
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Induction of Compact Decision Trees for
Personalized Recommendation

Daniel Nikovski, Veselin Kulev

TR2006-036 May 2006

Abstract

We propose a method for induction of compact optimal recommendation policies based on dis-
covery of frequent itemsets in a purchase database, followed by the application of standard deci-
sion tree learning algorithms for the purposes of simplification and compaction of the recommen-
dation policies. Experimental results suggest that the structure of such policies can be exploited
to partition the space of customer purchasing histories much more efficiently than frequent item-
set discovery algorithms alone would allow.

ACM - SAC 2006

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2006
201 Broadway, Cambridge, Massachusetts 02139

MERLCoverPageSide2

Induction of Compact Decision Trees
for Personalized Recommendation

Daniel Nikovski
Mitsubishi Electric Research Laboratories

MERL Technology Laboratory
201 Broadway, Cambridge, USA

nikovski@merl.com

Veselin Kulev
Massachusetts Institute of Technology

Research Science Institute
77 Massachusetts Ave., Cambridge, USA

veskok@gmail.com

ABSTRACT
We propose a method for induction of compact optimal rec-
ommendation policies based on discovery of frequent item-
sets in a purchase database, followed by the application
of standard decision tree learning algorithms for the pur-
poses of simplification and compaction of the recommenda-
tion policies. Experimental results suggest that the struc-
ture of such policies can be exploited to partition the space
of customer purchasing histories much more efficiently than
frequent itemset discovery algorithms alone would allow.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining

Keywords
response modeling, product recommendation, frequent item-
set mining

1. INTRODUCTION
Personalized recommendation is the process of deciding

which product to recommend to individual customers based
on their existing purchasing history, as recorded by a ven-
dor in the past. This capability has been made possible
by the wide availability of sales databases and the advance-
ment of computationally-intensive statistical data mining
techniques. Nowadays, personal recommendation is a ma-
jor feature of online e-commerce sites such as Amazon.com
[5], and plays a similarly important role in the direct market-
ing industry, where it is used to decide which customers to
mail catalogs and promotional materials to, which products
to include in such catalogs, etc.

1.1 Recommendation as response modeling
From a computational point of view, the problem usu-

ally reduces to estimating the probability Pr(Ai = True|H)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’06 April 23-27, 2006, Dijon, France
Copyright 2006 ACM 1-59593-108-2/06/0004 ...$5.00.

that a given product Ai ∈ ℵ from the product assortment ℵ
of a company would be purchased by an existing customer
with known purchasing history H, where H ⊂ ℵ consists
of only those items that the customers have purchased in
the past. The main assumption here is that past purchases
correlate well with future purchases, and information about
customer preferences can be extracted from the known past
purchasing history of that customer. (In the usual case, all
evidence is positive — if a purchase of a product Aj has not
been recorded, it is assumed that Aj = False, even though
the customer might have purchased this product elsewhere.)
This task is also known as response modeling, since it seeks
to model quantitatively the likelihood that a prospective cus-
tomer would respond to recommendation [1].

Once the probabilities for purchasing each available prod-
uct have been estimated, the optimal product to be recom-
mended can be determined in one of several ways. The sim-
plest method is to recommend the product A∗ with the high-
est probability of purchase A∗ = argmaxAi=TruePr(Ai|H).
For this recommendation to be truly optimal, three condi-
tions must hold: first, the profit from each product should
be the same; second, the customer should be making only
one product choice (or further purchases should be indepen-
dent of that choice); and third, the probability of purchasing
each product if it is not recommended should be constant.
In practice, these three conditions almost never hold, which
gives rise to several more realistic definitions of optimal rec-
ommendation.

Varying profits r(Ai) among products are easily accounted
for by recommending the product A∗ with the highest ex-
pected profit: A∗ = argmaxAi

Pr(Ai = True|H)r(Ai). When
the probability of purchasing each product when it is not rec-
ommended is not constant, it would be more useful to rec-
ommend the product for which the increase in probability
due to recommendation is the greatest. This would require
separate estimation of customer response for the two cases
when a product was recommended and the alternative case
when it was not. Departures from the third condition can
be dealt with, too, by solving a sequential Markov decision
process (MDP) model that optimizes the cumulative profit
resulting from a recommendation rather than the immedi-
ate profit [3] — although a lot more involved technically, this
scenario also reduces to response modeling, since profit from
individual products and transition probabilities are all that
is required to specify an MDP.

