result, [2] shows that the source–channel separation theorem
for point-to-point communication [3, Sec. 14.10] breaks down
and a joint source–channel coding strategy is required.1
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Fig. 1. Transmitting Correlated Sources over a Broadcast Network. Two
correlated sources U1 and U2 are observed by independent transmitters and
both sources must be communicated to each receiver.

In contrast, as in the case of [4], a key feature of our network
model is that each receiver observes the output of the channel
from each transmitter independently and so there is no multiple
access interference. Consequently, effects such as coherent or
incoherent interference, beam-forming, or transmitter cooper-
ation are not possible. Note, however, that there is a type of
“broadcast interference” in the sense that transmitter i cannot
choose to send independent messages to each receiver. Instead,
transmitter i must choose a channel input that simultaneously
conveys the desired message to all receivers. Similarly, there
is also a kind of “distribution interference” in the sense that
transmitter i cannot choose a different input distribution for
each channel. For example, if Y1,1 is the result of passing X1

through an additive white Gaussian noise channel while Y1,2 is
the result of passing X1 through an additive exponential noise
channel, then it is not possible to simultaneously transmit at
the point-to-point capacity of the individual channels.

One of our key results is that while separate source and
channel coding is sub-optimal for the scenario in this paper, it
is possible to achieve optimal performance with joint source–

1Specifically, [2] shows that both joint source–channel encoding and joint
source–channel decoding are required in general.
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channel decoding but separate encoding. Specifically, it suf-
fices to consider modular encoders that first perform source
coding (by mapping the source into bits) and then perform
channel coding (by mapping bits into a channel input) where
the operations can be designed separately.

This result has two implications. First, instead of thinking
of joint vs. separate coding we should think of joint vs.
separate encoding and joint vs. separate decoding. Second,
“broadcast interference” causes a loss of separation in source–
channel decoding but no loss of separation in encoding. Third,
“multiple access” interference (e.g., in the Cover, El Gamal,
Salehi scenario) causes a loss of separation in source–channel
encoding (and potentially decoding as well).

II. STATEMENT OF RESULTS

Let Ci,j denote the point-to-point capacity of the channel
connecting source i to receiver j:

Ci,j , max
P (xi)

I(Xi; Yi,j). (3)

Specifically, Ci,j is the maximum rate of information that
can be sent from transmitter i to receiver j, if all other
receivers are ignored. Thus, if we only cared about receiver
j it is trivial to determine whether all the sources could be
successfully communicated to the receiver with no bandwidth
expansion/compression:2

Proposition 1: If we only consider receiver j, the sources
can be successfully communicated to receiver j if and only if

(C1,j , C2,j , . . . , CS,j) ∈ RSW(U1, U2, . . . , US) (4)

where RSW(U1, U2, . . . , US) is the Slepian-Wolf [5] rate
region for the sources U1, U2, . . ., US .

While (4) is sufficient if we only want to communicate
to receiver j, it is not sufficient if we wish to communicate
to all receivers simultaneously, in a source–channel separated
fashion. Specifically, even if (4) is satisfied for each j, it may
be impossible to successfully communicate the sources to all
the receivers with separate source and channel decoding.

For example, suppose each channel is a binary symmetric
channel (BSC) where C1,1 = 0.9, C1,2 = 0.6, C2,1 =
0.6, C2,2 = 0.9 in Figure 1 and suppose we would like
to communicate the correlated sources U1 and U2 where
H(U1) = H(U2) = 1, H(U1, U2) = 1.5. Then from the cut-
set bounds [3], if we were to perform complete source-channel
separation at the encoders and decoders, then message 1 can
be decoded by receiver 2 only if R1 ≤ 0.6. Similarly, message
2 can be decoded by receiver 1 only if R2 ≤ 0.6. This implies
that R1 + R2 ≤ 1.2 < H(U, V ). So performing Slepian-Wolf
encoding and decoding in a modular fashion with channel
coding does not suffice even though (4) is satisfied for all
j.

Any scheme based on Slepian-Wolf source coding followed
by channel encoding for the above example would require

2With no bandwidth expansion/compression, if n source samples are
observed for each Ui, then exactly n channel samples are used. In general,
one could analyze the ratio of source samples to channel samples required.
While this ratio is interesting in its own right, we do not consider it here since
our goal is to prove the qualitative results on separability of source–channel
encoding and max-flows/min-cuts.

transmitting across some of the BSCs at rates greater than
their capacities. Nevertheless, the following theorem, which
is our main result, implies that the use of a certain joint
source–channel decoding procedure does permit the reliable
transmission of the sources to each of the receivers.