1.2 Estimation of response probabilities
It would always be possible to infer Pr(Ai = True|H) for

any Ai and H, if the joint probability function (JPF) over
all Boolean variables Ai, i = 1, N , N = |ℵ| were known:

Pr(Ai = True|H) =
Pr(Ai ∪ H)

Pr(H)

where Pr(Ai ∪ H) and Pr(H) can be read off the JPF.
In practice, the JPF will not be known, and must be de-
termined by means of a suitable computational method in-
stead. When an existing purchase database is used for the
estimation of the JPF, this reduces to the usual problem
of density estimation, and is amenable to analysis by many
existing data mining algorithms. Narrowly in the field of
personalized recommendation, this approach is also known
as collaborative filtering, because it leverages the recorded
preferences and purchasing patterns of an existing group of
customers to make recommendations to that same group of
customers [6, 13].

From the point of view of data mining and statistical ma-
chine learning, however, direct estimation of each and every
entry of the JPF of a product domain is usually infeasible,
for at least two reasons. First, there are exponentially many
such entries, and the memory requirements for their repre-
sentation grow exponentially with the size of the product
assortment N . Second, even if it were somehow possible to
represent all atomic entries of the JPF in memory, their val-
ues could not be estimated reliably by means of frequency
counting from a purchase database, unless the size of this
database also grew exponentially in N . However, the size of
the available purchase database is usually linear in the time
a vendor has been in business, rather than exponential in
the size of its product assortment.

The usual method to deal with this problem is to im-
pose some structure on the JPF. One particularly popular
solution involves logistic regression, which has been dubbed
“the workhorse of response modeling” [1]. The problem with
logistic regression is that it fails to model the interactions
among variables in the purchasing history H, and consid-
ers individual product influences independently. A signifi-
cant improvement can usually be realized by the use of more
advanced data mining techniques such as neural networks,
decision trees, support-vector machines, or practically any
other machine learning method for building classifiers. Al-
though this idea has had practical impact on products, in
particular the induction of dependency networks [15], it de-
pends critically on progress in induction of classifiers on large
databases, which is by no means a solved problem.

In this paper, we are pursuing a very different approach
that is based on discovery of frequent itemset (FI) lattices,
and subsequent extraction of direct compact recommenda-
tion policies expressed as decision trees. The main contribu-
tion of this paper is the idea that well-known algorithms for
induction of decision trees can be leveraged to simplify con-
siderably the optimal recommendation policies discovered by
means of frequent itemset mining, and the experimental ver-
ification of this idea on a real data set of customer purchases.

Section 2 reviews how discovered FI lattices can be used
for personalized recommendation, and section 3 discusses
our idea for inducing compact decision trees from the FI lat-
tices. Section 4 provides an experimental verification of the
idea, and demonstrates that it indeed results in substantial
reductions in the size and complexity of the recommendation

policies. Section 5 concludes and presents some suggestions
on how this idea can be extended to more sophisticated rec-
ommendation policies.

2. FREQUENT ITEMSET DISCOVERY
The problem of frequent itemset discovery is one of the

most studied problems in the field of data mining, and our
approach to personalized recommendation aims to leverage
the existing solutions to this problem.

Let us consider first the typical information stored in sales
databases. For example, let T = {A, B, C, D} be a set of
items in a store. The store also has a database with past
transactions T . Entries in T are (ID,item set) pairs (see
Table 1).

Database ID Item-set

100 {A,B,D}
200 {A,B}
300 {C,D}
400 {B,C}

Table 1: Example database T

The support supp(X) of an item set X ⊆ T is the number
of purchases Y in T such that X ⊆ Y . An item set X ⊆ T

is frequent if its support is greater than or equal to a user-
defined threshold θ. Table 2 shows all frequent item-sets in
T with a threshold θ = 1.

Itemset Cover ID Support

{} {100,200,300,400} 4
{A} {100,200} 2
{B} {100,200,300} 3
{C} {300,400} 2
{D} {100,300} 2
{A,B} {100,200} 2
{A,D} {100} 1
{B,C} {400} 1
{B,D} {100} 1
{C,D} {300} 1
{A,B,D} {100} 1

Table 2: Itemsets and their support in T .

Before we describe how itemsets can be used for personal-
ized recommendation, we will discuss the concept of an adja-

cency lattice of itemsets. We use a directed acyclic graph to
visualize the adjacency lattice (see Figure 1) for all possible
itemsets in T . A set of items X is adjacent to another set of
items Y if and only if Y can be obtained from X by adding
a single item. In the graph we use, X is the parent and Y

is the child.
It is not hard to see that an adjacency lattice is one partic-

ular way of organizing all subsets of items in a store, which
differs from other, alternative methods (such as N-way con-
tingency tables, for example) in its progression from small
subsets to large subsets. In particular, all subsets in the
same level of the lattice have the same cardinality.

Normally, if we want to represent the full JPF of a prob-
lem domain, we can use this adjacency lattice to store the
probabilities of each subset, and this representation will be

{A,B,C} {A,B,D} {A,C,D} {B,C,D}

{A,B} {A,C} {A,D} {B,C} {B,D} {C,D}

{}

{B} {C} {D}{A}

{A,B,C,D}

Figure 1: Adjacency lattice for T

neither substantially more efficient, nor substantially less ef-
ficient than a contingency table, because it still stores the
probabilities of all atomic events.

However, we can realize major economies in terms of mem-
ory requirements if we store only those subsets whose prob-
abilities are above a given threshold. Such subsets of items
are called frequent itemsets, and an active sub-field of data
mining is concerned with efficient algorithms for frequent
itemset mining (FIM). Given a threshold, these algorithms
find all itemsets whose support exceeds the threshold, and
record for each of them the exact number of transactions
that support it. Note that this representation is not loss-
less: by storing only frequent itemsets and discarding less
frequent ones, we are trading the accuracy of the JPF for
memory compactness.

One of the first algorithms for mining frequent item sets
was the Apriori algorithm[14]. This algorithm creates an
adjacency lattice for a given transaction database T and
threshold value θ. The algorithm operates by creating first
all frequent item-sets X where |X| = 1, then building all
frequent itemsets Y where |Y | = 2, and so on. After every
itemset generation, the algorithm runs a pruning function
to delete the itemsets with support lower than the threshold
θ. The threshold is chosen so that all frequent itemsets can
fit in memory. Note that while the full JPF of a problem
domain would typically not fit in memory, we can always
make the frequent itemset lattice fit in the available memory
by raising the support threshold. (Certainly, the lower the
threshold, the more complete the JPF.)

Once a (sparse) FI lattice has been extracted in memory,
it can be used to define a recommendation policy much like
a full JPF could be used, with some provisions for handling
missing entries. The easiest case is when the itemset H cor-
responding to the purchasing history of a customer is repre-
sented in the lattice, and at least one of its descendants in
the lattice is also present. Then, the optimal recommenda-
tion is the extension A = Q\H of the set H that maximizes
the support of the direct descendants Q of H in the lat-
tice. (By definition, the descendant FIs of H in the lattice
differ from H by only one element, which makes search for
optimal recommendations very easy.) Note that only the ex-

isting descendant FIs have to be examined in order to find
the optimal recommendation — if all other possible descen-
dants are not frequent, then their support must be below
that of the frequent itemsets, so the extensions leading to

{}

{A}

{A,B}

{A,B,C}

{A,B,C,D}

{A,B,D}

{A,C}

{A,C,D}

{A,D} {B,D}

{B}

{B,C}

{B,C,D}

{C}

{C,D}

{D}

Figure 2: Prefix tree representation of a lattice —
the missing edges are shown in dashed lines.

them could not possibly be optimal.
A more complicated case occurs when the complete pur-

chasing history H is not an FI. There are several ways to
deal with this case, but before describing them, we should
note that they are by far not as important as the main case
described above, because they happen infrequently. Still,
one reasonable approach is to find the largest subset of H

that is frequent and has at least one frequent descendant,
and use the optimal recommendation for that largest subset.
(In practice, the algorithm would find the largest frequent
subset present in the lattice, and use the optimal recom-
mendation for its parent.) In case several largest subsets
of the same cardinality exist, ties can be broken randomly,
or more sophisticated algorithms for accommodating several
local models into one global can be used [9].