Theorem 1: The sources U1, . . . , US can be reliably com-
municated to all receivers simultaneously using separate
source and channel encoding and joint source–channel decod-
ing if there exist random variables X1, . . . , XS satisfying

H (UA|UAc) <
∑

i∈A

I(Xi; Yi,j) ∀j ∈ T (5)

for all A ⊆ S,3 where UA = {Ui}i∈A. Conversely, if
the sources U1, . . . , US can be reliably communicated to all
receivers simultaneously, then there exist random variables
X1, . . . , XS satisfying

H (UA|UAc) ≤
∑

i∈A

I(Xi; Yi,j) ∀j ∈ T (6)

for all A ⊆ S, where UA = {Ui}i∈A.
Consider the case where for each i, there is an optimal input

distribution P (x∗
i ) that simultaneously achieves the point-to-

point capacity from transmitter i to receiver j:

∀i, ∃P (x∗
i ) such that ∀j, I(X∗

i ; Yi,j) = Ci,j . (7)

When this condition is satisfied (e.g., when each channel
from i to j is an additive white Gaussian noise channel),
Theorem 1 has a max-flow/min-cut interpretation. Specifically,
if we consider a cut-set separating receiver j from all the
transmitters we can easily determine whether receiver j can
decode all the sources using capacity arguments and the
Slepian-Wolf theorem via Proposition 1. Evidently when (7)
is true, Theorem 1 says that we can determine whether a
given communication problem is feasible (i.e., whether all the
receivers can successfully decode all the sources) simply by
considering the minimum cut. It seems that in this scenario,
information acts like a fluid in the sense that analyzing flows
is sufficient and worrying about “broadcast interference” is not
required.

III. PROOF SKETCH

A. Achievability with Separate Source-Channel Encoding and
Joint Source-Channel Decoding

Here we perform separate separate source and channel
coding at the encoders but perform joint source channel
decoding (see Figure 2).

1) Encoder: For each i ∈ S: randomly bin source se-
quences un

i at rate

Ri = max
j∈T

I(Xi, Yi,j) (8)

and generate 2nRi codewords xn
i (s) (s = 1, . . . , 2nRi) with

symbols independently and identically distributed according
to PXi

(xi). So a source sequence un
i is first mapped to a

bin index si = fi(u
n
i ), and then si is mapped to the channel

codeword xn
i (si).

3We use the notation S to denote the set {1, 2, . . . , S} and T to denote
the set {1, 2, . . . , T}.
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Fig. 2. Channel Figure with Separate Source-Channel Encoding and Joint
Source-Channel Decoding

2) Decoder: At the jth joint source-channel decoder, create
a list {(s̃1, . . . , s̃S)} of all bin tuples where each corresponding
xn

i (s̃i) is jointly typical with the received Y n
i,j . Decode to a

jointly typical set of source sequences (ũn
1 , . . . , ũn

S) lying in
{(s̃1, . . . , s̃S)}.

We shall use the upper case symbols Un
i , Xn(s), and

Si = Fi(u
n) to denote the random values of the source

sequence, channel codewords, and bin indices, respectively,
with distributions induced by the source distribution and the
above random encoder selection.

3) Error Probability Analysis: We denote by An
ε the typical

set. The error probability Pe can be bounded by

Pe ≤
∑

j∈T

[P (Ej,0) +
∑

A⊆S

P (Ej,A)] (9)

where:

• Ej,0 , {Un
S /∈ An

ε }∪
⋃S

i=1

{(

Xn
i (Fi(U

n
i )), Y n

i,j

)

/∈ An
ε

}

.
The probability of this event, averaged over the random
binning and channel codes, tends to 0 by the Asymptotic
Equipartition Property [3].

• Ej,A ,

{

∃un
A : (un

i 6= Un
i )i∈A, (un

A, Un
Ac) ∈ An

ε ,

(Xn
i (Fi(u

n
i )), Yi,j) ∈ An

ε ∀i ∈ A
}

.