The extraction of the optimal recommendation has to be
performed only once, and after that it can be stored in the
lattice, together with the support of that set. Table 3 shows
the recommendations extracted form the lattice for every
item-set with a minimum support threshold of 1. We will
call the mapping from past purchases to optimal products to
be recommended a recommendation policy. As discussed in
the Introduction, this definition of optimality corresponds to
the simplest objective of product recommendation, namely
the maximization of the probability of the immediately fol-
lowing purchase. However, any of the more elaborate formu-
lations of optimality discussed above can be used here. They
would result in different recommendation policies, which are
nevertheless of the same form: a mapping from purchasing
histories to products to be recommended.

As an implementation detail, we will note that the lat-
tice is usually stored as a prefix tree which does not repre-
sent all the lattice edges explicitly [7]. The missing edges
are displayed as dashed lines in Figure 2. For example,
the set {A, B, C} will be a parent to the set {A, B, C, D}
but {B, C, D} will not be a parent to the {A, B, C, D} set.
The set {A, B, C, D} is called an indirect child to the set
{B, C, D}. Searching indirect children, however, is not a
major problem — in practice, the algorithm would generate
in turn all possible extensions, use the prefix tree to find the
corresponding itemset, and consider it in determination of
the optimal policy, if it is frequent.

Before discussing our idea for representation and com-
paction of the recommendation policy by means of decision
trees, we will note that the approach to personalized recom-

{A,B} {A,C} {A,D} {B,C} {B,D} {C,D}

{A,B,C} {A,B,D} {A,C,D} {B,C,D}

{}

{B} {C} {D}{A} 3 2

2 1 1 1

1

2

1

4

2

Figure 3: Adjacency lattice for T and the support
values of the item-sets for T .

Itemset Recommendation Purchase Prob.

{} ⇒ {B} 0.75
{A} ⇒ {B} 1.00
{B} ⇒ {A} 0.66
{C} ⇒ {B} or {D} 0.50
{D} ⇒ {A} or {C} 0.50
{A,B} ⇒ {D} 0.50
{A,D} ⇒ {B} 1.00
{B,C} ⇒ {} 1.00
{B,D} ⇒ {A} 1.00
{C,D} ⇒ {} 1.00
{A,B,D} ⇒ {} 1.00

Table 3: Recommendation policy derived from T .

mendation based on frequent itemsets has close connections
to personalized recommendation based on association rules,
as proposed by Mobasher [11] and Lin et al. [10]. Those
authors proposed to derive association rules of the form “If
H then y with probability P”, match the antecedents of
all rules to a customer’s purchasing history, and use the
most specific rule to estimate the probabilities of product
purchases. (Or, for the last step, use some other arbitra-
tion mechanism to resolve conflicting rules.) These algo-
rithms are not essentially (mathematically) different from
our method, since the discovery of association rules is also
based on the same algorithms for discovery of frequent item-
sets that we discussed, and the induced JPF is essentially the
same. Note that our objective in this paper is not to improve
on the accuracy of these algorithms in estimating the cus-
tomer response probabilities, nor to compare the accuracy
of FI-based recommenders with that of alternative methods
based on logistic regression, neural nets, etc. Our objective
here is to to improve on the time and space required to store
and producde optimal recommendations derived by means
of discovery of frequent itemsets.

The motivation for this objective is the observation that
these algorithms are fairly inefficient in matching customer
histories to rules, since the whole rule base has to be searched
sequentially. (Unless additional data structures are used,
but it is not likely that they would be any simpler than a
prefix tree.) In contrast, search in an adjacency matrix rep-
resented by a prefix tree is only logarithmic in the number of
itemsets represented in it. Furthermore, general algorithms
for induction of association rules generate far too many rules
— while there are 2N itemsets in a domain, there are 3N

possible association rules, which makes a big difference in
memory requirements.

However, a recommendation policy stored in the lattice
has its inconveniencies, too. First, it is not very portable —
unlike sets of association rules, which can be stored and ex-
changed in the Predictive Model Markup Language (PMML),
there is no convenient PMML representation of a prefix tree
or adjacency lattice. Second, and even more important, the
lattice encodes a (sparse) JPF, while what we need is only
the recommendation policy. (This shortcoming is shared
with the mentioned algorithms for personalized recommen-
dation based on association rules.)

In fact, it can be expected that large discrepancies might
exist between the complexity of a JPF and the complexity
of the optimal recommendation policy implied by that JPF.
As an example, let’s consider a domain of N products whose
purchases are completely uncorrelated. Still, not knowing
this, the JPF will have on the order of 2N entries. (Rep-
resenting only frequent itemsets will help us sparsify their
representation, but if their individual purchase frequencies
are similar, this would not help us a lot.) On the other hand,
the optimal recommendation policy in this case is very sim-
ple, because past purchasing histories have no correlation to
future purchases, and the optimal strategy is to recommend
the most popular item not already owned by the customer
— if a customer has not purchased the most popular item,
recommend it, otherwise if the customer has not purchased
the second most popular item, recommend it instead, and so
on until the least popular item, to be recommended to a cus-
tomer who already has purchased everything else. Clearly,
such a recommendation policy is only linear in N , while the
JPF of the problem domain is exponential in N .

While this is an extreme constructed example, and inter-
item correlations certainly do exist in real purchasing do-
mains (otherwise the whole idea of personalized recommen-
dation would be futile!), our hypothesis is that this discrep-
ancy between the complexity of the JPF and that of the
recommendation policy still exists in real domains to a large
extent. The question then becomes how to discover and
exploit it, and the next section describes how this can be
achieved by means of decision trees.

3. EFFICIENT INDUCTION OF DECISION
TREES FROM FREQUENT ITEMSET LAT-
TICES

Decision trees are a very popular data mining method
for classification and regression, and can be conveniently
induced, exchanged, and visualized by many tools. A de-
cision tree consists of intermediate nodes, where attributes
(variables) are tested, and leaves, where decisions are stored.
Since a recommendation policy is a mapping between pur-
chasing histories (inputs) and optimal product recommenda-
tions (output), a decision tree is a perfectly viable structure
for representing a recommendation policy.

If we want to represent a recommendation policy as a de-
cision tree, the easiest approach is to convert directly the
prefix tree of the adjacency lattice to a decision tree. To
this end, each node of the prefix tree that has n descendants
must be represented as n binary nodes, testing in sequence
whether the customer has purchased each of the correspond-
ing n items that label the edges leading to the descendants.
Clearly, if this approach is followed, the resulting decision
tree would be much larger than the original lattice.

Instead, our approach is to treat the problem of encoding
the recommendation policy as a machine learning problem
of its own right, and address it with existing algorithms for
induction of decision trees, such as ID3 and C4.5. Our expec-
tation is that the optimal partitioning of the itemset space
for the purposes of representing the recommendation policy
is very different from the optimal partitioning of that space
for the purposes of storing the JPF of purchasing patterns,
and existing algorithms for induction of decision trees would
be able to discover the former partition.

In order to use these algorithms for induction of decision
trees, we generate training examples directly from the rec-
ommendation policy — one example per itemset in the lat-
tice. Each frequent itemset is represented as a complete set
of Boolean variables, which are used as input variables. The
optimal product to be recommended is given as the class
label of the output. Table 4 shows an example data trans-
formation. We use this list of itemsets and recommendations
as training examples for building a decision tree.

There are certainly many possible decision trees that clas-
sify correctly a given set of training examples, and some of
them are larger than others. For example, if we are given
the examples in Table 4, a possible decision tree may be the
one in Figure 4. However, this tree is rather large — the one
in Figure 5 is just as good, and is significantly smaller.

While finding the most compact decision tree is not a triv-
ial problem, our approach is to use greedy algorithms such as
ID3 and C4.5 ([2, 4]) that have been shown time and again
to produce very compact decision trees with excellent classi-
fication properties. So, after we generate training examples
as described above, we rely on these general algorithms for
induction of decision trees to build a compact representation
of the recommendation policy.

For our example, we end up with 11 nodes in the adja-
cency lattice and 11 nodes in the decision tree, which means
that we have not achieved reduction of the number of nodes.
However, the experimental comparison results described be-
low showed that on larger datasets, our algorithm performs
better in terms of number of nodes, and creates simpler data
structures represented with decision trees compared to the
lattice representation for the same data.