We now bound P (Ej,A) which is P (Ej,A) averaged over
the random binning and channel codes. Note that for
each i ∈ A, by (8), there are about 2n[Ri−I(Xi;Yi,j)] bin
indices {s} such that (Xn

i (s), Yi,j) ∈ An
ε . For any s and

un, the probability that Fi(u
n) = s is 2−nRi . Since the

random bin index Fi(u
n) of a sequence un 6= Un

i is
independent of Yi,j and of all the codewords, the prob-
ability that Fi(u

n) satisfies (Xn
i (Fi(u

n)), Yi,j) ∈ An
ε

is approximately 2n[Ri−I(Xi;Yi,j)]2−nRi = 2−nI(Xi;Yi,j).
By the independence of the binning across encoders, the
probability that this holds for any set of un

i , i ∈ A with
un

i 6= Un
i , is about

2−n
P

i∈A
I(Xi;Yi,j). (10)

Therefore

P (Ej,A) = P
(

⋃

un
A:(un

A,UAc )∈An
ε

(un
i 6=Un

i )i∈A

⋂

i∈A

{(Xn
i (Fi(u

n
i )), Yi,j) ∈ An

ε )}
)

≤ 2nH(UA|UAc )2−n
P

i∈A
I(Xi;Yi,j) (11)

→ 0 (12)

where (11) follows from a union bound argument condi-
tioned on Un

S , the independence of the binning and the

channel codewords from the source, the probability (10),
and the fact that with high probability

|{un
A : (un

A, UAc) ∈ An
ε }| ≈ 2nH(UA|UAc ).

Finally, (12) is implied by (5).

B. Converse

Let us denote the error probability at receiver j ∈ T as P j
e .

For each A ⊆ S, define

Y n
A,j ,

{

Y n
i,j

}

i∈A

Xn
A , {Xn

i }i∈A .

WLOG, assume that A = {1, . . . , |A|}. Fano’s inequality tells
us that if P j

e → 0 as n → ∞, then:

H
(

Un
A|Y

n
A,j , U

n
Ac

)

≤ nεn where εn → 0 (13)

Thus

H(Un
A|U

n
Ac) = H(Un

A|U
n
Ac , Xn

Ac)

= I(Un
A; Y n

A,j |U
n
Ac , Xn

Ac)

+ H(Un
A|Y

n
A,j , U

n
Ac , Xn

Ac)

≤ I(Un
A; Y n

A,j |U
n
Ac , Xn

Ac) + nεn (14)

≤ I(Xn
A; Y n

A,j |U
n
Ac , Xn

Ac) + nεn

= H(Y n
A,j |U

n
Ac , Xn

Ac)

− H(Y n
A,j |X

n
S , Un

Ac) + nεn

≤ H(Y n
A,j) − H(Y n

A,j |X
n
S , Un

Ac) + nεn

= H(Y n
A,j)

−
∑

a∈A

H(Y n
a,j |

{

Y n
a′,j

}

{a′<a}
, Xn

S , Un
Ac) + nεn

= H(Y n
A,j) −

∑

a∈A

H(Y n
a,j |X

n
a ) + nεn (15)

≤
∑

a∈A

H(Y n
a,j) − H(Y n

a,j |X
n
a ) + nεn

≤
∑

a∈A

n
∑

t=1

I(Xa[t]; Ya,j [t]) + nεn (16)

≤ n
∑

a∈A

I(X∗
a ; Ya,j) + nεn (17)

where (14) is due to (13), (15) follows because the channels
are independent, (16) follows because the channels are mem-
oryless and because conditioning reduces entropy, and (17)
follows by defining

P (X∗
a) =

1

n

n
∑

t=1

P (Xa[t])

and noting the concavity of mutual information.

IV. CONCLUDING REMARKS

To summarize, we illustrated that for broadcast networks,
performing source-channel separation for encoding and decod-
ing is in general suboptimal. Next, we showed that separate
encoding and joint source–channel decoding attains optimal
performance. Thus it appears that the need for joint–source
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channel encoding in multiple access networks essentially
comes from the need to allow for the correlation in the
sources to be preserved to aid in the signaling across the
multiple access channels e.g., for beamforming (or other types
of coherent transmission). What we have shown is that in
broadcast networks where such signaling provides no benefit,
something still can be gained by doing separate source-channel
encoding and joint-source channel decoding.

This may have practical relevance - for example, in sensor
networks with fusion centers, processing power is usually not
nearly as constrained of a resource for the fusion center as
is the case for the individual sensors. Consequently making
the signaling methods for the individual sensor nodes to
require the least possible cooperation and computation is
generally desirable. Note that these properties fit well with the
achievability methods we proposed here, and they still attain
asymptotically optimal performance.
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