4. EXPERIMENTAL VERIFICATION
We tested our algorithm and hypothesis on the retail data

set that is commonly used in research on frequent itemset
mining [8]. The database originates from an automated con-
venience store in Belgium, and contains 41, 373 records. In
this evaluation, we used the implementation of Apriori due
to Bart Goethals [7]. After generating training examples,
decision trees were built within the MineSet algorithmic en-
vironment. During decision tree induction, split attributes
were selected using the Mutual Information (entropy) crite-
rion. In all cases, completely homogeneous trees were built
— this is always possible, since each training example has
unique input.

Figure 6 shows a comparison between the number of nodes
in the prefix tree and that of the nodes and leaves of the de-
cision tree, both plotted against the support threshold. The
experimental results suggest that indeed the use of decision
trees indeed results in more compact recommendation poli-
cies. Furthermore, the percentage savings are not constant,
but increase with the size of the policy. In some cases, the
decision tree learning algorithm is able to reduce the number

of nodes necessary to encode the policy by up to 80%. This
shows that there is indeed significant structure in the dis-
covered recommendation policy, and the learning algorithm
was able to discover it.

Moreover, we will note that storing a binary decision tree
is much cheaper than storing a prefix tree with the same
number of nodes, because, in general, the prefix tree is not
binary. Furthermore, a decision tree can be transported in
standard PMML format. And, finally, the induced tree han-
dles all novel customers directly, even those whose full pur-
chasing histories are not explicitly represented in the original
lattice.

5. CONCLUSION
In this paper, we discussed the application of frequent

itemset discovery algorithms for product recommendation
and personalization technology, and a method for compaction
of the derived recommendation policy by means of standard
decision tree induction algorithms. Since the adjacency ma-
trix of all frequent item sets consumes a lot of memory and
results in relatively long look-up times, we investigated the
idea to compress the recommendation policy by means of
a decision tree. To this end, several algorithms for learning
decision threes were applied to a training set consisting of all
recommendations encoded in the adjacency matrix. We dis-
covered that decision trees indeed resulted in more compact
recommendation policies.

Future research in this area will focus on more advanced
algorithms for building decision trees. It can be expected
that alternative, problem-specific measures for introducing
splits in the decision trees would perform better than the tra-
ditional measures such as entropy, information gain, the Gini
index, etc., which were originally developed for the purposes
of classification by decision trees. We believe that further
progress would depend critically on gaining further insight
on the nature and structure of optimal recommendation poli-
cies for real data sets.

Another possible future direction is to try and apply this
approach to more sophisticated recommendation policies, for
example ones based on the extraction of frequent sequences.
Such policies have been shown to model the sequential na-
ture of customer choice significantly better than atempo-
ral associations [11], and since the discovery of frequent
sequences has been shown to be not much more difficult
than the discovery of frequent itemsets, it can be expected
that the adjacency lattice of frequent sequences can be com-
pressed similarly to that of frequent itemsets. However, such
an extension is by no means trivial, since the decision tree
would have to use attributes that not only test whether an
item has been purchased in the past by a given customer,
but also whether this item has been purchased before or af-
ter other relevant items. Still, it can be expected that our
approach could be generalized to sequential recommenda-
tion policies, possibly at the expense of considering more
complex decision trees.

6. REFERENCES
[1] Bruce Ratner (2003). Statistical Modeling and Analysis

for Database Marketing. Boca Raton: Chapman and
Hall/CRC.

[2] J.R. Quinlan (1986). Induction of decision trees.
Machine Learning, 1(1), pp. 81-106.

Item-set Rec.

{} ⇒ {B}
{A} ⇒ {B}
{B} ⇒ {A}
{C} ⇒ {B} or {D}
{D} ⇒ {A} or {C}
{A,B} ⇒ {D}
{A,D} ⇒ {B}
{B,C} ⇒ {}
{B,D} ⇒ {A}
{C,D} ⇒ {}
{A,B,D} ⇒ {}

⇒

A B C D Rec.

No No No No {B}
Yes No No No {B}
No Yes No No {A}
No No Yes No {B} or {D}
No No No Yes {A} or {C}
Yes Yes No No {D}
Yes No No Yes {B}
No Yes Yes Yes {}
No Yes No Yes {A}
No No Yes Yes {}
Yes Yes No Yes {}

Table 4: Recommendation tables for T and ID3 input table for T

{} {} {} {D} {} {} {B} {B} {} {} {A} {A} {}

Yes Yes Yes Yes Yes Yes Yes

Yes Yes Yes

Yes Yes

Yes

No No No No No No No

{B}

No No No

No

No

{A} {B}

No

No

No

Yes

Yes

A

B B

C CC

DDDDDDDD

C

Figure 4: Full decision tree for T .

Yes Yes

Yes

No

No

{A} {B}

No

No

No

Yes

Yes

A

B B

C

D

{D} {B} {A}

{B}

Figure 5: Optimized decision tree for T .

0 100 200 300 400 500 600 700 800 900 1000
0

1000

2000

3000

4000

5000

6000

7000

support threshold

no
de

s

FI
intrm
leaves
total DT

Figure 6: Experimental comparison between the number of nodes needed to store the recommendation policy
in a prefix tree (“FI”) or a decision tree (“total DT”). For the case of decision trees, the nodes are broken
down into intermediate (decision) nodes, denoted by “intrm”, and leaves (recommendations), denoted by
“leaves”. It can be argued that leave nodes should not even be counted, because recommendations recorded
in them can easily be recorded in their immediate parents, instead, and comparison should be between “FI”
and “intrm”.

[3] Brafman, R.I., Heckermann, D., and Shani, G. (2003).
Recommendation as a stochastic sequential decision
problem, in Proc. of ICASP 13, Trento (Italy), June
6-10, 2003, pp. 164–173.

[4] J.R. Quinlan (1993). C4.5: Programs for Machine

Learning San Mateo, CA: Morgan Kaugmann.

[5] Greg Linden, Brent Smith, and Jeremy York (2003).
Amazon.com recommendations: item-to-item
collaborative filtering, Industry Report, March, 2003.

[6] Pattie Maes (1994). Agents that reduce work and
information overload. Communications of the ACM,
37(7):30-40 July 1994.

[7] Bart Goethals (2002). Efficient Frequent Pattern

Mining, PhD thesis, December ,2002, Transnational
University of Limburg, Diepenbeek, Belgium.

[8] Brijs T., Swinnen G., Vanhoof K., and Wets G.
(1999). The use of association rules for product
assortment decisions: a case study, in Proc. of the

Fifth International Conference on KDD, San Diego,
August 15-18, 1999, pp. 254-260.

[9] H. Mannila, D. Pavlov, and P. Smyth. (1999).
Predictions with local patterns using cross-entropy, in
Proc. of Fifth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining,
pp. 357–361, New York, ACM Press, 1999.

[10] W. Lin, S. A. Alvarez, and C. Ruiz (2002). Efficient
adaptive-support association rule mining for
recommender systems. Data Mining and Knowledge

Discovery, 6(1): 83–105, 2002.

[11] Mobasher, B., Dai, H., Luo, T., and Nakagawa, M.
(2001). Effective personalization based on association
rule discovery from web usage data. In Proc. of the 3rd

International Workshop on Web information and Data

Management, Atlanta, Georgia, ACM Press, New
York, pp. 9–15.

[12] Charu C.Aggarwal and Philip S. Yu (1994). Online

Generation of Association Rules IBM T.J. Watson
Research Center, Yorktown Heights, NY 10598.

[13] Jonathan L. Herlocker, Joseph A. Konstan, Al
Borchers, and Jonh Riedl (1999). An Algorithmic
Framework for Performing Collaborative Filtering,
Proc. of SIGIR 1999, pp.230–237.

[14] Agrawal R., Imielinski T., and Swami A. Mining
association rules between sets of items in very large
databases (1993). Proc. of the ACM SIGMOD

Conference on Management of data, pp. 207–216,
Washington D.C., May 1993.

[15] Heckerman, D., Chickering, D. M., Meek, C.,
Rounthwaite, R., and Kadie, C. (2001). Dependency
networks for inference, collaborative filtering, and data
visualization. Journal of Machine Learning Research,
vol. 1, Sep. 2001, pp.49–75.

	Title Page
	Title Page
	page 2

	Induction of Compact Decision Trees for Personalized Recommendation
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7

